
SANDIA REPORT

SAND2018-12790
Unlimited Release
Printed November 2018

Supersedes SAND2017-3825
Dated April 2017

The Portals 4.2 Network Programming
Interface

Brian W. Barrett, Ron Brightwell, Ryan E. Grant, Scott Hemmert, Kevin Pedretti,
Kyle Wheeler, Keith Underwood, Rolf Riesen, Torsten Hoefler, Arthur B. Maccabe, and
Trammell Hudson

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology

and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc.,

for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntisledworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2018-12790
Unlimited Release

Printed November 2018

Supersedes SAND2017-3825
dated April 2017

The Portals 4.2 Network Programming Interface

Brian W. Barrett
Ron Brightwell
Ryan E. Grant
Kevin Pedretti
Kyle Wheeler

Scalable System Software Department

Scott Hemmert
Scalable Computer Architecture Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
{bwbarre, rbbrigh, regrant, ktpedre,
kbwheel, kshemme} @sandia.gov

Arthur B. Maccabe
Computer Science and Mathematics
Oak Ridge National Laboratory

Oak Ridge, TN 37831
maccabeab@ornl.gov

3

Keith Underwood
Rolf Riesen

Intel Corporation
{ Keith.D.Underwood, rolf.riesen } @intel.com

Torsten Hoefler
Computer Science Department

ETH Zurich
htor@intethz.ch

Trammell Hudson
c/o Two Sigma Investments

100 Avenue of the Americas, 16th floor
New York, NY 10013

trammell.hudson@twosigma.com

Abstract

This report presents a specification for the Portals 4 network programming interface. Portals 4 is intended to allow
scalable, high-performance network communication between nodes of a parallel computing system. Portals 4 is well
suited to massively parallel processing and embedded systems. Portals 4 represents an adaption of the data movement
layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine.
Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as
part of the Cray Red Storm machine and XT line. Version 4 is targeted to the next generation of machines employing
advanced network interface architectures that support enhanced offload capabilities.

4

Acknowledgments

Over the years, many people have helped shape, design, and develop Portals. We wish to thank: Eric Barton, Peter
Braam, Jerrie Coffman, Lee Ann Fisk, David Greenberg, Eric Hoffman, Gabi Istrail, Jeanette Johnston, Chu Jong,
Clint Kaul, Roy Larsen, Mike Levenhagen, Kevin McCurley, Jim Otto, Bob Pearson, David Robboy, Mark Sears,
Lance Shuler, Jim Schutt, Mack Stallcup, Todd Underwood, David van Dresser, Dena Vigil, Lee Ward, Stephen
Wheat, and Frank Zago.

People who were influential in managing the project were: Bill Camp, Ed Barsis, Art Hale, and Neil Pundit

While we have tried to be comprehensive in our listing of the people involved, it is very likely that we have missed at
least one important contributor. The omission is a reflection of our poor memories and not a reflection of the
importance of their contributions. We apologize to the unnamed contributors.

5

Contents

List of Figures 10

List of Tables 11

List of Implementation Notes 12

Preface 13

Nomenclature 14

1 Introduction 17

1.1 Overview 17

1.2 Purpose 17

1.3 Background 18

1.4 Scalability 19

1.5 Communication Model 19

1.6 Zero Copy, OS Bypass, and Application Bypass 19

1.7 Faults 20

2 An Overview of the Portals API 21

2.1 Data Movement 21

2.2 Usage 25

2.3 Completion Events 25

2.4 Portals Addressing 26

2.4.1 Lists and List Entries 29

2.4.2 Match Lists and Match List Entries 30

2.5 Modifying Data Buffers 30

2.6 Ordering 32

2.6.1 Short Message Ordering Semantics 32

2.6.2 Long Message Ordering Semantics 33

2.6.3 Relative Ordering of Operations in Overlapping Portals 33

2.6.4 Ordering of Unexpected Messages 33

2.6.5 Relaxing Message Ordering 33

2.7 Flow Control 34

2.8 Multi-Threaded Applications 35

3 The Portals API 37

3.1 Naming Conventions and Typeface Usage 37

3.2 Constants 38

6

3.2.1 Version Information

3.3 Base Types

3.3.1 Sizes

3.3.2 Handles

3.3.3 Indexes

3.3.4 Match Bits

3.3.5 Network Interfaces

3.3.6 Identifiers

3.3.7 Status Registers

3.4 Function Arguments and Return Codes

3.5 Initialization and Cleanup

3.5.1 Pffinit

3.5.2 PtlFini

3.6 Network Interfaces

3.6.1 The Network Interface Limits Type

3.6.2 Pt1NIInit

3.6.3 Pt1NIFini

3.6.4 PfiNIStatus

3.6.5 PfiNIHandle

3.6.6 Pt1SetMap

3.6.7 PtlGetMap

3.7 Portal Table Entries

3.7.1 Pt1PTAlloc

3.7.2 PtIPTFree

3.7.3 Pt1PTDisable

3.7.4 Pt1PTEnable

3.8 Usage Identification

3.8.1 PfiGetUid

3.9 Process Identification

3.9.1 The Process Identification Type

3.9.2 PtlGetId

3.9.3 PtlGetPhysId

3.10 Memory Descriptors

3.10.1 The Memory Descriptor Type

3.10.2 The I/0 Vector Type

3.10.3 Pt1MDBind

3.10.4 Pt1MDRelease

3.11 List Entries and Lists

3.11.1 The List Entry Type

7

38

38

38

38

39

39

39

39

40

 40

40

41

 41

41

42

43

45

46

46

47

48

48

49

50

50

51

52

52

52

53

53

54

54

55

56

57

58

58

59

3.11.2 Pt1LEAppend 62

3.11.3 Pt1LEUnlink 63

3.11.4 Pt1LESearch 64

3.12 Match List Entries and Matching Lists 66

3.12.1 The Match List Entry Type 67

3.12.2 Pt1MEAppend 71

3.12.3 Pt1MEUnlink 72

3.12.4 Pt1MESearch 73

3.13 Events and Event Queues 74

3.13.1 Kinds of Events 74

3.13.2 Event Occurrence 76

3.13.3 Failure Notification 77

3.13.4 The Event Structure 78

3.13.5 PtIEQAlloc 81

3.13.6 Pt1EQFree 82

3.13.7 Pt1EQGet 83

3.13.8 Pt1EQWait 83

3.13.9 Pt1EQPo11 84

3.14 Lightweight Counting Events 85

3.14.1 The Counting Event Type 86

3.14.2 Pt1CTAlloc 86

3.14.3 Pt1CTFree 87

3.14.4 Pt1CTCancelTriggered 88

3.14.5 Pt1CTGet 88

3.14.6 Pt1CTWait 89

3.14.7 Pt1CTPo11 89

3.14.8 Pt1CTSet 90

3.14.9 Pt1CTInc 91

3.15 Data Movement Operations 92

3.15.1 Portals Acknowledgment Type Definition 92

3.15.2 Pt1Put 93

3.15.3 PtlGet 94

3.15.4 Portals Atomics Overview 95

3.15.5 PtlAtomic 98

3.15.6 PtlFetchAtomic 100

3.15.7 PtlSwap 101

3.15.8 PtlAtomicSync 102

3.16 Triggered Operations 103

3.16.1 PtlTriggeredPut 104

8

3.16.2 PtlTriggeredGet 105

3.16.3 PtlTriggeredAtomic 106

3.16.4 PtlTriggeredFetchAtomic 107

3.16.5 PtlTriggeredSwap 108

3.16.6 PtlTriggeredCTlnc 109

3.16.7 PtlTriggeredCTSet 110

3.17 Deferred Communication Operations 110

3.17.1 Pt1StartBundle 111

3.17.2 PtlEndBundle 111

3.18 Operations on Handles 112

3.18.1 PtlHandlelsEqual 112

3.19 Summary 113

4 Guide to hnplementors 125

4.1 Run-time Support 125

4.2 Data Transfer 125

4.2.1 Sending Messages 125

4.2.2 Receiving Messages 129

4.3 Event Generation and Error Reporting 129

Appendix

A Portals Design Guidelines 133

A.1 Mandatory Requirements 133

A.2 The Will Requirements 134

A.3 The Should Requirements 134

B README Definition 137

C Summary of Changes 139

C.1 Portals 4.2 139

C.2 Portals 4.1 140

C.3 Portals 4.0.2 141

C.4 Portals 4.0.1 142

C.5 Portals 4.0 142

Index 144

9

List of Figures

2.1 Graphical Conventions 21

2.2 Portals Put (Send) 22

2.3 Portals Get (Receive) from a match list entry 23

2.4 Portals Get (Receive) from a list entry 24

2.5 Portals Atomic Swap Operation 24

2.6 Portals Atomic Sum Operation 25

2.7 Simple Put Example 26

2.8 Portals LE Addressing Structures 27

2.9 Portals ME Addressing Structures 28

2.10 Non-Matching Portals Address Translation 29

2.11 Matching Portals Address Translation 31

3.1 Portals Operations and Event Types 77

10

List of Tables

3.1 Object Type Codes 37

3.2 Event Type Summary 79

3.3 Event Field Definition 81

3.4 Legal Atomic Operation, Datatype, and Function Combinations 98

3.5 Portals Data Types 113

3.6 Portals Functions 115

3.7 Portals Return Codes 117

3.8 Portals Constants 117

4.1 Information Passed in a Send Request 126

4.2 Information Passed in an Acknowledgment 127

4.3 Information Passed in a "Countine Acknowledgment 127

4.4 Information Passed in a Get Request 127

4.5 Information Passed in a Reply 128

4.6 Information Passed in an Atomic Request 128

4.7 Portals Operations and ME/LE Permission Flags 130

11

List of Implementation Notes

1 No wire protocol 22

2 Location of event queues and counting events 23

3 Protected space 23

4 Size of handle types 39

5 Unique handles 39

6 Memory descriptors that bind inaccessible memory 55

7 Memory registration 57

8 Optimization for Duplicate Memory Descriptors 58

9 List entries that bind inaccessible memory 59

10 PtILEUnlink() and unlinked handles 64

11 Checking match_id Argument 72

12 Completion of portals operations 78

13 Size of event queue and reserved space 82

14 PTL_INTERRUPTED return code 84

15 Minimizing cost of counting events 86

16 Portals Atomic Synchronization 103

17 Ordering of Triggered Operations 104

18 Purpose of Bundling 111

12

Preface

In the early 1990s, when memory-to-memory copying speeds were an order of magnitude faster than the maximum
network bandwidth, it did not matter if data had to go through one or two intermediate buffers on its way from the
network into user space. This began to change with early massively parallel processing (MPP) systems, such as the
nCUBE-2 and the Intel Paragon, when network bandwidth became comparable to memory bandwidth. An
intermediate memory-to-memory copy now meant that only half the available network bandwidth was used.

Early versions of Portals solved this problem in a novel way. Instead of waiting for data to arrive and then copy it into
the final destination, Portals, in versions prior to 3.0, allowed a user to describe what should happen to incoming data
by using data structures. A few basic data structures were used like Legon4 blocks to create more complex
structures. The operating system kernel handling the data transfer read these structures when data began to arrive and
determined where to place the incoming data. Users were allowed to create matching criteria and to specify precisely
where data would eventually end up. The kernel, in turn, had the ability to DMA data directly into user space, which
eliminated buffer space in kernel owned memory and slow memory-to-memory copies. We named that approach
Portals Version 2.0. It was used until 2006 on the ASCI Red supercomputer, the first general-purpose machine to
break the one teraflops barrier.

Although very successful on architectures with lightweight kernels, such as ASCI Red, Portals 2.0 proved difficult to
port to Cplant [4] with its full-featured Linux kernel. Under Linux, memory was no longer physically contiguous in a
one-to-one mapping with the kernel. This made it prohibitively expensive for the kernel to traverse data structures in
user space. We wanted to keep the basic concept of using data structures to describe what should happen to incoming
data. We put a thin application programming interface (API) over our data structures. We got rid of some never-used
building blocks, improved some of the others, and Portals 3.0 was born [5].

Portals 3.0 evolved over three revisions to Portals 3.3 [19]. In the interim, the system context has changed
significantly. Many newer systems are capable of offloading the vast majority of the Portals implementation to the
network interface. Indeed, the rapid growth of bandwidth and available silicon area relative to the small decrease in
memory latency has made it desirable to move latency sensitive tasks like Portals matching to dedicated hardware
better suited to it. The implementation of Version 3.3 on ASC Red Storm (Cray XT3/XT4/XT5) illuminated many
challenges that have arisen with these advances in technology. In this report, we document Portals 4 as a response to
two specific challenges discovered on Red Storm. Foremost, while the performance of I/0 buses has improved
dramatically, the latency to cross an I/0 bus has not fallen as dramatically as processor, memory and network
performance has increased, negatively impacting target message rates. In addition, partitioned global address space
(PGAS) models have risen in prominence and require lighter weight semantics compared to message passing.

13

Nomenclature

ACK Acknowledgment.
FIVI Illinois Fast Messages.
AM Active Messages.
API Application Programming Interface. A definition of the functions and

semantics provided by library of functions.
ASCI Advanced Simulation and Computing Initiative.
ASC Advanced Simulation and Computing.
ASCI Red Intel TeraFLOPS system installed at Sandia National Laboratories. First

general-purpose system to break the one teraflops barrier.
CPU Central Processing Unit.
DMA Direct Memory Access.
EQ Event Queue.
FIFO First In, First Out.
FLOP Floating Point OPeration. (Also FLOPS or flops: Floating Point OPera-

tions per Second.)
GM Glenn's Messages; Myricom's Myrinet API.
ID Identifier.
Initiator A process that initiates a message operation.
IOVEC Input/Output Vector.
LE List Entry.
MD Memory Descriptor.
ME Matching list Entry.
Message An application-defined unit of data that is exchanged between processes.
Message Operation Either a put operation, which writes data to a target, or a get operation,

which reads data from a target, or an atomic operation, which updates
data atomically.

