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ABSTRACT

Neutron bang times for a series of MagLIF (Magnetic Liner Inertial Fusion) experiments [S. A. Slutz, et al., Phys. Plasma 17,
056303 (2010)] with D,-filled targets have been measured at the Z facility [R. B Spielman, C. Deeney, G. A. Chandler, et al., Phys.
Plasmas 5, 2105]. The emitted neutrons were detected as current-mode pulses in a multichannel, neutron time-of-flight (nTOF)
diagnostic with conventional, scintillator-photomultiplier-tube (PMT) detectors. In these experiments, the detectors were fielded at
known, fixed distances L (690—2510 cm) from the target, and on three, non-coplanar (but convergent) lines-of-sight (LOS). The
primary goal of this diagnostic was to estimate a fiducial time (bang time) relative to an externally generated time-base for
synchronizing all the diagnostics in an experiment. Recorded arrival times (47) of the pulses were characterized experimentally by
three numerical methods: a first-moment estimate (centroid) and two nodal measures — Savitzky-Golay (SG) smoothing and a single-
point peak estimate of the raw data.. These times were corrected for internal detector time delays (transit and impulse-response-
function) — an adjustment that linked the recorded ATs to the corresponding arrival of uncollided neutrons at each detector. The bang
time was then estimated by linearly regressing the arrival times against the associated distances to the source; fpang (on the system
timescale) was taken as the temporal intercept of the regression equation at distance L = 0. This article reports the analysis for a
representative shot #2584 for which (a) the recorded 475 — even without detector corrections — agreed by method in each channel to
within 1—2 ns; (b) internal corrections were each ~3 — 5 ns; and (c) a 95% uncertainty (confidence) interval for fpang in this shot
was estimated at 3 ns with 4 degrees of freedom.

A secondary goal for this diagnostic was to check that the bang time measurements corresponded to neutrons emitted by the
D(d,n)*He reaction in a thermalized DD plasma. According to the theoretical studies by Brysk [H. Brysk Plasma Phys, 15 611
(1973)], such neutrons should be emitted with an isotropic Gaussian distribution of mean kinetic energy E of 2.449 MeV; this
energy translates to a mean neutron speed u of 2.160 cm/ns [D. H. Munro, Nuclear Fusion, 56(3) 036001 (2016)]. In the MagLIF
series of shots there was no evidence of spatial asymmetry in the time-distance regressions, and it was possible to extract the mean
neutron speed from the slope of these fits. In shot 2584 u was estimated at 2.152 cm/ns + 0.010 cm/ns [95 % confidence, 4 dof] and

the mean kinetic energy E (with relativistic corrections) was 2.431 MeV + 0.022 MeV [95 % confidence, 4 dof] — results supporting
the assumption that D-D neutrons were, in fact, measured.

*Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department
of Energy or the United States Government.

I Introduction neutrons are produced; (b) the neutron yield; (c) an
effective ion temperature; and (d) a neutron spectrum
From its beginnings in molecular-beam ON / OF — fine details of which probe the interior

experiments [1], the time-of-flight technique (TOF) has
become a mainstay for studying the dynamics of energy-
distributed particle beams in physics and chemistry.
Conceptually, TOF is simple: in the absence of external
fields and material interactions, the speed # of a particle
may be estimated by measuring its time-in-flight (TIF)
over a known distance L. The TOF strategy has been
used for weak beams in particle-counting mode [2,3] and

conditions within the burning plasma.

In its MagLIF (Magnetic Liner Inertial Fusion) [11—
13] approach to inertial confinement fusion (ICF),
Sandia National Laboratories (Albuquerque, New
Mexico) has fielded a multichannel, nTOF diagnostic for
D»-filled targets at the Z facility[14,15]. The primary

for intense beams in current mode. In particular, the purpose of this diagnostic is to establish a fhang for
technique (nTOF) has been applied to neutron-emitting, neutron production in these experiments on an external,
high-density-high-temperature  (HDHT) plasmas  in system-provided ‘clock’, against which other diagnostics
inertial-confinement fusion (ICF) experiments [4—10]. can be synchronized. A secondary goal is to determine if

The time-dependent spectra of uncollided neutrons from the neutrons produced are consistent with the D(d,n)'He

: ; reaction from a Maxwellian plasma by estimating the
an ICF target can be related to (a) a time fpang as fusion P Y &



average speed u and symmetry of neutrons in the
uncollided flux.

The diagnostic configuration adopted here with
standard scintillator-photomultiplier detectors (PMT)
[16,17] was novel for several reasons: (a) to avoid
complete saturation of the scintillators by intense
bremsstrahlung and other x-ray backgrounds from the Z
accelerator, the detectors could be fielded no closer than ~
7 m from the neutron source, nor farther than ~25 m to
avoid signal interference from backscattered neutrons;
(b) widely-spaced, multiple detectors enhanced the

resolution of neutron fpang and u estimates; and (c) the
detectors were distributed over three independent lines-of-
sight (LOS) to permit coarse checks for spatial
asymmetries in neutron emission. Of course, the price
paid for moving the detectors away from the source was
spatial and temporal spreading of the emitted neutron
burst as well as increased exposure to backscattered x
rays and neutrons from the massive, support structures in
the Z accelerator. Such interferences made fine details of
the neutron spectrum beyond the scope of the these
studies. Thus, compared to neutron times-in-flight, the
plasma lifetime was essentially instantaneous.