MPI Message Passing Interface.
MPP Massively Parallel Processor.
NAL Network Abstraction Layer.
NAND Bitwise Not AND operation.
Network A network provides point-to-point communication between nodes. In-

ternally, a network may provide multiple routes between endpoints (to
improve fault tolerance or to improve performance characteristics); how-
ever, multiple paths will not be exposed outside of the network.

NI Abstract portals Network Interface.
NIC Network Interface Card.
Node A node is an endpoint in a network. Nodes provide processing capa-

bilities and memory. A node may provide multiple processors (an SMP
node). A node may also act as a gateway between networks.

OS Operating System.
PM Message passing layer for SCoreD [12].
POSIX Portable Operating System Interface.
Process A context of execution. A process defines a virtual memory context. This

context is not shared with other processes. Several threads may share the
virtual memory context defined by a process.

RDMA Remote Direct Memory Access.
RMPP Reliable Message Passing Protocol.

14

SMP Shared Memory Processor.
SUNMOS Sandia national laboratories/University of New Mexico Operating Sys-

tem.
Target A process that is acted upon by a message operation.
TCP/IP Transmission Control Protocol/Internet Protocol.
Thread A context of execution that shares a virtual memory context with other

threads.
UDP User Datagram Protocol.
UNIX A multiuser, multitasking, portable OS.
VIA Virtual Interface Architecture.

16

Chapter 1

Introduction

1.1 Overview

This document describes the Portals network programming interface for communication between nodes in a system
area network. Portals is designed to provide the building blocks necessary to create a diverse set of scalable, high
performance application programming interfaces and language support run-times. The Portals API is designed to
support a machine with millions of cores.

This document is divided into several sections:

Section 1 — Introduction.
The purpose and scope of the Portals API

Section 2 — An Overview of the Portals 4 API.
A brief overview of the Portals API, introducing the key concepts and terminology used in the description of
the API

Section 3 — The Portals 4 API.
The functions and semantics of the Portals API in detail

Section 4 — Guide to Implementors.
A guide to implementors, highlighting subtleties of the standard that are critical to an implementation's design

Appendix A — Portals Design Guidelines.
The guiding principles behind the Portals API design

Appendix B — README-template.
A template for a README file to be provided by each implementation

Appendix C — Summary of Changes.
A list of changes between versions since Portals 3.3

1.2 Purpose

Portals aims to provide a scalable, high performance network programming interface for High Performance
Computing (HPC) systems. Portals provides an interface to support both the Message Passing Interface (MPI) [15]
standard as well as the various partitioned global address space (PGAS) models, such as Unified Parallel C (UPC),
Co-Array Fortran (CAF), and OpenSHMEM [10, 8]. While neither MPI nor PGAS models impose specific
scalability limitations, many network programming interfaces do not provide the functionality needed to allow
implementations of either model to reach scalability and performance goals.

The following are required properties of a network architecture to avoid scalability limitations:

17

• Connectionless — Many connection-oriented architectures, such as InfiniBand [11], VIA [9] and TCP/IP
sockets, have practical limitations on the number of peer connections that can be established. In large-scale
parallel systems, any node must be able to communicate with any other node without costly connection
establishment and tear down.

• Network independence — Many communication systems depend on the host processor to perform operations in
order for messages in the network to be consumed. Message consumption from the network should not be
dependent on host processor activity, such as the operating system scheduler or user-level thread scheduler.
Applications must be able to continue computing while data is moved in and out of the application's memory.

• User-level flow control — Many communication systems manage flow control internally to avoid depleting
resources, which can significantly impact performance as the number of communicating processes increases.
While Portals provides building blocks to enable flow control (See Section 2.7), it is the responsibility of the
application to manage flow control. An application should be able to provide final destination buffers into
which the network can deposit data directly.

• OS bypass — High performance network communication should not involve memory copies into or out of a
kernel-managed protocol stack. Because networks are now as fast as memory buses, data has to flow directly
into user space.

The following are properties of a network architecture that avoid scalability limitations for an implementation of
MPI:

• Receiver-managed data placement — Message passing implementations where the sender determines the target
location of a data transmission require a persistent block of memory to be available for every process, requiring
memory resources to increase with job size.

• User-level bypass (application bypass) — While OS bypass is necessary for high performance, it alone is not
sufficient to support the progress rule of MPI asynchronous operations. After an application has posted a send
or a receive, data must be delivered and acknowledged without further intervention from the application.

• Unexpected messages — Few communication systems have support for receiving messages for which there is no
prior notification. Support for these types of messages is necessary to avoid flow control and protocol overhead.

1.3 Background

Portals was originally designed for and implemented on the nCUBE-2 machine as part of the SUNMOS
(Sandia/UNM OS) [14] and Puma [20] lightweight kernel development projects. Portals went through three design
phases [18], with the most recent one being used on the 13000-node (38,400 cores) Cray Red Storm [2] that became
the Cray XT3/XT4/XT5 product line. Portals has been very successful in meeting the needs of such large machines,
not only as a layer for a high-performance MPI implementation [7], but also for implementing the scalable run-time
environment and parallel I/0 capabilities of the machine.

The third-generation Portals implementation was designed for a system where the work required to process a
message was long relative to the round trip between the application and the Portals data structures. However, in
modern systems where processing is offloaded onto the network interface, the time to post a receive is dominated by
the round trip across the I/0 bus. This latency has become large relative to message latency and per message
overheads (gap). This limitation was exposed by implementations on the Cray Red Storm system. Version 4.0 of
Portals addresses this problem by adding the building blocks necessary to support the concept of unexpected
messages. The second limitation exposed on Red Storm was the relative weight of handling newer PGAS
programming models. PGAS programming models do not need the extensive matching semantics required by MPI
and I/0 libraries and can achieve significantly lower latency and higher message throughput without matching.
Version 4.0 of Portals adds a lightweight, non-matching interface to support these semantics as well as lightweight
events and acknowledgments. Finally, version 4.0 of Portals reduces the overheads in numerous implementation

18

paths by simplifying events, reducing the size of acknowledgments, and generally specializing interfaces to eliminate
functionality that experience has shown to be unnecessary. Version 4.1 is a refinement of Version 4.0, addressing
issues found during the implementation of Portals 4.0.

1.4 Scalability

The primary goal in the design of Portals is scalability. Portals is designed specifically for an implementation capable
of supporting a parallel job running on millions of processing cores or more. Performance is critical only in terms of
scalability. That is, the level of message passing performance is characterized by how far it allows an application to
scale and not by how it performs in micro-benchmarks (e.g., a two-node bandwidth or latency test).

The Portals API is designed to allow for scalability, not to guarantee it. Portals cannot overcome the shortcomings of
a poorly designed application program. Applications that have inherent scalability limitations, either through design
or implementation, will not be transformed by Portals into scalable applications. Scalability must be addressed at all
levels. Portals does not inhibit scalability and it does not guarantee it either. No Portals operation requires global
communication or synchronization.

Similarly, a quality implementation is needed for Portals to be scalable. A non-scalable implementation, underlying
network protocol, or hardware will result in a non-scalable Portals implementation and application.

To support scalability, the Portals interface maintains a minimal amount of state. By default, Portals provides reliable,
ordered delivery of messages between pairs of processes. Portals is connectionless: a process is not required to
explicitly establish a point-to-point connection with another process in order to communicate. Moreover, all buffers
used in the transmission of messages are maintained in user space. The target process determines how to respond to
incoming messages, and messages for which there are no buffers are discarded.

1.5 Communication Model

Portals combines the characteristics of both one-sided and two-sided communication. In addition to more traditional
"put" and "get" operations, they define "matching put" and "matching get" operations. The destination of a put (or
send) is not an explicit address; instead, messages target list entries (potentially with matching semantics or an offset)
using the Portals addressing semantics that allow the receiver to determine where incoming messages should be
placed. This flexibility allows Portals to support both traditional one-sided operations and two-sided send/receive
operations.

Portals allows the target to determine whether incoming messages are acceptable. A target process can choose to
accept message operations from a specific process or all processes, in addition to the ability to limit messages to a
specified initiator usage id.

1.6 Zero Copy, OS Bypass, and Application Bypass

In traditional system architectures, network packets arrive at the network interface card (NIC), are passed through one
or more protocol layers in the operating system, and are eventually copied into the address space of the application.
As network bandwidth began to approach memory copy rates, reduction of memory copies became a critical concern.
This concern led to the development of zero-copy message passing protocols in which message copies are eliminated
or pipelined to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an interrupt for the CPU when a message arrives from the
network. The interrupt handler then controls the transfer of the incoming message into the address space of the

19

appropriate application. The interrupt latency, the time from the initiation of an interrupt until the interrupt handler is
running, is fairly significant. To avoid this cost, some modern NICs have processors that can be programmed to
implement part of a message passing protocol. Given a properly designed protocol, it is possible to program the NIC
to control the transfer of incoming messages without needing to interrupt the CPU. Because this strategy does not
need to involve the OS on every message transfer, it is frequently called "OS bypass?' ST [21], VIA [9], FM [13],
GM [17], PM [12], and Portals are examples of OS bypass mechanisms.

Many protocols that support OS bypass still require that the application actively participates in the protocol to ensure
progress. As an example, the long message protocol of PM requires that the application receive and reply to a request
to put or get a long message. This complicates the runtime environment, requiring a thread to process incoming
requests, and significantly increases the latency required to initiate a long message protocol. Portals does not require
activity on the part of the application to ensure progress. We use the term "application bypass" to refer to this aspect
of Portals.

1.7 Faults

Reliable message transmission is challenging in modern high performance computing systems due to system scale,
component failure rates, and application run-times. The Portals API recognizes that the underlying transport may not
be able to successfully complete an operation once it has been initiated. This is reflected in the fact that the Portals
API reports an event indicating the completion of every operation. Completion events indicate whether the operation
completed successfully or not.

20

Chapter 2

An Overview of the Portals API

In this chapter, we provide an overview of the Portals API and associated semantics. Detailed API functions and
option definitions are presented in the next chapter.

2.1 Data Movement

A portal represents an opening in the address space of a process. Other processes can use a portal to read (get), write
(put), or perform an atomic operation on the memory associated with the portal. Every data movement operation
involves two processes, the initiator and the target. The initiator is the process that initiates the data movement
operation. The target is the process that responds to the operation by accepting the data for a put operation, replying
with the data for a get operation, or updating a memory location for, and potentially responding with the result from,
an atomic operation.

In this discussion, activities attributed to a process may refer to activities that are actually performed by the process or
on behalf of the process. The inclusiveness of our terminology is important in the context of application bypass. In
particular, when we note that the target sends a reply in the case of a get operation, this is performed by Portals
without the explicit involvement of the application. An implementation of Portals may use dedicated hardware, an
operating system driver, a progress thread running in the application process, or some other option to generate the
reply.

Figure 2.1 shows the graphical conventions used throughout this document. Some of the data structures created
through the Portals API reside in user space to enhance scalability and performance, while others are kept in
protected space for protection and to allow an implementation to place these structures into host or NIC memory. We
use colors to distinguish between these elements.

1=1 Internal data structure
Control path

❑ Data structure in user space Event notification

) Data movement
O

Match decision

Figure 2.1. Graphical Conventions: Symbols, colors, and stylistic conven-
tions used in the diagrams of this document.

Figures 2.2, 2.3, 2.4, and 2.5 present graphical interpretations of the Portals data movement operations: put (send),
get, and atomic (the swap atomic is shown). In the case of a put operation, the initiator sends a put request ® message
to the target. The target translates the portal addressing information in the request using its local portals structures.
The data may be part of the same packet as the put request or it may be in separate packet(s) as shown in Figure 2.2.
The Portals API does not specify a wire protocol. When the data has been put into the remote memory descriptor

21

(or been discarded), the target optionally sends an acknowledgment © message.

IMPLEMENTATION
NOTE 1:

No wire protocol

This document does not specify a wire protocol. Portals requires a
reliable communication layer with the semantics and progress rules
specified in this document. Implementors are left great freedom in
implementation design choices.

Initiator

Memory
Descrip or (MD)

NI

Target

Non-Matching
Portals Table

Non-Matching NI

Put Request
 if0

NI

Matching
Portals Table

Matching NI

C1 Data

I ®
i (optional) Acknowledtent

1 Counter

1_ Counter

[Counter L.,

V

ME

ME

ME

J11111 EQ I
Priority List

Overflow List

Matching
Lis
En ry (ME)

Priority List Overflow List

ME

ME

Figure 2.2. Portals Put (Send): Note that the put request © is part of the
header and the data OO is part of the body of a single message. Depending on the
network hardware capabilities, the request and data may be sent in a single large
packet or several smaller ones.

Figure 2.2 represents several important concepts in Portals 4. First, a message targets a logical network interface (NI)
and a user may instantiate up to four logical network interfaces associated with a single physical network interface. A
portals physical network interface is a per-process abstraction of a physical network interface (or group of interfaces).
Logical network interfaces may be matching or non-matching and addressed by either logical (rank) or physical
(nid/pid) identifiers. As indicated in Figure 2.2, separate logical network interfaces have independent resources. The
second important concept illustrated in Figure 2.2 is that each portal table entry has three data structures attached: an
event queue, a priority list, and an overflow list. The final concept illustrated in Figure 2.2 is that the overflow list is
traversed after the priority list. If a message does not match in the priority list (matching interface) or it is empty
(either interface), the overflow list is traversed.

22

Figure 2.2 illustrates another important Portals concept. The space the Portals data structures occupy is divided into
protected and application (user) space, while the large data buffers reside in user space. Most of the Portals data
structures reside in protected space. Often the Portals control structures reside inside the operating system kernel or
the network interface card. However, they can also reside in a library or another process. See implementation note 2
for possible locations of the event queues.

IMPLEMENTATION
NOTE 2:

Location of event queues and counting events

Note that data structures that can only be accessed through the API,
such as counting events and event queues, are intended to reside in
user space. However, an implementation is free to place them
anywhere it wants.

IMPLEMENTATION
NOTE 3:

Protected space

Protected space as shown for example in Figure 2.2 does not mean it
has to reside inside the kernel or a different address space. The
Portals implementation must guarantee that no alterations of Portals
structures by the user can harm another process or the Portals
implementation itself.

Figure 2.3 is a representation of a get operation from a target that does matching. The corresponding get from a
non-matching target is shown in Figure 2.4. First, the initiator sends a request T to the target. As with the put
operation, the target translates the portals addressing information in the request using its local portals structures.
Once it has translated the portals addressing information, the target sends a reply 0 that includes the requested data.

Initiator

® Get Request

: Ta rg et

Memory
Descripto (MD) ® Reply

N I

Matching
Portals Table

Matching NI

I Counter

I Counter

Data

 Counter

EQ

ME

ME

ME

Priority List

Figure 2.3. Portals Get from a match list entry.

 1

Portals address translation (matching and permissions checks) is only performed at the target of an operation.
Acknowledgments for put and atomic and replies to get and atomic operations bypass the portals address translation
structures at the initiator. Acknowledgments and replies are only generated as the result of an action by the initiator
and therefore do not require the same level of protection at the initiator as would be required at the target.

23

Initiator

Memory
Descriptor (MD)

MD

Target

® Get Request

Non-Matching NI

® Reply

Non-Matching
Portals Table

Data

List Entry (LE)

Priority
List

LE LE

Figure 2.4. Portals Get from a list entry. Note that the first LE will be selected
to reply to the get request.

The third operation type, atomic, is depicted in Figure 2.5 for the swap operation and Figure 2.6 for a summation

Initiator

Memory
Descriptor (MD)
for put operation

Memory
Descriptor (MD)
for get operation

IR

Swap request

I Operand

® Put data

N I

Target

Matching
Portals Table

Matching NI

® Get data I Counter f

Counter

Matching
List Entry (ME)

Priority List Overflow List

Figure 2.5. Portals Atomic (swap is shown). An atomic swap in memory
described by a match list entry using an initiator-side operand.

ME

ME

For the swap operation shown in Figure 2.5, the initiator sends a request 2, containing the put data and the operand
value 2, to the target. The target traverses the local portals structures based on the information in the request to find
the appropriate user buffer. The target then sends the get data in a reply message OO back to the initiator and deposits
the put data in the user buffer.

The sum operation shown in Figure 2.6 adds the put data into the memory region described by the list entry. The
figure shows an optional acknowledgment sent back. The result of the summation is not sent back, since the initiator

24

Initiator

Memory
Descriptor(MD)

Atomic Sum Regu.st

® Data

N I

Ta rg et

Non-Matching
Portals Table

Non-Matching NI

(optional) Acknoidedgment

l Counter l

List
Entry (LE)

Figure 2.6. Portals Atomic (sum is shown). An atomic sum operation in
memory described by a list entry.

used PtlAtomic() instead of PtiFetchAtomicO.

2.2 Usage

Some of the diagrams presented in this chapter may seem daunting at first sight. However, many of the diagrams
show all possible options and features of the Portals building blocks. In actual use, only some of them are needed to
accomplish a given function. Rarely will they all be active and used at the same time.

Figure 2.2 shows the complete set of options available for a put operation. In practice, a diagram like Figure 2.7 is
much more realistic. It shows the Portals structures used to setup a one-sided put operation. A user of Portals needs
to specify an initiator region where the data is to be taken from, and an unmatched target region to put the data.
Offsets can be used to address portions of each region; e.g., a word at a time, and an event queue or a counting event
inform the user when an individual transfer has completed.

Another example is Figure 2.6 which is simpler than Figure 2.5 and probably more likely to be used in practice.
Atomic operations, such as the one in Figure 2.6 are much more likely to use a single unmatched target region. Such
simple constructs can be used to implement global reference counters, or access locks.

2.3 Completion Events

Portals provides two mechanisms for recording completion events: full events (Section 3.13) and counting events
(Section 3.14). Full events provide a complete picture of the transaction, including what type of event occurred,
which buffer was manipulated, and identifying any errors that occurred. The full event can also carry a small amount
of local data and, on the target, a small amount of out-of-band header data. Counting events, on the other hand, are
designed to be lightweight and provide only a count of successful and failed operations (or successful bytes
delivered). The delivery of events (full events or counting events) may be manipulated when creating a number of
other structures.

25

Initiator Target

Memory Put Request
Descriptor (MD)

Data

NI

Non-Matching
Portals Table

Non-Matching NI

List Entry (LE)

I Counter I

Figure 2.7. Simple Put Example: Not every option or Portals feature is needed
to accomplish simple tasks such as the transfer of data from an initiator region to
a target region.

2.4 Portals Addressing

One-sided data movement models (e.g., OpenSHMEM [8], SHMEM [10], ST [21], and MPI RMA [16]) typically use
a process identifier and remote address to identify a memory address on a remote node. In some cases, the remote
address is specified as a memory buffer identifier and offset. The process identifier identifies the target process, the
memory buffer identifier specifies the region of memory to be used for the operation, and the offset specifies an offset
within the memory buffer.

Portals lists provide one-sided addressing capabilities. Portals list entries serve as a memory buffer identifier that may
be persistent or optionally removed from the list after a single use. Traditional one-sided addressing capabilities have
proven to be a poor fit for tagged messaging interfaces, such as the Message Passing Interface [6]. To overcome these
limitations, Portals also supports match list entries, which include additional semantics for receiver-managed data
placement. Matching semantics are discussed in Section 2.4.2.

In addition to matching a pre-posted list entry, an incoming message also must pass a permissions check. The
permissions check is not a component of identifying the correct buffer. It is only applied after the correct buffer has
been identified. The permissions check has two components: the target of the message must allow the initiator to
access the buffer and must allow the specified operation type. Each list entry and match list entry specifies which
types of operations are allowed—put and/or get—as well as a usage ID that can be used to identify which initiators
are allowed to access the buffer. A failure of the permissions check for an incoming message does not modify the
Portals state in any way, except to update the status registers (see Section 3.3.7), and the message itself is discarded.
Permissions IDs such as a usage ID must be contained in a protected header in the portals message. A protected
header is part of a portals message where the user may not modify data, such that the usage ID inserted in the header
is the same as the one allocated by the implementation.

Figures 2.8 and 2.9 are graphical representations of the structures used by a target in the interpretation of a portals
address. The initiator's physical network interface and the specified target node identifier are used to route the
message to the appropriate node and physical network interface. This logic is not reflected in the diagrams. The

26

Request

/
operation
initiator
user id
target
non-matching NI
portal index
offset
length
header data

 ,.. N I

rnodreXl

7—

Non-Matching NI
Non-Matching
Portals Table

initiator
user id
start
offset
length
header data
portal index 1 1 1 1 1 EQ 1

operation
offset
length
user id

/

options
length
user id
—,--

LE

LE

,..

HDR

Priority List

LE

 t

HDR

Overflow List

7- 1—
Unexpected List

Figure 2.8. Portals Non-Matching Addressing Structures: The example
shows the flow of information for a non-matched request at a target. Various
pieces of information from the incoming header flow to the Portals structures
where they are needed to process the request.

initiator's logical network interface and the specified target process ID1 are used to select the correct target process
and the logical network interface. Each logical network interface includes a single portal table used to direct message
delivery.

Discussion: Portals loosely defines the concept of a physical network interface. A physical network
interface may be a single hardware network interface or it may represent a collection of hardware
network interfaces, with multi-rail support implemented within the Portals implementation.

For example, in a system like BlueGene/L In, an implementation may expose a physical network
interfaces for the high speed network and another physical network interface for the Ethernet support and
I/0 network. On the other hand, a system with multiple In finiBand HCAs may choose to expose a single
physical network interface which load balances between the hardware interfaces. In both cases, a portal
table will be created for each initialized logical network interface over each physical network interface
for each process.

An initiator-specified portal index is used to select an entry in the portal table. Each entry of the portal table identifies
three lists and, optionally, an event queue. The priority list and overflow list provide lists of remotely accessible
address regions. Applications may append new list entries to either list, allowing complex delivery mechanisms to be
built. Incoming messages are first processed according to the priority list and, if no matching entry was found in the
priority list, are then processed according to the overflow list. In addition to providing an insertion point in the middle
of the combined list structures by allowing insertions at the end of both the priority and overflow lists, the overflow
list carries additional semantics to allow unexpected message processing.

The third list that is associated with each portal index is more transparent to the user and provides the building blocks
for supporting unexpected messages. Each time a message is delivered into the overflow list, its header is linked into
the unexpected list. The user cannot insert a header into the unexpected list, but can search the list for matching
entries and, optionally, delete the matching entries from the list. Further, when a new list entry is appended to the

1A logical rank cart be substituted for the combination of node ID and process ID when logical endpoint addressing is used.

27

Request

z
operation
initiator
user id
target
matching NI
portal index
match bits
offset
length
header data

NI

initiator
user id
match bits
start
offset
length
header data
portal index

Matching
Portals Table

Vdt
/

Matching NI

Counter

Counter

I Counter

count, or
length

ME

initiator
match bits
operation
offset
length
user id

ME

ME

v

HDR

HDR

Unexpected
Matching List
List Entry (ME)

Priority List Overflow List

Figure 2.9. Portals Matching Addressing Structures: The example shows
the flow of information for a matched request at a target. Various pieces of in-
formation from the incoming header flow to the Portals structures where they are
needed to process the request.

priority list, the unexpected list is first searched for a match. If a match is found (i.e., had the list entry been on the
priority list when the message arrived, the message would have been delivered into that list entry), the list entry is not
inserted, the header is removed from the unexpected list, and the application is notified a match was found in the
unexpected list. A list entry in the overflow list may disable the use of the unexpected list for messages delivered into
that list entry. All unexpected messages associated with a list entry must be handled by posting matching list entries
in the priority list or searching and deleting prior to PtILEUnlink() or PtIMEUnlink() successfully unlinking the
overflow list entry. Unlike incoming messages, no permissions check is performed during the search of the
unexpected queue. Therefore, the user is responsible for ensuring that the overflow list provides sufficient protection
to memory and any further permissions checks must be performed by the user based on the overflow event data.

Each data manipulation event (e.g., P TL_EVENT_P UT) has a corresponding overflow event (e.g.,
P TL_EVENT_PUT_OVERFL OW) which is generated when a matching header is found in the unexpected list during list
entry insertion. Overflow events may only occur after the data has been fully delivered to the overflow buffer. The
overflow full event includes sufficient information (event type, start address, length, etc.) to determine what operation
occurred and where the data was delivered into the overflow list. If the mlength in the full event is less than the
rlength, the message was truncated. It is the responsibility of the application to retrieve the message body, if
necessary. For cases where an application posts a PtIMEAppend() or PtILEAppend() that does not provide a large
enough buffer for the match entry in the overflow list, the application must check the returned mlength against the
size of the posted buffer to ensure that truncation did not happen. Truncation checks only occur on the overflow list
entry when it is matched, they are not re-performed on checks of posted operations that match in the overflow list.

If the incoming message is not delivered into either the priority or overflow list and flow control is not enabled on the
portal table entry, the message is discarded and the P TL_SR_DROP_COUNT status register is incremented (see
Section 3.3.7). If flow control is enabled on the portal table entry, flow control is triggered and a
P TL_EVENT_P T_D I SABLED full event is generated in the event queue associated with the portal table entry (see
Section 2.7).

28

In typical scenarios, MPI point-to-point communication uses the matching interface and full events, while
OpenSHMEM uses the non-matching interface and lightweight counting events. The overflow list may act as either a
building block for handling MPI unexpected messages (when the unexpected list is enabled) or as a mechanism for
allowing insertion into the middle of a list (when the unexpected list is disabled).

2.4.1 Lists and List Entries

Lists and list entries provide semantics similar to that found in traditional one-sided interfaces. List entries identify a
memory region as well as an optional counting event. The memory region specifies the memory to be used in the
operation, and the counting event is optionally used to record the occurrence of operations. Information about the
operations is (optionally) recorded in the event queue attached to the portal table entry.

Non-matching After node, process,non-matching
Start J NI selection, and selecting

correct Portals table entry.

yes

unlink LE

no

discard
message

perform
operation

Increment ctr

yes

 increment permission
violations count

Ptl entry has EQ
and events
are enabled?

record event
into EQ

Figure 2.10. Non-Matching Portals Address Translation.

discard
message

increment
drop count

End

Figure 2.10 shows the logical flow of Portals address translation on a non-matching logical network interface. The
first list entry (LE) in a list always matches. Authentication is provided through fields associated with the LE and act
as permission fields, which can cause the operation to fail. An operation can fail to fit in the region provided and, if
so, will be truncated. Other semantics provided by match list entries—such as locally managed offsets—are not
supported. The overflow list is checked after the priority list, if necessary. The non-matching translation path has the

29

same event semantics as a matching interface. The important difference between the non-matching interface and the
matching interface is that the Portals address translation semantics for the non-matching interface always match the
first entry. This allows fully pipelined operation for the non-matching address translation.

Discussion: List entries may be persistent or automatically unlink after first use. Implementations may
be able to provide much higher message rates if the priority list contains a persistent list entry at the head
of the list. One-sided programming interfaces such as OpenSHMEM and MPI-3 one-sided should be
able to take advantage of this performance gain.