Because the time-dependent, nTOF data D, (f)in

each k detector comprises a single (often noisy and
deformed) pulse, the major challenge for analyzing the
MagLIF data was in identifying some temporal feature(s)
in the recorded signal that can be directly traced to
uncollided neutrons incident on each scintillator and then
further back to the source plasma itself. This cannot be
done with imprecise notions of ‘peak time’ in the
recorded traces. Rather, in the presence of noise,
interference, and signal distortion, it is imperative to
define and to test consistent procedure(s) for estimating
data ‘arrival times’ (AT) at the nTOF detectors and then
neutron ‘time-in-flight’ (TIF) as a function of the distance

to the source L. Then fpang can be defined as the limit of
this functionas L > 0.
Reported here are estimated 95% confidence intervals

for fphang in MagLIF shot #2584, a representative
experiment with a D»-filled target. Also reported is the
mean neutron speed u (with uncertainties) in this shot

and the mean neutron kinetic energy E , both of which
agreed with published values for the D(d,n)*He reaction
and predictions from Maxwellian plasma models [4,5].
This article is comprises five major sections. An nTOF
measurement at Z is basically a set of £ = 1,.., M = 6,

neutron detectors, arranged at varying distances L from a
plasma source. Sect. II summarizes the basic geometry for
these experiments; compares traces of raw and smoothed

recorded data D,(t) with comments on signal

reproducibility and perturbations; and suggests simple
measures for establishing arrival times. The purpose of
Sect. III is then to demonstrate that such operational
definitions can be justified within the context of a typical
nTOF experiment. Three methods are considered:

specifically, ) variants of ‘peak-signal’

( tsmoo 2 tmode
estimates and (f), a ‘mean-time’ estimate over a
restricted (FWHM) time-domain  (centroid). A
mathematical model is posited for linking such arrival

times to fbang and u . Section IV displays the results for
these methods on raw data in shot #2584, fits the linear

model of Sect. III to these data, and extrapolates to thang
on the system timescale; this section also shows the
effects of detector response times, leading to a corrected

tang. Lastly, Sect. V describes how ‘back-of-the-
envelope’ calculations corroborate these measurements,

compares the measured speed # and inferred E here to
published values, and speculates about future work.

I1. Experimental Configuration and Raw Data #2584
A. Geometry

Figure 1 shows a perspective view of the Z accelerator
at the Z facility. Overall, the accelerator is cylindrically
symmetric about a vertical polar axis passing through a
concentric, vacuum target chamber (3.66 m in diameter
and 7.62 m high); a MagLIF target is placed at the center
of this chamber. Marx generators, storage capacitors,
pulse-forming lines, switches, and a plastic insulation
stack (immersed in either oil or water) surround the target
chamber. Outside the target chamber, various radial lines-
of-sight (LOS) diverge in a spherical-polar coordinate
system centered on the target and polar axis (with the z-
axis pointing downwards, so that points above the
accelerator have azimuth angles greater than 90°.)

For multichannel nTOF studies, seven nearly-matched,
scintillator-PMT detectors were mounted to three, non-
coplanar LOSs at varying distances from the target to
measure neutron arrival times and to check for anisotropy
in neutron emission. Each detector string (scintillator-
light-guide-PMT) was independently calibrated for
sensitivity and temporal response vs. PMT bias voltage
[16]. Some detectors were in fact ‘dual’ (BA2, BA3) in
that two PMTs viewed the same scintillator in opposed

directions. The channel names and their locations L, are

listed in Table I. (One channel of a dual detector was
completely lost due to noise and is not included here.).
The radial source-to—scintillator distances (SSD) L were
measured with a graduated, steel tape which was (just)
able to distinguish length increments down to ~ 0.07 cm
(1/32 inches); but, the overall accuracy of L was estimated
to be +1 cm, due to sagging of the tape, shock motion
and thermal expansion of both the LOS and the tape.
Taking such systematic error estimates as 8L ~ 0.5 — 1 cm
still yields fractional estimates 8L/ L ~0.1 % over the
various LOSs (Tbl. 1); and for 2.4-MeV DD-neutrons,
such length-errors represent arrival-time errors of ~0.25—
0.5 ns. (Nevertheless, in Tbl. 1 length precisions of 0.01
cm have been retained to reduce unnecessary round-off-
errors in the subsequent statistical analysis.)
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Figure 1. (Color Online) Perspective view of the Z accelerator for
MagLIF target experiments and of the lines-of-sight used for nTOF
measurements (not to scale). Depicted inwards from the oil-tank wall are
Marx generators, storage capacitors, pulse-forming lines and the
insulator stack; not shown is the MagLIF target chamber itself. Labeled
NTOF detector locations are shown on the various diverging lines-of-
sight and correspond to Table 1.

Distance (¢cm) L.k Channel Name Polar (deg.) Azimuth (deg.)
689.64 BB1 n/a 0
785.98 BA2 n/a 0
785.98 BA3 n/a 0
944.56 27B2 270 110
1145.85 27B1 270 110
2510.00 5A1 50 110

Table 1. SSD Lk (cm), polar and azimuthal angles of detectors for
MagLIF for DD-neutron TOF study, shot #2584. The co-ordinate system
is spherical-polar with the polar axis pointed downwards, so that
detectors at 690 and 786 cm are below the target while the others are
above the target. The detector at 2510 meters is on a third axis..