2.4.2 Match Lists and Match List Entries

In addition to the standard address components (process identifier, memory buffer identifier, and offset), a portals
address can include information identifying the initiator (source) of the message and a set of match bits. This
addressing model is appropriate for supporting traditional two-sided message passing operations. Specifically, the
Portals API provides the flexibility needed for an efficient implementation of MPI-1, which defines two-sided
operations, with one-sided completion semantics.

For a matching logical network interface, each match list entry specifies two bit patterns: a set of "do not care" bits
(ignore bits) and a set of "must match" bits (match bits). Along with the source node ID (NID) and the source process
ID (PID), these bits are used in a matching function to select the correct match list entry. In addition, if truncation is
disabled (P TL_ME_NO_TRUNCATE is set), the message must fit in the buffer. If the message does not fit, the message
does not match that entry and matching continues with the next entry.

In addition to initiator-specified offsets, match list entries also support locally managed offsets, which allow efficient
packing of multiple messages into a single match list entry. When locally managed offsets are enabled, the
initiator-specified offset is ignored. A match list entry may additionally specify a minimum available space threshold
(minjree), after which a persistent match list entry is automatically unlinked. The combination of locally managed
offsets, minimum free thresholds, and overflow list semantics facilitate the efficient implementation of MPI
unexpected messages.

Figure 2.11 illustrates the steps involved in translating a portals address when matching is enabled, starting from the
first element in a priority list. If the match criteria specified in the match list entry are met, the permissions check
passes, and the match list entry accepts the operation, the operation (put, get, or atomic) is performed using the
memory region specified in the match list entry. Note that matching is done using the match bits, ignore bits, and
either the node identifier and process identifier or the rank.

If the match list entry specifies that it is to be unlinked based on the minjree semantic or if it is a use once match list
entry, the match list entry is removed from the match list, and the resources associated with the match list entry are
reclaimed. If there is an event queue specified in the portal table entry and the match list entry accepts the full event,
the operation is logged in the event queue. An event is delivered when no more actions, as part of the current
operation, will be performed on this match list entry.

If the match criteria specified in the match list entry are not met, the address translation continues with the next match
list entry. If the end of the priority list has been reached, address translation continues with the overflow list. Once a
matching match list entry has been identified, if the permissions check fails or the match list entry rejects the
operation, the matching ceases and the message is dropped without modifying the list state.

2.5 Modifying Data Buffers

Users pass data buffers into the Portals implementation as either a source of data or the destination of data. For
buffers where data is being delivered (e.g., at the target, or in a reply buffer at the initiator), the Portals API allows

30

c

no

Matching
Start

Priority
list

empty?

yes

get next
matching list entry

match?

permissions
pass?

yes

unlink ME?
(min free, or
use once)

unlink ME

discard
message

no

After node, process, matching
NI selection, and selecting
correct Portals table entry.

Overflow
list

empty?

no

get next
matching list entry

perform
operation

Counter?

increment permission
violations count

match?

yes

Increment ctr

discard
message

increment
drop count

Ptl entry has EQ
and events
are enabled?

record event
into EQ

Figure 2.11. Matching Portals Address Translation.

31

(End

no

♦

user memory to be used as a scratch space as long as the operation is larger than max_atomic_size. That means an
implementation can utilize user memory as scratch space and staging buffers for operations larger than this threshold.
When the operation is larger than max_atomic_size, the user memory is not guaranteed to reflect exactly the data that
has arrived until the operation succeeds and the event is delivered. In fact, for operations larger than max_atomic_size,
the memory may be changed in unpredictable ways while the operation is progressing. Once the operation completes,
the memory associated with the operation will not be subject to further modification (from this operation). Notice
that unsuccessful operations may alter memory used to receive data in an essentially unpredictable fashion.

The Portals API explicitly prohibits modifying the buffer passed into a put. Similarly, an implementation must not
alter data in a user buffer that is used in a reply until the operation completes. This is independent of whether the
operation succeeds or fails.

2.6 Ordering

There are three types of ordering typically defined by higher-level languages and message passing APIs: message
ordering, data ordering, and write ordering. The message ordering definition controls the order in which messages are
processed by the match engine between a pair of endpoints. The data ordering definition controls the order in which
the data of two different messages is delivered into memory. The write ordering definition controls the order in which
the bytes of a single message are written to memory. Ordering is a complex subject with a variety of high-level
definitions in programming languages and message passing APIs. Portals does not define any write ordering, but it
has a variety of options to control message and data ordering. As a general overview, Portals guarantees
byte-granularity data ordering for short messages between a pair of endpoints when targeting a specific list entry or
match list entry. For all messages regardless of size, message ordering is provided unless it is disabled using the
PTL_MD_UNORDERED option in the ptl_md_t. This supports the MPI two-sided message ordering requirements while
providing the flexibility to disable ordering when it is not needed.

2.6.1 Short Message Ordering Semantics

The default ordering semantics for Portals messages differ for short and long messages. The threshold between
"short" and "lone is defined by two parameters, the maximum write-after-write and read-after-write sizes
(max_waw_ordered_size) and the maximum write-after-read size (max_war_ordered_size). Both parameters are
controlled by the desired and actual arguments of PtINIInitO. Note that replies and acknowledgments do not require
ordering.

When one message that stores data (put, atomic) is followed by a message that stores data or retrieves data (put,
atomic, get) from the same initiator to the same target and both messages are less than the max_waw_ordered_size in
length, a byte from the second message that targets the same offset within the same LE (or ME) as a byte from the
first message will perform its access after the byte from the first message Similarly, when one message that retrieves
data (get) is followed by a second message that stores data (put, atomic) from the same initiator to the same target and
both messages are less than max_war_ordered_size in length, a byte from the second message that targets the same
offset within the same LE (or ME) as a byte from the first message will perform its access after the byte from the first
message.

Even for small messages, Portals does not guarantee write ordering, i.e., the order in which individual bytes of a
single message are delivered is always unspecified. In addition, the order in which non-overlapping bytes of two
different messages are written is not specified unless the implementation provides total data ordering and both target
and initiator NIs have the PTL_TOTAL_DATA_ORDERING option set in the actual features limits field. If either the
initiator or target do not have P TL_TOTAL_DATA_ORDERING set, total data ordering will not be provided. When total
data ordering is provided and the short message constraints are met, the first message must be entirely delivered
before any part of the second message is delivered. Total data ordering provides additional ordering guarantees over
max_waw_ordered_size in that it requires that the entire first message must be written in its entirety before the second

32

message can be written (including non overlapping bytes), while write-after-write ordering only guarantees ordering
within overlapping offset regions within the same LE or ME. Support for the ordering of bytes between messages is
an optional feature, since some implementations may be unable to provide such strict ordering semantics. It is the
responsibility of the initiator to ensure that the target provides total data ordering. Targets are free to not provide total
data ordering support for messages incoming from PTL_TOTAL_DATA_ORDERING enabled initiator NIs.

2.6.2 Long Message Ordering Semantics

The default ordering semantics for Portals messages that have a length that is longer than the max_waw_ordered_size
(or max_war_ordered_size, as appropriate) are much weaker. For long messages, the ordering semantics only require
that messages sent between a pair of processes are matched at the target in the order they were sent. The underlying
implementation is free to deliver the body of two messages in whatever order is necessary. This provides additional
flexibility to the underlying implementation. For example, the implementation can use a retransmission protocol that
only retransmits a portion of a lost message without violating ordering Similarly, an implementation is free to use
adaptive routing to deliver the body of the message. Note that replies and acknowledgments do not require ordering.

Discussion: The specified ordering semantics of Portals are not necessarily sufficient to allow a
shmem fence () operation to be treated as a no-op. Portals only guarantees ordering semantics
sufficient for shmem fence () to be a no-op when PTL TOTAL DATA ORDERING is returned in
the options field of the actual limits and the operations are both shorter than max_waw_ordered_size.

2.6.3 Relative Ordering of Operations in Overlapping Portals

The result of a put or atomic operation transferring data from a memory location (within a memory descriptor) which
is currently the target of a remote operation (within a list entry) is undefined. Data is only available for transmit after
an event indicating the completion of the arriving message has been delivered. Triggered operations are ordered
safely, since they do not trigger until the counting event is delivered and are triggered in the order in which they were
posted for a given counter. Operations simultaneously taking place on overlapping portals have the same behavior as
overlapping operations on a single portal (e.g. LE) without PTL_TOTAL_DATA_ORDERING; see Section 2.6.1 for more
information on overlapping operations on an LE.

2.6.4 Ordering of Unexpected Messages

Messages delivered into an overflow list entry have the same ordering semantics as messages delivered into priority
list entries. Data delivery into a overflow list entry is ordered like that of a priority list entry. Overflow list entries are
typically programmed to capture the headers (and possibly buffer the payload) of messages that arrived before a
matching entry could be appended to the priority list. Information on the ordering of unexpected headers is captured
to enable MPI matching ordering semantics.

2.6.5 Relaxing Message Ordering

In many modern networks, adaptive routing can be used to improve the overall network throughput. For these
networks, it may be useful for the application to express to the implementation when it is possible to relax the
ordering on messages. Portals provides two mechanisms to relax ordering. First, when the application calls
PtINIInit(), it can request a max_waw_ordered_size and max_war_ordered_size of zero in ptl_ni_limits_t (see
Sections 3.6.1 and 3.6.2). This informs the implementation that data ordering is not needed (e.g., in the two sided
semantics for MPI). Second, the application can set the PTL_MD_UNORDERED option on the ptl_md_t used to send the
data (see Section 3.10). This turns off both message and data ordering.

33

2.7 Flow Control

Historically, on some large machines, MPI over Portals has run into problems where the number of unexpected
messages has caused the exhaustion of event queue space or buffer space set aside for unexpected messages. MPI
implementations over past versions of Portals have handled the overflow by aborting the application. Other networks
use "receiver not ready" NACKs and retransmits at the hardware level. Unfortunately, this is known to impact
pipelining in the NIC. In attempting to address this challenge, Portals 4 adopts the philosophy that resource
exhaustion is an exceptional operating mode and recovery may be slow, but must be possible.

When resources are exhausted, whether they are user allocated resources like EQ entries or implementation level
resources, the implementation may choose to block new message processing for a constrained amount of time. If the
resources remain exhausted, the behavior of Portals depends on the type of operation which caused the exhaustion
and, potentially, options set by the user.

A local operation which generates events (such as a call to PtILEAppend() or PtIMEAppend()) or a response from a
target-side operation (such as an acknowledgment or reply) is not required to trigger flow control and may cause the
event queue to overflow, resulting in dropped events. An implementation may chose to trigger flow control for local
operations, but is not required to do so.

Discussion: The user must use some care when posting a new list entry to ensure that local events do
not overflow the event queue. A sufficiently large event queue, drained before posting the list entry, will
provide sufficient protection. Implementations may choose to perform more resource exhaustion
checking to prevent overflowing the event queue, but are not required to do so.

A target-side operation (such as the processing of an incoming put or get operation) which targets a portal table entry
on which the PTL_PT_FLOWCTRL option has not been set will not trigger flow control. If the message failed to match
in the priority or overflow lists or the message would have matched in the overflow list and the unexpected headers
list is full, the message will be dropped, with the P TL_SR_DROP_COUNT status register incremented as specified in
Section 2.4. An acknowledgment or reply event will not be generated in this case. If the constrained resource was an
event queue, the message will be delivered and any acknowledgment or reply will be generated, but the target-side
event will be lost.

A target-side operation (such as the processing of an incoming put or get operation) which targets a portal table entry
on which the PTL_PT_FLOWCTRL option has been set will trigger flow control. When flow control is triggered, the
implementation must disable the portal table entry and deliver a P TL_EVENT_P T_D I SABLED full event to the
application (See Implementation Note 13). At this point, all messages targeting that portal table entry for that process
must be dropped until PtIPTEnable() is called, including the message that caused the flow control event. Messages
that are dropped due to a flow control event do not modify any portion of the buffer described by the target list entry
or match list entry. In addition, the P TL_EVENT_ACK or PTL_EVENT_REPLY event associated with that message (and
subsequent in flight messages) indicate failure. The nijail_type of any generated full event must be
P TL_NI_P T_D I SABLED. While a disabled portal table entry will refuse any communication operations, local
operations (such as PtILEAppend()) continue to be processed.

Discussion: It is important to note that remote flow control failure notification is only delivered to the
initiator of an operation in the PTL EVENT ACK or PTL_EVENT REPLY event; thus, it is necessary
for a user to request acknowledgments at the initiator to be notified of a flow control situation.

While any internal, potentially implementation specific, resource exhaustion can cause a flow control event, three
Portals level resource exhaustion types must cause a flow control event when they occur. If flow control is enabled,
the following three scenarios must invoke flow control. First, if an event queue attached to a portal table entry is full
and the message would generate a full event, flow control must be invoked. Second, if a message arrives at a portal
table entry and does not find a match in either the priority list or the overflow list, flow control must be invoked.

34

Finally, if the space available to buffer unexpected message headers is exhausted (e.g., as indicated by
max_unexpected_headers), flow control must be invoked.

Discussion: The application must be involved in flow control recovery. The difficulty in recovering is
largely driven by the ordering constraints of the application. Interfaces with loose ordering semantics
(such as GASNet) may be able to reduce resource utilization and re-enable a portal table entry without
any global communication. Strictly ordered interfaces, such as MPI, must quiesce the library, ensure that
resources are available, reach a global consensus that the network is quiesced (likely using another portal
table entry for communication), re-enable the portal table entry, and restart communication. Quiescing
the library requires the MPI library to insure that no more messages are in flight targeting the node that
has experienced resource exhaustion. Making resources available involves draining all full events from
the event queue associated with the portal table entry, replenishing the user allocated buffers on the
overflow list, and draining unexpected messages from the Portals implementation.

2.8 Multi-Threaded Applications

The Portals API supports a generic view of multi-threaded applications. From the perspective of the Portals API, an
application program is defined by a set of processes. Each process defines a unique address space. The Portals API
defines access to this address space from other processes (using portals addressing and the data movement
operations). A process may have one or more threads executing in its address space.

With the exception of waiting (PtIEQWaitO, PtICTWait()), polling (PtIEQPoll(), PtICTPOII()), portal table
manipulation functions (PtIPTDisable(), PtIPTEnable()), and some allocation routines (such as PtICTAlloc(),
PtICTFree(), PtIECAlloc(), PtIEOFree(), PtIMEUnlink()), every function in the portals API is non-blocking. Every
function in the Portals API is atomic with respect to both other threads and external operations that result from data
movement operations. While individual operations are atomic, sequences of these operations may be interleaved
between different threads and with external operations. In other words, calls into the Portals API are thread safe. The
Portals API does not provide any mechanisms to control this interleaving. It is expected that these mechanisms will
be provided by the API used to create threads.

35

36

Chapter 3

The Portals API

3.1 Naming Conventions and Typeface Usage

The Portals API defines four types of entities: functions, types, return codes, and constants. Functions always start
with Ptl and use mixed upper and lower case. When used in the body of this report, function names appear in sans
serif bold face, e.g., Melt°. The functions associated with an object type will have names that start with Ptl,
followed by the two letter object type code shown in column yy in Table 3.1. As an example, the function
PtlECIAlloc() allocates resources for an event queue.

Table 3.1. Object Type Codes.

yy xx
NI ni
PT pt
MD md
LE le
ME me
EQ eq
CT ct

Name Section
Network Interface 3.6
Portal Table Entry 3.7
Memory Descriptor 3.10
List Entry 3.11
Matching list Entry 3.12
Event Queue 3.13
Count 3.14

Type names use lower case with underscores to separate words. Each type name starts with ptl_ and ends with _t.
When used in the body of this report, type names appear like this: ptl_match_bits_t.

Return codes start with the characters PTL_ and appear like this: PTL_OK.

Names for constants use upper case with underscores to separate words. Each constant name starts with P TL_. When
used in the body of this report, constant names appear like this: P TL_ACK_REQ.

The definition of named constants, function prototypes, and type definitions must be supplied in a file named
portals4.h that can be included by programs using Portals. Implementations must also provide the same interface
in a header file named portals . h, although implementations are free to use a symlink to provide one or both of the
files. Implementations should also provide a README file that explains implementation specific details. For
example, it should list the limits (Section 3.6.1) for this implementation and provide a list of status registers that are
provided (Section 3.3.7). See Appendix B for a template.

Numerous data structures are described as C-style structures in the Portals API; however, the definition is not meant
to specify a field ordering. The implementation is free to optimize the ordering of data structures.

37

3.2 Constants

The Portals API defines a number of constants. Constants defined in this specification must be compile time
constants. Further, constants whose type is specified to be integral must be valid labels for switch statements.
Constants are generally associated with a base type in which constants are stored. Implementations are given freedom
regarding the numeric values used for constants and their associated base types, constrained only by the compile time
requirements.

3.2.1 Version Information

Every Portals implementation must provide two preprocessor constants, PTL_MAJOR_VERS ION and
PTL_MINOR_VERS ION, which indicate the version of the Portals specification implemented by the implementation. In
the case of versions that have two minor numbers the PTL_MINOR_VERS ION will be equal to the first integer value of
the minor version numbering (e.g. Portals 4.0.2 P TL_MINOR_VERS I ON will return 0).

Discussion: PTL MAJOR VERSION and PTL MINOR VERSION were added to the Portals 4.0.2
specification. Previous versions, including Portals 4.0.1, did not include version constants. Users of the
Portals interface must take that into account when using the version constants.

3.3 Base Types

The Portals API defines a variety of base types. These types represent a simple renaming of the base types provided
by the C programming language. In most cases these new type names have been introduced to improve type safety
and to avoid issues arising from differences in representation sizes (e.g., 16-bit or 32-bit integers). Table 3.5 on
page 113 lists all the types defined by Portals.

3.3.1 Sizes

The type ptl_size_t is an unsigned 64-bit integral type used for representing sizes. The constant PTL_S I ZE_MAX
represents the largest value a ptl_size_t can hold.

3.3.2 Handles

Objects maintained by the API are accessed through handles. Handle types have names of the form
pt l_handle_xx_t, where xx is one of the two letter object type codes shown in Table 3.1, column xx. For example,
the type ptl_handle_ni_t is used for network interface handles. Like all Portals types, their names use lower case
letters and underscores are used to separate words.

Each type of object is given a unique handle type to enhance type checking. The type ptl_handle_any_t can be used
when a generic handle is needed. Every handle value can be converted into a value of type ptl_handle_any_t without
loss of information.

The type of a handle is left unspecified, but must be assignable in C. Every Portals object is associated with a specific
network interface and the network handle associated with an object's handle may be retrieved by calling
PtINIHandle().

38

IMPLEMENTATION
NOTE 4:

Size of handle types

It is highly recommended that a handle type should be no larger than
the native machine word size.

The constant P TL_EQ_NONE, of type ptl_handle_eq_t, is used to indicate the absence of an event queue Similarly, the
constant P TL_CT_NONE, of type ptl_handle_ct_t, indicates the absence of a counting event. See Section 3.10.1 for uses
of these values. The special constant PTL_INVAL ID_HANDLE is used to represent an invalid handle.

IMPLEMENTATION
NOTE 5:

Unique handles

The encoding of handles is not specified by the Portals API. An
implementation may reuse handle values, however the implementation
is responsible for handling race conditions between threads calling
release and acquire functions (such as PtIMDRelease() and
PtIMDBind()).

3.3.3 Indexes

The type ptl_pt_index_t is an integral type used for representing portal table indexes. See Section 3.6.1 and 3.6.2 for
limits on values of this type.

3.3.4 Match Bits

The type ptl_match_bits_t is capable of holding unsigned 64-bit integer values.

3.3.5 Network Interfaces

The type ptl_interface_t is an integral type used for identifying different network interfaces. Users will need to
consult the implementation's README documentation to determine appropriate values for the interfaces available.
The special constant P TL_IFACE_DEFAULT identifies the default interface.

3.3.6 Identifiers

The type ptl_nid_t is an integral type used for representing node identifiers and ptl_pid_t is an integral type for
representing process identifiers when physical addressing is used in the network interface (PTL_NI_PHYS I CAL is set
for the network interface). If P TL_NI_LOGI CAL is set, a rank (ptl_rank_t) is used instead. ptl_uid_t is an integral type
for representing usage identifiers.

The special values PTL_P ID_ANY matches any process identifier, PTL_NID_ANY matches any node identifier,
PTL_RANK_ANY matches any rank, and P TL_UID_ANY matches any usage identifier. See Section 3.11 and 3.12 for uses
of these values.

39

3.3.7 Status Registers

Each network interface maintains an array of status registers that can be accessed using the PtINIStatus() function
(Section 3.6.4). The type ptl_sr_index_t defines the type of indexes that can be used to access the status registers. A
small number of indexes are defined for all implementations:

Status Register Indexes (ptl_sr_index_t)

PTL_SR_DROP_COUNT Identifies the status register that counts the dropped requests for the
interface.

PTL_SR_PERMI SS I ON_VI OLAT IONS Counts the number of attempted permission violations.

PTL_SR_OPERAT I ON_VIOLAT IONS Counts the number of attempted operation violations

A permission violation is a violation of the usage id check, while an operation violation is a violation of the allowed
operation types (put and/or get). Note that these three operations are orthogonal such that permission violations and
operations violations should not increment P TL_SR_DROP_COUNT. Other indexes (and registers) may be defined by the
implementation.

The type ptl_sr_value_t defines the type of values held in status registers. This is a signed integer type. The size is
implementation dependent but must be at least 32 bits.

3.4 Function Arguments and Return Codes

Unless otherwise noted, an implementation is not required to check the validity of any arguments to a Portals
function call. The argument to many Portals functions is a pointer to a type (because the argument is a pointer to a
structure and/or because the argument is an output parameter). Unless otherwise noted, a pointer must point to a valid
instance of the specified type; NULL is not generally a valid argument.

The Portals API specifies return codes that indicate success or failure of a function call. In the case where the failure
is due to invalid arguments being passed into the function, the exact behavior of an implementation is undefined. The
API suggests error codes that provide more detail about specific invalid parameters, but an implementation is not
required to return these specific error codes. For example, an implementation is free to allow the caller to fault when
given an invalid address, rather than return PTL_ARG_INVALID In addition, an implementation is free to map these
return codes to standard return codes where appropriate. For example, a Linux kernel-space implementation could
map portals return codes to POSIX-compliant return codes. Table 3.7 on page 117 lists all return codes used by
Portals.

3.5 Initialization and Cleanup

The Portals API includes a function, PtIlnitO, to initialize the library and a function, PtIFini(), to clean up after the
process is done using the library. The initialization state of Portals is reference counted so that repeated calls to
PtIlnit() and PtIFini() within a process (collection of threads) do not invalidate Portals state until the reference count
reaches zero. Portals is initialized upon successful completion of the first call to Ptllnit() and finalized upon
successful completion of the first call to PtlFini() that results in the reference count reaching zero.

A child process does not inherit any Portals resources from its parent. A child process must initialize Portals in order
to obtain new, valid Portals resources. If a child process fails to initialize Portals and then uses the Portals interface,

40

behavior is undefined for both the parent and the child.

3.5.1 Ptllnit

The PtUnit() function initializes the Portals library. PtMit() must be called at least once by a process before any
thread makes a Portals function call and may be safely called more than once. Each call to Ptllnit() increments a
reference count. PtUnit() cannot be called after the Portals library has been finalized.

Function Prototype for Ptllnit

int Pffinit(void);

Return Codes

PTL_OK

PTL_FAIL

3.5.2 PtlFini

Indicates success.

Indicates an error during initialization.

The PtlFini() function allows an application to clean up after the Portals library is no longer needed by a process.
Each call to PtiFinio decrements the reference count that was incremented by PtMit°. When the reference count
reaches zero, all Portals resources are freed. Once the Portals resources are freed, calls to any of the functions defined
by the Portals API or use of the structures set up by the Portals API will result in undefined behavior. Each call to
Ptllnit() should be matched by a corresponding PtlFiniO.

Function Prototype for PtlFini

void PtlFini(void);

3.6 Network Interfaces

The Portals API supports the use of multiple network interfaces. However, each interface is treated as an independent
entity. Combining interfaces (e.g., "bondine to create a higher bandwidth connection) must be handled internally by
the Portals implementation, embedded in the underlying network, or handled by the application. Interfaces are treated
as independent entities to make it easier to cache information on individual network interface cards.

A Portals physical network interface is a per-process abstraction of a physical network interface (or group of
hardware interfaces). A physical network interface can not be used directly, but can be used by a process to
instantiate up to four logical network interfaces. All logical network interfaces associated with a single physical
network interface share the same network id and process id (nid/pid), but all other resources are unique to a logical
network interface. A logical network interface can be initialized to provide either matching or non-matching Portals
addressing and either logical or physical addressing of network endpoints through the data movement calls. These
two options are independent and all four combinations of logical network interface options must be supported by
each physical network interface.

Once initialized, each logical interface provides a portal table and a collection of status registers. In order to facilitate

41

the development of portable Portals applications, a compliant implementation must provide at least 250 portal table
entries. See Section 3.6.4 for a discussion of the PtINIStatus() function, which can be used to read the value of a
status register. Every other type of Portals object (e.g., memory descriptor, event queue, or list entry) is also
associated with a specific logical network interface. The association to a logical network interface is established
when the object is created, and the PtINIHandle() function (Section 3.6.5) may be used to determine the logical
network interface with which an object is associated.

Each logical network interface is initialized and shut down independently. The initialization routine, PtINIInit(),
returns an interface object handle which is used in all subsequent portals operations. The PtINIFini() function is used
to shut down a logical interface and release any resources that are associated with the interface. Network interface
handles are associated with processes, not threads. All threads in a process share all of the network interface handles.

3.6.1 The Network Interface Limits Type

The function PUNIInit() accepts a pointer to a structure of desired limits and can fill a structure with the actual values
supported by the network interface. Resource limits are specified independently for each logical network interface
and the resources are shared by all users of the same network interface. The two structures are of type ptl_ni_limits_t
and include the following members:

typedef struct {
int max_entries;
int max_unexpected_headers;
int max_mds;
int max_cts;
int max_eqs;
int max_pt_index;
int max_iovecs;
int max_list_size;
int max_triggered_ops;
ptl_size_t max_msg_size;
ptl_size_t max_atomic_size;
ptl_size_t max_fetch_atomic_size;
ptl_size_t max_waw_ordered_size;
ptl_size_t max_war_ordered_size;
ptl_size_t max_volatile_size;
unsigned int features;

} ptl_ni_limits_t;

Limits

max_entries

max_unexpected_headers

max_mds

max_eqs

max_cts

Maximum number of match list entries or list entries that can be allocated
at any one time (only one of the two exists on an interface).

Maximum number of unexpected headers that the implementation can
buffer.

Maximum number of memory descriptors that can be allocated at any one
time.

Maximum number of event queues that can be allocated at any one time.

Maximum number of counting events that can be allocated at any one
time.