B. Data from a Representative MagLIF Shot

Figures 2-5 show time-series data Dk(f) from shot
#2584 for the six useable channels and are keyed to Tbl.
1. These traces were recorded by 8-bit, 1 GHz digitizers
with 0.25 ns dwell times. All represent what we call here
‘raw data’ in the following sense: (a) baselines were
locally corrected; and (b) temporal corrections were made
for nominal PMT throughput times. What is not corrected
in these raw data are temporal adjustments due to
individually calibrated [16] detector impulse-response
functions (IRF) and to actual throughput times; such
adjustments vary slightly from one detector-string to
another and depend on the PMT-bias voltage settings. The
corrections are typically, however, are 05 ns in magnitude

for a given channel and altogether shift thang by a few ns
in the final analysis. (Cf. Sects. III.LB and IV.B.) The
traces in Figs. 4 and 5 have been additionally smoothed
with the Savitzky-Golay technique [18,19] (See Sect. III.)
to simplify comparisons here.

Taken in order, these figures show the following:

Fig. 2 shows the BB1 channel (the detector closest to
the source) on a 700 ns timescale. The off-scale pulse
at 3000 ns (on the system clock) corresponds to
bremsstrahlung from the voltage divider stack
attached to the target holder pulse plus target x rays;
the neutron pulse is the tiny peak at ~3430 ns. (The
time-in-flight of a 2.45 M D-D neutron to this

detector is also indicated.) The point is that since the
nTOF detectors used at Z cannot discriminate
between neutrons and hard x rays, moving them

significantly closer to the source for fpang time
measurements invites more troublesome x-ray
backgrounds.

Fig. 3 compares the variation of noise-to-signal
among the raw neutron signals. Shown here are
channel BB1 (lower trace, at 689 cm from Fig. 2 on a
narrower timescale) and channel 27B2 (upper trace,
at 945 cm) which peaks ~100 ns later than BBI.
(27B2 has been arbitrarily shifted and scaled.) On
this scale neither trace shows the full perturbing x-ray
pulse in Fig. 2. The noticeable difference in noise-to-
signal in these traces comes from the signal range in
the two digitizations: without a prominent x-ray
background, 27B2 could be adjusted for near full-
scale digitization, whereas the BB1 neutron signal
could not be. Most of the noise seen in BBI is
quantization noise.

Figure 4 addresses reproducibility. Channels BA2
and BA3 were constructed in one detector housing
with two matched PMTs looking at the same
scintillator. The traces shown have been smoothed,
aligned in time at peak (shift ~1.3 ns), and scaled.
One notices individual PMT characteristics ~6 ns
after peak and then further agreement. Similar
agreement in features is also obtained 20 ns before
and 15 ns after peak.
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Figure 2. (Color Online) Raw data from shot #2584 for channel BBI
with an early, off-scale bremsstrahlung signal and extended tail, together
with a small DD fusion neutron signal (2.45 MeV, peak speed 2.164
cm/ns).
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Figure 3 (Color Online) Overlay comparison of noise to signal in raw
data vs. time between the worst and ‘best’ nTOF channels, respectively,
BB1 and 27B2. (Data from channel 27B2 has been shifted earlier by 118
ns and rescaled in this comparison.)

Figure 5 shows a composite of all 6 raw data
traces obtained in shot #2584. (These have been
smoothed, and aligned at peak.) It is clear from these
figures that all of the nTOF show mono-modal pulses
that are skewed somewhat positive (i.e., displaying a
higher falling tail) at late times. As one would expect,
the FWHMs increase with distance from the source.
The shapes of the pulses are most similar for times
within their respective FWHM. The notable
exception is channel 5A1 at 2510 cm from the
source, which has less shielding than the rest of the
detectors — its signal is given particular scrutiny in
Sect. V. The Brysk theory [4,5] expects that the
uncollided neutron pulse should be Gaussian in shape
(See Sect. III.A), and it may indeed be so. But, if so,
then further analysis of how the recorded pulses
response to incoming neutrons (either uncollided or
not) must be included in determining corrected
neutron arrival times data.
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Figure 4. (Color Online) Overlay comparison of (smoothed) signals
from the dual, two-channel detector (BA2 and BA3) In this case, the

recorded signals were closely similar in shape and separated by 1.3 ns..
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Figure 5. (Color Online) Comparison of all 6 useful nTOF channels in

shot #2584, smoothed, normalized and aligned at peak (fsmoo). The
FWHM is noted. Signals above the FWHM are roughly symmetric, with
the exception of signal SAIL, located at 2510 cm from the source.

II1. Methods of Data Analysis

The goal of this section is to illustrate what is not so
simple about nTOF experiments, at least at Z. Overall, the
question is this: how does an instantaneous burst of D-D
neutrons translate into multiple, recorded digital signals;
and what can be experimentally inferred about bang time
and average speed of the emitted neutron distribution?
There are, in fact, several issues that need to be addressed
here before one can even estimate just the bang time: (a)
What temporal neutron distribution would one predict for
a Maxwellian deuterium plasma at an effective
temperature from the Brysk model [4]? (b) How may
interference signals and noise be reduced within the Z
environment? (¢) How do instrumental response and
throughput times relate the incoming neutron pulses on



the scintillators to the recorded data pulses? and (4) How
characteristic feature(s) in the recorded pulse can be
consistently defined for the arrival time(s) of neutrons?
These questions are pursued in this section.