42

max_N_index

max_iovecs

max_list_size

max_triggered_ops

max_msg_size

max_atomic_size

max_fetch_atomic_size

max_waw_ordered_size

max_war_ordered_size

max_volatile_size

features

3.6.2 PtINIInit

Largest portal table index for this interface, valid indexes range from 0 to
max_13t_index, inclusive. An interface must support a max_pu_index of at
least 249.

Maximum number of I/0 vectors for a single memory descriptor, list
entry, or match list entry for this interface.

Maximum number of entries that can be attached to the list on any portal
table index.

Maximum number of triggered operations that can be outstanding.

Maximum size (in bytes) of a message (put, get, or reply).

Maximum size (in bytes) that can be passed to an atomic operation. Any
byte within an operation that is less than max_atomic_size is guaranteed
to only be written to the user memory buffer once.

Maximum size (in bytes) that can be passed to an atomic operation that
returns the prior value to the initiator.

Maximum size (in bytes) of a message that will guarantee "per-address"
data ordering for a write followed by a write (consecutive put or atomic or
a mixture of the two) and a write followed by a read (put followed by a
get). An interface must provide a max_waw_ordered_size of at least 64
bytes.

Maximum size (in bytes) of a message that will guarantee "per-address"
data ordering for a read followed by a write (get followed by a put or
atomic). An interface must provide a max_war_ordered_size of at least 8
bytes.

Maximum size (in bytes) that can be passed as the length of a put or
atomic for a memory descriptor with the PTL_MD_VOLAT ILE option set.

A bit mask of features supported by the the Portals implementation.
Currently, three features are defined. P TL_TARGE T_BIND_I NAC CE S S IB LE
is discussed in Section 3.11 and 3.12, P TL_TOTAL_DATA_ORDERI NG is
discussed in Section 2.6, and P TL_COHERENT_ATOMICS is discussed in
Section 3.15.4.

The PtINIInit() function initializes the Portals API for a network interface (NI). A process using Portals must call this
function at least once before any other functions that apply to that interface. An additional call to PtISetMap() must
be made before communication calls are made on a logically addressed interface (See Section 3.6.6). Calls to
PtINIInito increment a reference count on the network interface and must be matched by a call to PtINIFini(). If
PtINIInito gets called more than once per logical interface, then the implementation should fill in actual and
ni_handle with the values obtained by the first caller and should ignore the pid argument. PtlGetld() or
PtIGetPhysId() (Section 3.9) can be used to retrieve the pid.

Discussion: Proper initialization of a logical network interface that uses logical endpoint addressing
requires the user to call PtISetMapO, creating a mapping of logical ranks to physical node IDs and
process IDs. The physical address (NID/PID) associated with a logical network interface may be
obtained by calling PtIGetPhysIdO. The physical address may then be shared through an outside
mechanism (including another Portals logical interface) to establish a consistent mapping of rank to
NID/PID.

43

Function Prototype for PtlNllnit

int PtlNIInit(ptl_interface_t iface,
unsigned int options,
ptl_pid_t pid,
const ptl_ni_limits_t *desired,
ptl_ni_limits_t *actual,
ptl_handle_ni_t *ni_handle);

Arguments

iface input Identifies the physical network interface to be initialized (See Section 3.3.5 for a
discussion of values used to identify network interfaces.)

options input This field contains options that are requested for the network interface. Values for this
argument can be constructed using a bitwise OR of the values defined below. Either
P TL_NI_MATCHING or P TL_NI_NO_MATCHING must be set, but not both. Either
P TL_NI_LOGICAL or P TL_NI_PHYSICAL must be set, but not both, to specify the endpoint
addressing mode.

pid input Identifies the desired process identifier (for well known process identifiers). The specified
pid must either be non-negative and less than the value P TL_P I D_MAX or be P TL_P I D_ANY.
The value PTL_P ID_ANY may be used to let the Portals library select a process identifier.
See Section 3.9 for more information on process identifiers.

desired input If not NULL, points to a structure that holds the desired limits. If NULL, either previously
set limits or implementation defined defaults will be used.

actual output If not NULL, on successful return, the location pointed to by actual will hold the actual
limits.

ni_handle output On successful return, this location will hold the interface handle.

options

PTL_NI_MATCHING

PTL_NI_NO_MATCHING

P TL_NI_LOGI CAL

P TL_NI_P HY S I CAL

Return Codes

PTL_OK

PTL_NO_INIT

Request that the interface specified in iface be opened with matching
enabled.

Request that the interface specified in iface be opened with matching
disabled. P TL_NI_MATCHING and P TL_NI_NO_MATCHING are mutually
exclusive.

Request that the interface specified in iface be opened with logical
endpoint addressing (e.g., GASNet node and rank or SHMEM PE).

Request that the interface specified in iface be opened with physical
endpoint addressing (e.g., NID/PID). P TL_N I_LOG I CAL and
P T L_NI_P HY S I CAL are mutually exclusive.

Indicates success.

Indicates that the Portals API has not been successfully initialized.

44

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_PID_IN_USE Indicates that pid is currently in use.

PTL_NO_SPACE Indicates that PtINIInit() was not able to allocate the memory required to initialize the
interface.

Discussion: Each interface has its own sets of limits. In implementations that support multiple
interfaces, the limits passed to and returned by PtlNllnitO apply only to the interface specified in iface.
However, the use of desired is implementation dependent and an implementation may choose to ignore
the request or provide limits based on a previous request.

The desired limits are used to offer a hint to an implementation as to the amount of resources needed, and the
implementation returns the actual limits available for use. In the case where an implementation does not have any
pre-defined limits, it is free to return the largest possible value permitted by the corresponding type (e.g., INT_MAX).
A quality implementation will enforce the limits that are returned and take the appropriate action when limits are
exceeded, such as using the PTL_NO_SPACE return code. The caller is permitted to use maximum values for the
desired fields to indicate that the limit should be determined by the implementation. An implementation must provide
at least the resources specified by actual, unless the implementation returned the largest possible value permitted by
the corresponding type in which case the implementation may be restricted by another resource such as available
application memory or machine capabilities that are beyond the Portals implementation's control. For example, a
user may request a value for max_unexpected_headers, which a Portals implementation may return a value in actual
of the maximum value for that type (e.g. 64 bit integer). This indicates that the Portals implementation is able to
dynamically allocate memory to support buffering unexpected headers. The Portals implementation will provide as
much buffering as is possible for unexpected headers until it runs out of memory.

3.6.3 PtINIFini

The PtINIFini() function is used to release the resources allocated for a network interface. The release of network
interface resources is based on a reference count that is incremented by PtINIInit() and decremented by PtINIFini().
Resources can only be released when the reference count reaches zero. Once the release of resources has begun, the
results of pending API operations (e.g., operations initiated by another thread) for this interface are undefined.
Similarly, the effects of incoming operations (put, get, atomic) or return values (acknowledgment and reply) for this
interface are undefined until the interface is reinitialized by another call to PtINIInit().

Function Prototype for PtINIFini

int PfiNIFini(ptl_handle_ni_t ni_handle);

Arguments

ni_handle input An interface handle to shut down.

Return Codes

PTL_OK

PTL_NO_INIT

Indicates success.

 _I

Indicates that the Portals API has not been successfully initialized.

45

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.6.4 PtINIStatus

The PtINIStatus() function returns the value of a status register for the specified interface. See Section 3.3.7 for more
information on status register indexes and status register values.

Function Prototype for PtINIStatus

int PfiNIStatus(ptl_handle_ni_t ni_handle,
ptl_sr_index_t status_register,
ptl_sr_value_t *status);

Arguments

ni_handle input An interface handle.

status_register input The index of the status register.

status output On successful return, this location will hold the current value of the status register.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.6.5 PtINIHandle

The PtINIHandle() function returns the network interface handle with which the object identified by handle is
associated. If the object identified by handle is a network interface, this function returns the same value it is passed.

Function Prototype for PtINIHandle

int PtlNIHandle(ptl_handle_any_t handle,
ptl_handle_ni_t *ni_handle);

Arguments

handle input The object handle.

ni_handle output On successful return, this location will hold the network interface handle associated with
handle.

46

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.6.6 PtISetMap

The PtiSetMap() function initializes the mapping from logical endpoint identifiers (rank) to physical endpoint
identifiers (nid/pid) for the given logically addressed logical network interface. A process must ensure that the logical
mapping is set before the specified logically addressed logical network interface may be used in any portals calls
other than Ptlis!MIRO, PtiGetMap(), and PtiGetPhysid(). If the map of the other logically addressed logical network
interface associated with the same physical network interface as the specified interface handle has not been set by a
call to PtiSetMap(), the implementation may choose to set the mapping on both logical network interfaces. It is
erroneous to call PtiSetMap() on a physically addressed logical network interface. Subsequent calls (either by
different threads or the same thread) to PtiSetMapo will overwrite any mapping associated with the logical network
interface; hence, libraries must take care to ensure reasonable interoperability.

Function Prototype for PtiSetMap

int PtlSetMap(ptl_handle_ni_t ni_handle,
ptl_size_t map_size,
const ptl_process_t *mapping);

Arguments

ni_handle input The interface handle identifying the network interface which should be initialized with
mapping. The network interface handle must refer to a logically addressed network
interface.

map_size input The number of elements in mapping.

mapping input Points to an array of ptl_process_t structures where entry N in the array contains the
NID/PID pair that is associated with the logical rank N.

Return Codes

PTL_OK

PTL_IGNORED

PTL_NO_INIT

PTL_ARG_INVALID

PTL_NO_SPACE

Indicates success.

Indicates no error occurred, but the implementation does not support dynamic changing
of the logical identifier map, likely due to integration with a static run-time system.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

Indicates that PtiSetMap() was not able to allocate the memory required to initialize the
map.

47

Discussion: PtISetMapO is a local operation and the map set by different communicating processes
may be different. The rank field of target-side events may be unexpected in cases where the two
processes have different maps.

3.6.7 PtIGetMap

The PtiGetMap() function retrieves the mapping from logical identifiers (rank) to physical identifiers (nid/pid) for the
specified logically addressed logical network interface. If the map_size is smaller than the actual map size, the first
map_size entries in the map will be copied into mapping. If the map_size is larger than the actual map size, the entire
map is copied into mapping and the buffer beyond the actual_map_size entry is left unmodified. It is erroneous to call
PtiGetMapo on a physically addressed logical network interface.

Function Prototype for PtiGetMap

int PfiGetMap(ptl_handle_ni_t ni_handle,
ptl_size_t map_size,
ptl_process_t *mapping,
ptl_size_t *actual_map_size);

Arguments

ni_handle input The network interface handle from which the map should be retrieved. The network
interface handle must refer to a logically addressed logical network interface.

map_size input The length of mapping in number of elements.

mapping output Points to an array of ptl_process_t structures where entry N in the array will be populated
with the NID/PID pair that is associated with the logical rank N.

actual_map_size output On return, actual_map_size contains the size, in number of elements, of the map currently
associated with the logical interface. May be bigger than map_size or the mapping array.

Return Codes

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

PTL_IGNORED

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

Indicates that the request was ignored as there was no map set on the logical network
interface.

3.7 Portal Table Entries

A portal index refers to a portal table entry. The assignment of these indexes can either be statically or dynamically
managed, and will typically be a combination of both. A portal table entry must be allocated before being used. From
a user perspective, messages that arrive traverse list entries or match list entries in the order they were appended
within a single portal table index. Resource exhaustion (Section 2.7) is handled independently on different portal
table entries.

48

3.7.1 PtIPTAlloc

The PtIPTAlloc() function allocates a portal table entry and sets flags that pass options to the implementation.

Function Prototype for PtIPTAIIoc

int PflPTAlloc(ptl_handle_ni_t ni_handle,
unsigned int options,
ptl_handle_eq_t eq_handle,
ptl_pt_index_t pt_index_req,
ptl_pt_index_t *pt_index);

Arg uments

ni_handle input The interface handle to use.

options input This field contains options that are requested for the portal index. Values for this argument
can be constructed using a bitwise OR of the values defined below.

eq_handle input The event queue handle used to log the events related to the list entries attached to the
portal table entry. If this argument is PTL_EQ_NONE, events related to this portal table entry
are not logged.

pt_index_req input The value of the portal index that is requested. If the value is set to PTL_PT_ANY, the
implementation can return any portal index.

pt_index output On successful return, this location will hold the portal index that has been allocated.

options

PTL_PT_ONLY_USE_ONCE

PTL_PT_ONLY_TRUNCATE

PTL_PT_FLOWCTRL

Return Codes

Indicate to the underlying implementation that all entries attached to the
priority list on this portal table entry are guaranteed to have the
PTL_ME_USE_ONCE or PTL_LE_USE_ONCE option set.

Indicate to the underlying implementation that all entries attached to the
priority list on this portal table entry are guaranteed not to have the
PTL_ME_NO_TRUNCATE option set.

Enable flow control on this portal table entry (see Section 2.7).

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_PT_FULL Indicates that there are no free entries in the portal table.

PTL_PT_IN_USE Indicates that the Portal table entry requested is in use.

PTL_PT_EQ_NEEDED Indicates that flow control is enabled and there is no EQ attached.

49

Discussion: The PTL PT ONLY USE ONCE and PTL_PT ONLY TRUNCATE options are hints to
the implementation that convey that the user will be employing certain common usage scenarios when
using the priority list. Use of these options may allow the implementation to optimize the matching
logic. Note that the optimal set of options may vary depending on whether matching or non-matching
logical network interfaces are used. For a matching logical network interface, an implementation likely
may optimize the case where both PTL PT ONLY USE ONCE and PTL PT ONLY TRUNCATE are
specified. For a non-matching logical network interface, pre-posted persistent LEs are likely to provide
better performance.

3.7.2 PtIPTFree

The PtIPTFree() function releases the resources associated with a portal table entry. Objects associated with the
portal table entry, such as list entries and event queues, are not freed as the result of a call to PtIPTFree().

Function Prototype for PtIPTFree

int PtlPTFree(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index);

Arguments

ni_handle

pt_index

Return Codes

input The interface handle on which the pt_index should be freed.

input The portal index that is to be freed.

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_PT_IN_USE Indicates that pt_index is currently in use (e.g., a match list entry is still attached).

3.7.3 PtIPTDisable

The PtIPTDisable() function indicates to an implementation that no new messages should be accepted on the
specified portal table entry. The function blocks until the portal table entry status has been updated, all messages
being actively processed are completed, and all events are delivered. Since PtIPTDisable() waits until the portal table
entry is disabled before it returns, it does not generate a P TL_EVENT_P T_D I SABLED event. Processing of operations
targeting other portal table entries and local operations continues after a call to PtIPTDisable().

Function Prototype for PtIPTDisable

int PtlPTDisable(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index);

50

Arguments

ni_handle

pt_index

Return Codes

input The interface handle to use.

input The portal index that is to be disabled.

PTL_OK

PTL_ARG_INVALID

Indicates success.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

3.7.4 PtIPTEnable

The PtIPTEnable() function indicates to an implementation that a previously disabled portal table entry should be
re-enabled. This is used to enable portal table entries that were automatically or manually disabled. The function
blocks until the portal table entry is enabled.

Function Prototype for PtIPTEnable

int PtlPTEnable(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index);

Arguments

ni_handle

pt_index

Return Codes

input The interface handle to use.

input The value of the portal index to enable.

PTL_OK

PTL_ARG_INVALID

Indicates success.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: PtIPTEnable0 re-enables a portal table entry, allowing incoming messages to match
against list entries associated with the portal table entry. Messages may have been dropped while the
portal table entry was disabled. Higher level communication protocols with strict ordering constraints
may have to quiesce messages and retransmit after re-enabling a portal table entry (See Section 2.7).

51

3.8 Usage Identification

A usage identifier (UID) is assigned to a process through an implementation-specific mechanism. UIDs define access
control with respect to remote Portals network interfaces. The usage identifier is included in a trusted header of a
portals message, such that the trusted header is not modifiable by the user. They can be used at the target to limit
access to list entries (Section 3.11 and Section 3.12). The UID is common across logical network interfaces within
the same process, even if the logical network interfaces are over different physical network interfaces.

3.8.1 PtIGetUid

The PtiGetUid() function is used to retrieve the usage identifier of a process.

Function Prototype for PtiGetUid

int PtlGetUid(ptl_handle_ni_t ni_handle,
ptl_uid_t *uid);

Arguments

ni_handle

uid

Return Codes

input A network interface handle.

output On successful return, this location will hold the usage identifier for the calling process.

PTL_OK

PTL_ARG_INVALID

Indicates success.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

3.9 Process Identification

Processes that use the Portals API can be identified using a node identifier and process identifier. Every node
accessible through a network interface has a unique node identifier and every process running on a node has a unique
process identifier. As such, any process in the computing system can be uniquely identified by its node identifier and
process identifier. The node identifier and process identifier can be aggregated by the application into a rank, which is
translated by the implementation into a network identifier and process identifier. It is an implementation decision
whether two physical network interfaces in the same node have the same node or process identifiers. All logical
network interfaces which share the same physical network interface share the same node and process identifiers.

The Portals API defines a type, ptl_process_t, for representing process identifiers, and two functions, PtlGetld() and
PtIGetPhysIdo, which can be used to obtain the identifier of the current process.

Discussion: The Portals API does not include thread identifiers. Messages are delivered to processes
(address spaces) not threads (contexts of execution).

52

3.9.1 The Process Identification Type

The ptl_process_t type is a union that can represent the process as either a physical address or a logical address within
the machine. The physical address uses two identifiers to represent a process identifier: a node identifier nid and a
process identifier pid. In turn, a logical address uses a logical index within a translation table specified by the
application (the rank) to identify another process.

typedef union {
struct {

ptl_nid_t nid;
ptl_pid_t pid;

} phys;
ptl_rank_t rank;

} ptl_process_t;

3.9.2 PtlGetld

Function Prototype for PtlGetld

int PtlGetId(ptl_handle_ni_t ni_handle,
ptl_process_t *id);

Arguments

ni_handle

id

Return Codes

input A network interface handle.

output On successful return, this location will hold the identifier for the calling process. If the
interface is logically addressed, the logical address is returned. If the interface is physically
addressed, the physical address is returned.

PTL_OK

PTL_ARG_INVALID

Indicates success.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: Note that process identifiers and ranks are dependent on the network interface(s). In
particular, if a node has multiple interfaces, it may have multiple process identifiers and multiple ranks.

53

3.9.3 PtIGetPhysld

Function Prototype for PtiGetPhysid

int PfiGetPhysId(ptl_handle_ni_t ni_handle,
ptl_process_t *id);

Arguments

ni_handle input A network interface handle.

id output On successful return, this location will hold the identifier for the calling process. The
physical address is always returned, even for logically addressed network interfaces.

Return Codes

PTL_OK

PTL_ARG_INVALID

Indicates success.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: Note that process identifiers and ranks are dependent on the network interface(s). In
particular, if a node has multiple interfaces, it may have multiple process identifiers and multiple ranks.

3.10 Memory Descriptors

A memory descriptor contains information about a region of a process' memory and optionally points to an event
queue and counting event where information about the operations performed on the memory descriptor are recorded.
Memory descriptors are initiator side resources that are used to encapsulate the association of a network interface
(NI) with a description of a memory region. They provide an interface to register memory (for operating systems that
require it) and to carry that information across multiple operations (an MD is persistent until released). PtIMDBind()
is used to create a memory descriptor and PtIMDRelease() is used to unlink and release the resources associated with
a memory descriptor.

A memory descriptor describes a memory region using a base address and length; however, it is not a requirement for
all of the memory described by the memory descriptor to be allocated or accessible within the application. For
example, an application can create a memory descriptor that covers the entire virtual address range by setting start to
NULL and length to PTL_S I ZE_MAX, even though the entire region is not currently allocated. If the application issues
a portals operation (e.g., put) that would access an unallocated region of the MD, the implementation may either
cause a segmentation fault of the application or may simply fail the operation. If a full event is delivered, it must set
nijail_type to PTL_NI_SEGV. If the memory descriptor sets the PTL_IOVEC option, the memory region(s) described
by the ptl_iovec_t must all be accessible within the application.

54

IMPLEMENTATION
NOTE 6:

Memory descriptors that bind inaccessible memory

The implementation is responsible for handling any issues, such as the
memory registration required by some platforms, that arise from the
ability of an MD to cover all of the virtual address space. While some
implementations may have elegant solutions to this issue (e.g.,
lightweight kernels or NIC hardware translation caching), other
implementations may require registration caching schemes.

3.10.1 The Memory Descriptor Type

The ptl_md_t type defines the visible parts of a memory descriptor. Values of this type are used to initialize the
memory descriptors.

typedef struct {
void *start;
ptl_size_t length;
unsigned int options;
ptl_handle_eq_t eq_handle;
ptl_handle_ct_t ct_handle;

} ptl_md_t;

Members

start, length

options

Specify the memory region associated with the memory descriptor. The
start member specifies the starting address for the memory region and the
length member specifies the length of the region. There are no restrictions
on buffer alignment, the starting address or the length of the region;
although messages that are not natively aligned (e.g., to a four byte or
eight byte boundary) may be slower (i.e., lower bandwidth and/or longer
latency) on some implementations.

Specifies the behavior of the memory descriptor. Options include the use
of scatter/gather vectors and control of events associated with this
memory descriptor. Values for this argument can be constructed using a
bitwise OR of the following values:

P TL_MD_EVENT_SEND_D I SABLE Specifies that this memory descriptor should not generate send events
(P TL_EVENT_SEND). This flag does not affect counting events.

P TL_MD_EVENT_SUCCES S_D I SABLE Specifies that this memory descriptor should not generate full events if
the nijail_type would be PTL_OK. This flag does not affect counting
events. Disabling full events for successful operations is useful in
scenarios when a counting event is sufficient for completion, but more
information is needed for error recovery.

P T L_MD_EVENT_C T_S END Enable the counting of P TL_EVENT_SEND events.

P TL_MD_EVENT_CT_REPLY Enable the counting of P TL_EVENT_REPLY events.

P TL_MD_EVENT_CT_ACK Enable the counting of P TL_EVENT_ACK events.

55

PTL_MD_EVENT_CT_BYTES

PTL_MD_UNORDERED

P TL_MD_VOLAT I LE

P TL_I OVEC

eq_handle

ct_handle

3.10.2 The 1/0 Vector Type

By default, counting events count events. When set, this option causes
bytes to be counted instead for success events. Byte counts must be
incremented exactly once per operation. The increment is by the mlength
that would be specified by the associated full event. Failure events always
increment the count by one.

Indicate to the Portals implementation that messages sent from this
memory descriptor do not have to arrive at the target in order. Note that
this has no impact on acknowledgments or replies, which are never
required to be ordered.

Indicate to the Portals implementation that the application may modify
any send buffers associated with this memory descriptor immediately
following the return from a portals operation if the length argument is less
than or equal to max_volatile_size. In that case, operations should not
return until it is safe for the application to reuse any send buffers. Note
that the MD can be of any size, but the Portals implementation must
honor this option as long as the operation (e.g., put or atomic, not get)
uses a length less than or equal to max_volatile_size. Operations with
length greater than max_volatile_size may not honor P TL_MD_VOLAT I LE,
but should not return an error solely because the length is greater than
max_volatile_size.

Specifies that the st art argument is a pointer to an array of type
ptl jovec_t (Section 3.10.2) and the length argument is the length of the
array of ptl jovec_t elements. This allows for a scatter/gather capability
for memory descriptors. A scatter/gather memory descriptor behaves
exactly as a memory descriptor that describes a single virtually
contiguous region of memory. The array of ptl jovec_t elements referred
to by the start argument cannot be changed or released for the lifetime
of the memory descriptor.

The event queue handle used to log the operations performed on the
memory region. If this argument is PTL_EQ_NONE, operations performed
on this memory descriptor are not logged.

A handle for counting events associated with the memory region. If this
argument is PTL_CT_NONE, operations performed on this memory
descriptor are not counted.

The ptl jovec_t type is used to describe scatter/gather buffers of a memory descriptor, list entry, or match list entry in
conjunction with the PTL_IOVEC option. The ptl jovec_t type is intended to be a type definition of the struct iovec
type on systems that already support this type.

The ptl jovec_t array is passed as the start field when creating a memory descriptor, list entry, or match list entry. It
must not be modified or destroyed by the application or implementation for the life of the descriptor or entry.
Descriptors or entries using ptl jovec_t types may be combined with offsets (local and remote). The offset is
computed as if the region described by the ptl jovec_t type were a single contiguous region.

Discussion: Performance conscious users should not mix offsets (local or remote) with ptl iovec t .
While this is a supported operation, it may have unexpected performance consequences.

56

typedef struct {
void *iov_base;
ptl_size_t iov_len;

} ptl_iovec_t;

Members

iov_base

iov_len

3.10.3 PtIMDBind

The byte aligned start address of the vector element

The length (in bytes) of the vector element

The PtIMDBind() operation is used to create a memory descriptor to be used by the initiator.

Function Prototype for PtIMDBind

int PtlMDBind(ptl_handle_ni_t ni_handle,
const ptl_md_t *md,
ptl_handle_md_t *md_handle);

Arguments

ni_handle

md

md_handle

Return Codes

input The network interface handle with which the memory descriptor will be associated.

input Provides initial values for the user-visible parts of a memory descriptor. Other than its use
for initialization, there is no linkage between this structure and the memory descriptor
maintained by the implementation.

output On successful return, this location will hold the newly created memory descriptor handle.
The md_handle argument must be a valid address and cannot be NULL.

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

PTL_NO_SPACE

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. Argument checking is implementation
dependent, but this may indicate that an invalid ni_handle was used, an invalid event
queue was associated with the md, or other contents in the md were illegal.

Indicates that there is insufficient memory to allocate the memory descriptor.

IMPLEMENTATION
NOTE 7:

Memory registration

On systems that require memory registration, the PtIMDBind()
operation should invoke the appropriate memory registration functions.

57

IMPLEMENTATION
NOTE 8:

Optimization for Duplicate Memory Descriptors

Because the eq handle and ct handle are bound to the memory
descriptor on the initiator, there are usage models where it is
necessary to create numerous memory descriptors that only differ in
their eq handle or ct handle field. Implementations may desire to
optimize for this usage model.

3.10.4 PtIMDRelease

The PtIMDRelease() function releases the internal resources associated with a memory descriptor. (This function
does not free the memory region associated with the memory descriptor; i.e., the memory the user allocated for this
memory descriptor.) Only memory descriptors with no pending operations may be unlinked. A memory descriptor is
considered to have pending operations if an operation has been started and the corresponding P TL_EVENT_SEND or
P TL_EVENT_REPLY operation has not been delivered. A memory descriptor may be released before a P TL_EVENT_ACK
event is delivered, in which case the acknowledgment will be discarded.

Function Prototype for PtIMDRelease

int Pt1MDRelease(ptl_handle_md_t md_handle);

Arguments

md_handle

Return Codes

input The memory descriptor handle to be released.

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.11 List Entries and Lists

A list is a chain of list entries. Examples of lists include the priority list and the overflow list. Each list entry (LE)
describes a memory region and includes a set of options. It is the target side analogue of the memory descriptor (MD)
for non-matching logical network interfaces. The PtILEAppend() function appends a single list entry to the specified
list on the specified portal index and returns the list entry handle. List entries can be dynamically removed from a list
using the PtILEUnlink() function.