A. The nTOF Model According to Brysk

The traceability of recorded neutron arrival times to
consistent estimates of bang time and average neutron
speed u depends firstly on conditions within the source
plasma and the propagation of neutrons between the
source and the scintillators.

According to Brysk [4], if a D-D plasma has a
Maxwellian distribution, the emergent neutrons at bang
time should have a differential energy spectrum

ON / OE of the form:

N ) _ _(E-Ey
(aE)—Aexp[ c; }, (1)

where E ,6p, and E have units of energy; and the

constant A has units of neutron density per unit energy.
This is, of course, a Gaussian distribution, where E is
both the the average neutron kinetic energy (2.45 Mev)
for the D(d,n)*He-reaction as well as the mode of

ON / OE ; o, represents the energy spread and depends

on the (effective) plasma temperature 7.

For the sake of consistent terminology, we shall call
neutrons that encounter no material interactions in transit
to the nTOF detectors as part of uncollided neutron flux at
a point in space and time and retain the kinetic energy and
momenta with which they were born. According to the
Brysk model, this flux provides traceability to the
underlying conditions in the plasma. Any other neutrons
or x rays interacting with the nTOF detectors then
represent signal interferences.

An nTOF diagnostic is a useful spectrometer for such
uncollided neutron measurements, over a fixed but known
distance L because it experimentally transforms the

uncollided distribution ON / OE into a temporal

distribution at each distance L. That is,
=\ /—\3
ONY _(ON)(PE . _ 4 2E | &) «
ot k OE ot t, t

—2 772
uE —
exp| ———(t—1t)
|: Gl k
Here, t is the time-in-flight of an uncollided neutron from
its birth at the plasma (with kinetic energy E); the non-
relativistic  parameters E, u= \2E/ m,, and

t, = L, /u are the mean kinetic energy, speed, rest mass,

and time-in-flight (TIF) of 2.45 MeV neutrons between
the plasma and the k™ scintillator. Equation (2) is
approximately Gaussian (with variable amplitude and
width) if the wuncollided neutrons are emitted
simultaneously compared to clock time and if

2

|t—% |/, 0 1 [(e.g., for BBl ~ 5-ns (FWHM)/320-ns

(flight-time) =~ 1.5%]. Thus, while Eq. (2) does not
exactly represent a simple Gaussian shape for uncollided
neutrons, for convenience we will still refer to it as
gaussian distribution G(f) in time, especially at signal
points within its half-width.

Experimentally, one does not directly measure the TIF
in Eq. (2), but rather arrival-times relative to the recording
system fiducial. On the system clock the arrival of an

uncollided 2.45 MeV arrives at thang plus the time-in-

flight to the k™ scintillator plus a correction for the
detector:

7 _ —\—1
i = by T(@) L+ 8t 3)
- —— D — ——

clock time clock time TIF detector

Once experimental estimates of arrival times are
determined, then Eq.(3) can be used in a linear Least-
Squares (LS) regression model from which to estimate the
bang time on the system clock..

B. Coping with Interference Backgrounds and
Noise in MagLIF experiments at Z

As noted above for Figs. 2—35, the raw data traces in
shot #2584 are not analytically smooth functions but
rather hint at competing physical effects — here
interferences — which include prompt and scattered x
rays from the pulsed-forming lines as well as late-time
backscattered neutrons. In addition, there can be noise on
cables due to direct x-ray/neutron interactions and
quantization ‘noise’ in the recording system. All these
effects are expected in the MagLIF setting and are site
specific. Lerche[6], Hatarik [7], and Murphy [8§—10]
have delineated such issues for the NOVA and NIF
installations as well as some mitigating schemes. (For
example, (Stoeckl [20] has also reported a gated liquid
scintillator.)

As largely experimental problems, such interferences —
once identified — may require mitigation by purely
empirical means and statistical simulations. For example,
as mentioned above, early time x-ray interference in
close-in nTOF channels (BB1) was successfully reduced
by moving the detectors farther way from the source.
Similarly, backscattered neutrons which arrive after the
uncollided flux could frequently be ignored by analyzing
the raw time signal only within the recorded FWHM
domain. Alternatively, one can try to simulate scattered
background signals using the Monte Carlo technique [6,7]
and then to identify significant scattering sources: this
method proved to be somewhat problematic at Z, given
the massive number of  complicated accelerator
structures near the nTOF detectors and the custom
shielding and collimation required. Lastly, it was found
that the primary random noise in the raw nTOF signals
was quantization noise in the digitizers and could be
reduced to acceptable levels with Savitizky-Golay
smoothing [18,19] and simple averaging techniques. (See
Sect. III.D below.)



C. Detector Distortions

The final connection of the recorded data D, (#) to

uncollided neutrons in the k™ nTOF detector is its
particular response to neutrons in the scintillator — light-
pipe &> PMT — electrical current processes. Each of
these sub-stages requires time to complete, but the net
temporal result can often be summarized by an impulse

response function (IRF), R, (¢), and a throughput time of

the assembled detector. While in some formulations the
IRF includes the transit time through the PMT, we have
chosen to deal with these separately. The impulse
response functions for complete nTOF detector strings as
used above at Z have been studied with pulsed x rays and
cosmic rays and fit to exponentially-modified-gaussian
functions (EMG) by Bonura [16]. (Such four-parameter
functions are particularly applicable for data pulses.[2]1—
23]. Bonura found pulse widths of ~3—4 ns (fwhm), and
throughput times of 11-13 ns were obtained; these values
slightly varied with the specific PMT used and depended
on the bias voltage.

One can show [24] that if the detection processes for
nTOF detectors are all linear, continuous, and
superposable (e.g., unsaturated and independent of each

other), then the electrical output D, (¢) from the detector

can be written as

D, =[" R()G,t-1)dl +e,(), &

R, *G,

where R, (f) is the response function (either

parameterized or empirically determined) and G (¢) is a

temporal function at position k that one wishes to know
something about. This integral is the formal convolution,

R, *G, = G,.*R,, of R, (t) and G, (¢). The
additional term §€,(#) represents non-differentiable
noise. In time-series problems measurements, R, (¢) is

typically constrained: R, (¢=0)2 0 (but 0 for £<0).
With response function and recorded data in hand, one

is tempted to attack Eq. (4) directly as an unfold problem

to obtain G (#)point by point. This quest is frequently

troublesome because of the noise term €, (#) and a lack

of physically realistic, a-priori constraints. The issues for
this problem have been extensively discussed in the
literature, [25—28].

The analysis of NIF nTOF data has been reported
Hatarik, et al. [6—10]. Their approach is to give up on

direct pointwise reconstruction of G (#) and to represent

it by an a-priori, constraining function based on the Brysk
model for which the convolution in Eq. (4) can be
performed. The resulting function — the EMG(?) function
[22,23] — can then be used as a fitting function and the
resulting parameters related to functional moments of

G, (1).

This method was not used for the MagLIF nTOF
experiments here because estimating bang time does not
require such detailed analysis and the data is of poorer
quality than at NIF. One is only looking for temporal

feature(s) or averages in D, (#) that reliably map into
similar features in G (). If one is willing to assume that

both R, (t) and G, (¢) are known at least in form (either

by measurement [16] and from the Brysk theory,
respectively), then some properties of Eq. (4) with respect
to Gaussian functions of time apply: specifically, one can
show that (a) the mode and the centroid coincide for

Gaussians; (b) the mode of the convolution R, *G, is

the sum of the individual modes of R,(¢t)and G, (¢)
[29,30]; and (c) the individual centroids also sum in
R, *G, [30]. [To preserve causality, it has also been
assumed here that the approximated response function
R, () is essentially zero-valued a FWHM earlier than its

mode.]

Hence, in principle, one can estimate the arrival of the
uncollided neutrons by subtracting off the FWHM of the
IRF (approximately) from the corresponding time in the
recorded data. This correction then makes a direct
connection to the recorded data to the plasma and
ultimately to the bang time on the system clock — given
the proper inclusion of the PMT throughput time.

D. Operational Methods for Estimating Recorded
Signal Arrival Times at Z.

Given now an approximate theoretical connection
between the recorded data D, (#) and the hypothesized

uncollided neutron pulse G, (¢), we define recorded pulse
arrival times in terms of mode and mean (centroid)
properties of the D, (f), knowing that eventually

corrections are needed for detector response and
throughput. Three numerical estimates in each channel

(b) ¢ and (c¢)

(t) , where the names suggest the numerical methods

were labeled as follows: (a) ¢

smoo ° mode °

used. The values obtained are compared in Table 2 (Sect.
IV), and have not been corrected as noted but are studied
below. Such corrections are of the order of a few
nanoseconds.

The Savitzke-Golay (SG) method is a low-pass digital
filter for equally-spaced time-domain data that has been
well-described in the literature [18,19]. It transforms a

discrete, noisy signal, like D, (#) , into a smoothed signal

Smoo

D, (t) based on local polynomial averages. Both the

polynomial degree and the width of the averaging window
can be selected.

Figure 6 shows the results of applying the SG
method to the trace Dsgpi1(¢) in Fig. 3. The filter comprised
4" degree polynomial with a 21-point smoothing window
over the 201 points between 3400 ns < ¢ < 3450 ns. Both



sSmoo

s (1) are shown for

the raw data and smoothed result D

comparison. To aid this appraisal, the overall domain in
Fig. 6 has been divided into three nesting sub-domains of
interest: (a) [3400, 3450] ns, which includes extended
baseline noise; (b) [3416, 3436] ns, which approximately
excludes this noise; and (c) [3422, 3431] ns, which
excludes points outside the FWHM region. The

agreement between Dgsi1(#) and D;;D °(#) is very close in

each of these regions, with scant evidence on this scale of
systematic distortion in ;';f °(t). (Although not

discussed here, the residuals between the raw and
smoothed data are normally distributed about the

smoothed curve with a mean displacement of ~2x10¢
vertical units and a standard deviation of 0.0039,
consistent with the digitization increment in the raw trace
of 0.005 units, which the SG process averages over.)

But, the real utility here of the SG method is that both

smoo

D, ~(t) and its derivative are smooth, so that the

smoothed-signal mode, ¢ can be defined where

smoo °

oD / ot crosses 0. This determination is shown in Fig.

7 where ¢ = 3426.50 ns (relative to the system time

Smoo
fiducial). Also, noted are the derivative values for the

four nearest temporal neighbors (A—D) of ¢ spaced

smoo °
at 0.25 ns; together these points span a 1-ns time interval
and suggest an uncertainty of [1 1 ns for estimating ¢

by this method.
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Figure 6. (Color Online) Comparison of the data pulse for channel bbl
vs. the signal smoothed by the Savitzky-Golay digital filter. The peak
parameter fmoo 1S thus calculated from the entire raw signal. Arbitrarily
defined sub-domains (noise, pulse, and FWHM) are indicated.
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Figure 7. (Color Online) The first derivative of Dsmoo Vs time. The peak
time #smoo, taken where dDsmoo/dt = 0 1is indicated. For reference,
derivative values for adjacent time values are shown.: A: 3426.00 ns, B:
3426.25 ns, C: 3426.75 ns, D: 3487.00.

In contrast to treating D,(f) as a noisy

communication signal, one can treat D, (f) as a pulse-
height distribution (Fig. 8) of 0.25-ns-wide bins and
apply statistical measures to estimating recorded arrival
times.

The first such statistical measure (method b, above) is
) at which

the distributional mode occurs (Fig. 8, top). For digitized
data, this value may not be unique; and in this case, it is
reasonable to average the local times at which the
maximum signal occurs. For example, in the noisiest

channel (BB1), ¢,, = 3426.6ns with roughlya 1 ns

spread.

a crude, one-point estimate of the time (7,4,

3426.6ns
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Figure 8. (Color Online) BB1 portrayed as a pulse-height distribution in
the FWHM and Pulse domains with corresponding peak measures

tmode and <{>FwHM .

A second statistical measure (method c, above) for
defining a pulse-arrival time to the distribution D, (¥) is
to estimate a first moment (centroid) <>, =
[Z7.2,D()I/[(Z),D(t))] over N bins for each nTOF
channel k. An advantage of this method is that it averages
over more data than the other methods, just noted.

However, there is sensitivity to the shape of D, (#), so

that time-domain limits for the averaging process need to
be specified. To weaken the influence of baseline noise
and distributional skewing at late times, it was decided to
restrict the domain for averaging to points within the
approximate FWHM of the pulse and the extended ‘pulse-
width’ domain of Figs. 7 and 8. The results were as

3426.7 ns (33 pts) and
<1t >pyLsk = 3426.8 ns (80 pts) for the wider domain, an

insignificant difference in this example.
In summary, one has the following recorded ‘arrival-
time’ measures for the closest and noisiest nTOF signal

(BB1) in shot 2584: (a) S-G smoothing, fp; = 3426.5

follows: <7 >pwum

ns; (b) single-point estimate at peak raw signal, tﬁf;e =
3426.6 ns; and (c) a centroid within the FWHM,

BB1

<1t >pwaw = 3426.7 ns. The estimates #gg,° and tme;e

appear to have uncertainties of ~1 ns, with uncertainty in

<t >1I:\B;\/1HM perhaps somewhat smaller.

IV. Results

A. Comparison of recorded Arrival Times for all
Channels and methods.

Table 2 compares recorded arrival times for each of
the six nTOF detectors in MagLIF shot 2584, analyzed
according to the three methods just outlined with
sampling times spaced at 0.25 ns.. The times listed are
referenced to the system clock in the experiment. The
corresponding times-in-flight range from ~320 ns to

~1200 ns relative to Boang:» given the CODATA value for
mean # (2.1602 cm/ns) [5] in Eq. (3)].

Distance (cm) t-smoo (ns) <t>FWHM (ns) t-max [raw] (ns)

689.64 3426.50 3426.70 3426.56
785.98 3471.25 3472.10 3471.00
785.98 3472.50 3473.29 3472.50
944.56 3544.20 3544.63 3544.01
1145.85 3638.11 3638.98 3638.11
2510.00 4268.41 4270.40 4268.16

Table 2. Arrival times at each nTOF detector distance in Shot #2584 by
the three independent measurement methods in Sect II1.D. The centroids

<r>rwam were calculated from the FWHM time regions of the recorded
pulses. Entries in each column were then linearly regressed on distance
to obtain bang-time and slope estimates.

It is clear from Table 2 that the method-to-method,
parametric, arrival-time estimates are fairly tightly
grouped with disagreements of O 1 ns at each distance
from the source. For example, arrival time estimates for
the dual detector (channels BA2 and BA3) at 786 cm lie
in this range. The exception to this trend is the one point

()54, at 2510 cm, which differs from the other two

methods at this distance by 2 ns, perhaps due to
noticeable interference in its trace (Fig. 5) at late times.
[Whether to keep this point or not in the bang-time
estimate was addressed by arbitrarily ignoring this point
or otherwise weighting it seeking a better fit. Actually, the
fit was not improved and the point was kept.] Overall,
however, it seems reasonable to assume that the
uncertainties associated with any of these three estimates
are not appreciably different and are ~ 1 ns, a conjecture
checked in the following linear fitting process.

B. Determination of Bang Time for Shot #2584

Because IRF and PMT-throughput corrections for all
the 6 nTOF channels were similar and small (~3—5 ns)
compared to expected neutron in-flight times (>350 ns)in,
it was decided first to fit Eq. (3) with recorded arrival

times (¢ t and {#) gy ) Versus L, from

mode °
Tbl. 2 — and later to make the corrections and note
changes in the fit parameters.

Figure 10 shows the Least-Squares, equally-weighted,

smoo °

regression of corresponding pairs {<# >, }Ll upon
{L, }_,, with Bq. (3) used as the fitting function with

ot, = 0. In this figure, the fit is denoted by the blue solid

line; the redlines indicate 95% confidence intervals for
single, mean points on the fit line statistics [31,32],
magnified by a factor of 20X . [Corresponding plots for

the other arrival-time estimates £, , and 7 .

Vs Ly
are visually indistinguishable on this scale and not
shown.] The six residuals, <t >, minus the fit, in Fig.

10 are statistically consistent with a normal distribution of
mean 0.0 ns and standard deviation of ~1.14 ns, a result
consistent with the uncertainty estimates of arrival times

by method above in Table 2. A ledegrees-of-freedom

test of these residuals for Fig. 10 has 4 degrees of
freedom (6 data residuals minus 2 fit parameters) and a
test statistic of 0.7233. According to statistical tables

[33], a [2.5%, 97.5%]test-interval for 3 /4 is 0.121—

2.7856, which overlaps the experimental statistic here. (If
the uncertainty estimates of arrival times were as low as
0.5 ns or as high as 2 ns, the fit would be considered
either ‘unlikely’ or ‘too good to be true’, respectively, at
95% confidence.)
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Fig. 9 (Color Online) Least-squares fit to first-moment (centroid)
<r>rwam temporal data for the 6 nTOF detectors in shot #2584. Also
shown (red lines) are the corresponding 95% confidence intervals (CI)
for the mean fit at an arbitrary distance (but not all distances
simultaneously). The CI numbers have been multiplied by 20X to be
visible on this vertical scale. Data channels (Table 1) are noted.

Shown on the top 3 lines (blue font) of Table 3 are the
fit parameters for these recorded arrival times from Tbl. 2
by each method: these include (a) the extrapolated

intercept ¢ (ns) and its standard error (ns); (b) a 95%

bang

confidence interval for ¢, (ns); and (c) the fitted slope

bang

@) (ns/cm) and its standard error (ns/cm). To save

typographical space, Thang and its confidence interval

have been °‘encoded’: i.e., here 3100 ns has been
arbitrarily subtracted from the actual numerical values on

the system clock. (Hence, e.g., ‘8.1" stands for 7, =

3108.1 ns, and °[6.1,10.1] stands for a confidence
interval of [3106.1 ns, 3110.1 ns].) Neither of the standard
error columns nor the slope column are encoded and may
be read directly.

Method | Intrcpt: SE (ns)| 95% CI ns | Slope: SE (ns/cm)
<t> 8.1: 0.72 [6.1,10.1] | 0.4631: 0.0006

t-max 7.9: 0.69 [6.0,9.9] | 0.4623: 0.0005
t-smoo | 82: 055 [6.6,9.7] | 0.4622: 0.0004
<t>corr | 3.0: 097 | [0.3,5.6] | 0.4646: 0.0007

Table 3. (Color Online) Fit statistics for shot #2584. For each method
(first-moment, max peak, and smoothed data), the table lists the
estimated mean intercept (bang-time) and its standard error SE (both in
ns), the estimated 95% confidence interval (CI) for the intercept (i.e.,
what time interval would one expect to capture the ‘true’ intercept for
95% of identical experimental replications), and the slope and its
standard error. For typographical convenience, 3100 ns has been
arbitrarily subtracted from the fiducially referenced intercepts and Cls in
this table. The <f>corr entry included the IRF and PMT corrections
and would be reportable.

Figure 10 compares the extrapolated ¢z, of Fig. 9 to

show the relationships and 95% confidence intervals in
Tbl. 3. The upper part of this figure (blue and red lines)

bang

pertains to the same fit of <#>, to Lk as in Fig. 10,

except that the 95% confidence intervals are not
magnified. The bang-time parameter (at L = 0) for this
measure is 3108.06 ns relative to the system clock, and
the estimated standard error (SE) of the bang time is ~0.7
ns (or alternatively 12 ns at 95% confidence). Also
sketched in Fig. 11 (short, light-blue line) span the
corresponding fits and bang times from the raw data using
the smoothed and mode methods, both of which have
similar uncertainties to the centroid method.
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Figure 10 (Color Online). Extrapolated region of arrival time-vs-distance

fit curves for shot #2584. The dark blue fit line results from () wpm

data with 95% confidence uncertainty lines (red); extrapolated fits for

the ¢ and #,,,, data are indicated by the short blue line. The

Smoo X
green lines below indicate the result after IRF and throughput time
corrections.

The lower part of Fig. 11 and the lowest row in Tbl.3
(green font) show the extrapolated results for (t)FWHM

when the channel signals are first corrected for individual
IRF and PMT throughput times and then refit against

detector distance (87, # 0). One sees in this particular

shot that there is an overall early bang-time shift by about
5 ns, while the SE and 95% confidence interval are

slightly increased, and the slope parameter (E)_1 [Eq. (3)]

is essentially unchanged — an issue rejoined in Sect. V
below. The bang-time shift is in accord with estimates
already noted (cf. Sect. II1.B) [16]. Hence, for shot 2584,
one would report [34,35] <t>corr = 3102.95 ns for the
bang time with an SE = 0.97 ns and 6 measurements [or,
equivalently, 3102.95 ns = 3 ns at 95% confidence and 4
degrees of freedom].

V. Discussion.

The primary purpose of this study was to determine the
time of neutron emission (bang time) with estimated
uncertainties from the D(d, n)He* reaction in a D,-filled,
MagLIF experiment at the Z facility. Time-dependent,
current-mode data were provided by an independent,



spatially-separated and calibrated array of nTOF
detectors. In this measurement, arrival times for the
various data traces were operationally prescribed by three
separate methods, and the results could be related to the
emitted, uncollided neutron pulse in the midst of
interference radiation, noise, and signal distortion.
Comparisons showed agreement in bang times of a few
nanoseconds after corrections.

We believe that the bang-time estimate and its
uncertainty given here present no major difficulties on a
on a timescale of a few nanoseconds. To check that

assertion there are simpler methods of estimating tbang

and ‘81‘

bang

if one can assume that the neutron

distribution is due to DD neutrons (i.e., # =2.016018587
cm/ns [5]). Firstly, if Eq.(3) is summed over the N = 6

nTOF arrival times ¢, (by whatever peak criterion or
correction) and distances L, , one finds a simple average

estimate as <tbang> =<t >y —A/u)< L, >, ,which

here yields 3105.35 ns compared to 3102.95 ns with the
detailed, corrected data in Fig. 10, and Tbl. 3. Secondly,

‘St

uncertainties (8¢ and &L ) for peak times and distance.

bang| Can be estimated if one is willing to provide

Experimentally, It is assume experimentally 8¢ ~ 1 ns

and &L~ 1 cm as upper bounds. Then, by error
propagation in Eq. (3) one has (St,mg)2
~(8t,)" +(BL,)" /w”, which gives 8%,,,, ®*1 ns -

again with the assumption that # is known. (This
estimate, of course, no use of N channels, which would

reduce this estimate by ~\VN. Both these crude estimates
are consistent with the more detailed estimates above.

If the primary goal of this nTOF diagnostic was to
determine bang times, a secondary goal was to check the
provenance of the neutrons pulses under test — in
particular, to assess evidence that might invalidate the
assumption that these neutrons arise from the D(d,n)He?
reaction. Specifically, according to the Brysk model, one
should find (a) isotropic neutron emission and (b) an
approximate Gaussian, speed-distribution with average
mean speed u = 2.16 cm/ns and a mean neutron kinetic
energy E = 2.45 MeV [5].

The spectral shape of the emitted neutron distribution
here is beyond this study since only the first moment was
addressed. But, one can address the isotropy issue by
examining the fits to this moment as a function of
distance from the source. Specifically, the strongly linear
least-squared fits observed in Figs.10 and 11 are actually
consistent with isotropy at least to within a nanosecond
timescale. If, for example, the neutron distribution varied
significantly with emission angle, one would expect
noticeable non-linear behavior which is not observed.

Putting the distributional shape of neutron emission
aside, however, one can estimate the mean speed % of the
neutron pulses from the nTOF data in shot #2584. By the
linear fitting model Eq.(3) the slopes of the curves in

Figs.9 and 10 are estimates of (1/% ), so that one finds

from the corrected data (Tbl. 3, line 4, green font) a slope
0of 0.464617 ns/cm with standard error of 0.000743 ns/cm

and w = 2.1523 + 0.0096 cm/ns (@ 95% confidence, 4
degrees of freedom). This may be compared to the
published value of 2.1601 8587 cm/ns [5] for D-D fusion
neutrons. The relative precision of this estimate can be
crudely approximated from Eq.(3) similar to above: let

=Lt —ty,,). then one has (8) (1, —t,,,.)" =

(BL,)* + @’ [(81,)" + (8ty,,,)"] by error propagation.
For, say, the detector at L27g2 = 945 cm (Tbl. 1) and the
arbitrary guesses 8L, ~1cm and &t =of,, ~ 1ns,

one has (Ou /u) =~ 0.0034 or Su =~ 0.0074 cm/ns
which compares well with the slope estimates. [Here we

have used the published 2.1602 cm/ns for # and not the
full ensemble of data channels.]

With the experimental value # = 2.1523 + 0.0096
cm/ns, one can estimate the relativistic mean Kkinetic
energy E of the detected neutron distribution from

E = mocz[(l —ultlét )_1/2 —1]. This calculation gives

2.4308 MeV = 0.0223 Mev — alternatively, [2.408014,
2.452611] MeV CI with 4 degrees of freedom — and
overlaps the published value of 2.4486857 MeV [5].

(Here, moczwas taken as 939.565379 MeV and ¢ as

29.9792458 cm/ns [5].)

Therefore, the fact that both # and E in shot #2584
were consistent with published values to within 1% is
clear evidence the detected neutrons were largely
produced by D-D interactions. Finer details in their
production were beyond the experiment.

Future work with this nTOF apparatus of the type here
will depend on the specific goals of this measurement. For
example, if the only goal is routinely to define bang-time
and to leave other diagnostics to probe the neutron
spectral shape, then a simpler version with (say) two
separated dual-scintillator nTOF probes may be
acceptable: such an arrangement would free up two lines
of sight, provide backup data should one channel of each
dual probe fail, and provide at least independent channels
if all signals are obtained. On the other hand, if the goal is
to extend this method to the detailed shape of the neutron
distribution, more attention must be paid to understanding
and ameliorating the effects of background interferences
and detector responses.
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