Like a memory descriptor, a list entry describes a memory region using a base address and length. A zero-length list
entry may be created by setting start to NULL and length to O. Zero-length buffers (NULL LE) are useful to record
events. Messages that are outside the bounds of the LE are truncated to zero bytes (e.g., zero-length buffers or an
offset beyond the length of the LE). If the interface set the P TL_TARGET_B I ND_I NACCE S S I BLE bit in the features field
of the actual limits (See Section 3.6.1), then it is not a requirement for all of the memory described by the list entry to
be allocated or accessible within the application. For example, an application could create a list entry that covers the

58

entire virtual address range by setting start to NULL and length to PTL_S I ZE_MAX, even though the entire region is
not currently allocated. If an incoming operation (e.g., put) attempts to access an unallocated region of the LE, the
implementation may either cause a segmentation fault of the application or may simply fail the operation. If a full
event is delivered, it must set nijail_type to P TL_NI_SEGV. The target may, however, set the
PTL_LE_I S_ACCESS IBLE option to indicate that the entire memory space described by the LE is accessible. If the list
entry sets the P TL_I OVEC option, the memory region(s) described by the pt1 jovec_t array must all be accessible
within the application.

IMPLEMENTATION
NOTE 9:

List entries that bind inaccessible memory

If the implementation returns PTL_TARGET_BIND_INACCESS I BLE , then
the implementation is responsible for handling any issues, such as the
memory registration required by some platforms, that arise from the
ability of an LE to cover all of the virtual address space. While some
implementations may have elegant solutions to this issue (e.g.,
lightweight kernels or NIC hardware translation caching), other
implementations may require a software thread on the target to
implement a remote registration caching scheme like Firehose [3].

List entries can be appended to either the priority list or the overflow list associated with a portal table entry;
however, when attached to an overflow list, additional semantics are implied that require the implementation to track
messages that arrive in list entries. Essentially, the memory region identified is provided to the implementation for
use in managing unexpected messages. Buffers provided in the overflow list will post a full event
(PTL_EVENT_AUTO_UNL INK) when the buffer space has been consumed, to notify the application that more buffer
space may be needed. When the application is free to reuse the buffer (i.e. the implementation is done with it),
another full event (P TL_EVENT_AUTO_FREE) will be posted. The PTL_EVENT_AUTO_FREE full event will be posted
after all other events (including counting events) associated with the buffer have been delivered.

Discussion: It is the responsibility of the application to ensure that the implementation has sufficient
buffer space to manage unexpected messages (i.e. in the unexpected list). Failure to do so will cause
messages to be dropped. The PTL_EVENT ACK at the initiator will indicate the failure as described in
Section 3.13.3. Note that overflow events can readily exhaust the event queue. Proper use of the API will
generally require the application to post at least two (and typically several) buffers so that the application
has time to notice the PTL_EVENT AUTO UNLINK and replace the buffer. In many usage scenarios,
however, the application may choose to have only persistent list entries—list entries without the
PTL LE USE ONCE option set—in the priority list. Thus, overflow list entries will not be required.

It is the responsibility of the implementation to determine when a buffer that is automatically unlinked
from an overflow list can be reused. It must note that it is no longer holding state associated with the
buffer and post a PTL_EVENT AUTO FREE full event after all other events, including counting events,
associated with that buffer have been delivered.

List entries can be appended to a network interface with the PTL_NI_NO_MATCHING option set (a non-matching
network interface). A matching network interface requires a match list entry.

3.11.1 The List Entry Type

The ptl_le _t type defines the visible parts of a list entry. Values of this type are used to initialize the list entries.

59

typedef struct {
void *start;
ptl_size_t length;
ptl_handle_ct_t ct_handle;
ptl_uid_t uid;
unsigned int options;

} ptl_le_t;

Members

start, length

ct_handle

uid

options

PTL_LE_OP_PUT

PTL_LE_OP_GET

Specify the memory region associated with the list entry. The start
member specifies the starting address for the memory region and the
length member specifies the length of the region. There are no restrictions
on buffer alignment, the starting address or the length of the region;
although messages that are not natively aligned (e.g., to a four byte or
eight byte boundary) may be slower (i.e., lower bandwidth and/or longer
latency) on some implementations.

A handle for counting events associated with the memory region. If this
argument is PTL_CT_NONE, operations performed on this list entry are not
counted.

Specifies the usage ID that may access this list entry. The usage ID may
be set to a wildcard (P TL_UID_ANY). If the access control check fails, then
the message is dropped without modifying Portals state. This is treated as
a permissions failure and the status register indexed by
P T L_S R_P E RMI S S I ON_V I OLAT IONS is incremented. This failure is also
indicated to the initiator. If a full event is delivered to the initiator, the
nijail_type in the PTL_EVENT_ACK event must be set to
P TL_NI_PERM_VIOLAT ION.

Specifies the behavior of the list entry. The following options can be
selected: enable put operations (yes or no), enable get operations (yes or
no), message truncation (yes or no), acknowledgment (yes or no), use
scatter/gather vectors and control event delivery. Values for this argument
can be constructed using a bitwise OR of the following values:

Specifies that the list entry will respond to put operations. By default, list
entries reject put operations. If a put operation targets a list entry where
P TL_LE_OP_P UT is not set, it is treated as an operations failure and
P T L_S R_OP E RAT I ON_V I OLAT IONS is incremented. If a full event is
delivered to the initiator, the ni_fail_type in the PTL_EVENT_ACK event
must be set to P TL_NI_OP_VIOLAT ION.

Specifies that the list entry will respond to get operations. By default, list
entries reject get operations. If a get operation targets a list entry where
P TL_LE_OP_GET is not set, it is treated as an operations failure and
P T L_S R_OP E RAT I ON_V I OLAT IONS is incremented. If a full event is
delivered to the initiator, the nijail_type in the PTL_EVENT_ACK event
must be set to P TL_NI_OP_VIOLAT ION.

Note: It is not considered an error to have a list entry that does not
respond to either put or get operations: Nor is it considered an error to
have a list entry that responds to both put and get operations. In fact, a list
entry must be configured to respond to both put and get operations to
properly handle a PtlFetchAtomic() or PtlSwap() operation.

60

P TL_LE_USE_ONCE Specifies that the list entry will only be used once and then unlinked. If
this option is not set, the list entry persists until it is explicitly unlinked.

P TL_LE_ACK_D I SABLE Specifies that an acknowledgment should not be sent for incoming put
operations, even if requested. By default, acknowledgments are sent for
put operations that request an acknowledgment. See Section 3.13.3 for
exceptions to this rule. This applies to both full and counting events.
Acknowledgments are never sent for get operations. The data sent in the
reply serves as an implicit acknowledgment.

P TL_LE_UNEXPECTED_HDR_D I SABLE Specifies that the header for a message delivered to this list entry should
not be added to the unexpected list. This option only has meaning if the
list entry is inserted into the overflow list. By creating a list entry which
truncates messages to zero bytes, disables comm events, and sets this
option, a user may create a list entry which consumes no target side
resources. A list entry with this flag set does not generate
P TL_EVENT_AUTO_FREE events.

P TL_IOVEC Specifies that the st art argument is a pointer to an array of type
ptl jovec_t (Section 3.10.2) and the length argument is the length of the
array. This allows for a scatter/gather capability for list entries. A
scatter/gather list entry behaves exactly as a list entry that describes a
single virtually contiguous region of memory. All other semantics are
identical. The array of ptl jovec_t elements referred to by the st art
argument cannot be changed or released until the list entry is unlinked.

P TL_LE_I S_ACCES S IBLE Indicate that this list entry only contains memory addresses that are
accessible by the application.

P TL_LE_EVENT_L INK_D I SABLE Specifies that this list entry should not generate a P TL_EVENT_L INK full
event indicating the list entry successfully linked.

P TL_LE_EVENT_COMM_D I SABLE Specifies that this list entry should not generate full events that indicate a
communication operation. This includes P TL_EVENT_GET,
P TL_EVENT_P UT , P TL_EVENT_ATOMIC, P TL_EVENT_FETCH_ATOMIC, and
P TL_EVENT_SEARCH.

P TL_LE_EVENT_FLOWCTRL_D I SABLE Specifies that this list entry should not generate a
P TL_EVENT_P T_D I SABLED full event indicating a flow control failure
when the current list entry generated the failure.

P TL_LE_EVENT_SUCCES S_D I SABLE Specifies that this list entry should not generate full events if the
ni_fail_type would be PTL_OK for the following events:
P TL_EVENT_P UT , P TL_EVENT_GET, P TL_EVENT_ATOMIC,

P TL_EVENT_FETCH_ATOMIC, P TL_EVENT_SEARCH,

P TL_EVENT_PUT_OVERFLOW, P TL_EVENT_GET_OVERFLOW,

P TL_EVENT_ATOMIC_OVERFLOW, and
P TL_EVENT_FETCH_ATOMIC_OVERFLOW. This flag does not affect
counting events. Disabling full events for successful operations is useful
in scenarios when a counting event is sufficient for completion, but more
information is needed for error recovery.

P TL_LE_EVENT_OVER_D I SABLE Specifies that this list entry should not generate overflow list full events.
This includes P TL_EVENT_P UT_OVERF LOW, P TL_EVENT_GET_OVERFLOW,
P TL_EVENT_ATOMIC_OVERFLOW, and
P TL_EVENT_FETCH_ATOMIC_OVERFLOW.

P TL_LE_EVENT_UNL INK_D I SABLE Specifies that this list entry should not generate auto-unlink
(P TL_EVENT_AUTO_UNL INK) or free (P TL_EVENT_AUTO_FREE) full events.

61

PTL_LE_EVENT_CT_COMM

PTL_LE_EVENT_CT_OVERFLOW

PTL_LE_EVENT_CT_BYTES

Enable the counting of communication full events (PTL_EVENT_PUT,
PTL_EVENT_GET, PTL_EVENT_ATOMIC, PTL_EVENT_FETCH_ATOMIC, and
PTL_EVENT_SEARCH).

Enable the counting of overflow events (PTL_EVENT_PUT_OVERFLOW,
PTL_EVENT_GET_OVERFLOW, PTL_EVENT_ATOMIC_OVERFLOW,

PTL_EVENT_FETCH_ATOMIC_OVERFLOW).

By default, counting events count events. When set, this option causes
bytes to be counted instead for success events. Byte counts must be
incremented exactly once per operation. The increment is by the number
of bytes counted (mlength). Failure events always increment the count by
one.

Discussion: When the PTL_LE USE ONCE option is set, an event associated with a target side
operation (e.g., a PTL_EVENT PUT full event) also implies that the associated list entry has unlinked;
hence, it is safe on these list entries to set the PTL LE EVENT UNLINK DISABLE option.

PTL LE EVENT FLOWCTRL DISABLE only disables flow control events which are the direct result
of an incoming message matching the current list entry. This includes a message matching the list entry
but the associated event queue is full or a message matching a list entry in the overflow list but the
unexpected headers list is full. If flow control is enabled on the portal table entry and a message does not
match in either the priority or overflow lists, a PTL_EVENT PT DISABLED event is always generated.

3.11.2 PtILEAppend

The PtILEAppend() function creates a single list entry and appends this entry to the end of the list specified by
pd_list associated with the portal table entry specified by pt_index for the portal table for ni_handle.

When a list entry is posted to a priority list, the unexpected list is checked to see if a message has arrived prior to
posting the list entry. If so, an appropriate overflow full event is generated, the matching header is removed from the
unexpected list, and a list entry with the PTL_LE_USE_ONCE option is not inserted into the priority list. If a persistent
list entry is posted to the priority list, it may cause multiple overflow events to be generated, one for every matching
entry in the unexpected list. No permissions check is performed on a matching message in the unexpected list. No
searching of the unexpected list is performed when a list entry is posted to the overflow list. When the list entry has
been linked (inserted) into the specified list, a PTL_EVENT_LINK event is generated.

Discussion: Generally speaking, the user should attempt to insure that persistent list entries (or match
list entries) are inserted before messages arrive that match them. Inserts of persistent entries could have
unexpected performance and resource usage characteristics if a large unexpected list has accumulated,
since a PtILEAppendO that appends a persistent LE can cause multiple matches.

List Entry Type Constants (ptl_list_t)

PTL_PRIORITY_LIST

PTL_OVERFLOW_LIST

The priority list associated with a portal table entry

The overflow list associated with a portal table entry

62

Function Prototype for PtILEAppend

int PtlLEAppend(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index,
const ptl_le_t *le,
ptl_list_t ptl_list,
void *user_ptr,
ptl_handle_le_t *le_handle);

Arguments

ni_handle

pt_index

le

ptl_list

user_ptr

input The interface handle to use.

input The portal table index where the list entry should be appended.

input Provides initial values for the user-visible parts of a list entry. Other than its use for
initialization, there is no linkage between this structure and the list entry maintained by the
API.

input Determines whether the list entry is appended to the priority list or the overflow list.

input A user-specified value that is associated with each command that can generate an event.
The value does not need to be a pointer, but must fit in the space used by a pointer. This
value (along with other values) is recorded in full events associated with operations on this
list entry.

le_handle output On successful return, this location will hold the newly created list entry handle.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL_LIST_TOO_LONG Indicates that the resulting list is too long. The maximum length for a list is defined by
the interface.

Discussion: Tying commands to a user-defined value is useful at the target when the command needs to
be associated with a data structure maintained by the process outside of the portals library. For example,
an MPI implementation can set the user_ptr argument to the value of an MPI Request. This direct
association allows for processing of list entries by the MPI implementation without a table look up or a
search for the appropriate MPI Request.

3.11.3 PtILEUnlink

The PtILEUnlink() function can be used to unlink a list entry from a list. If PtILEUnlink() returned PTL_OK, it is an
error to use the list entry handle after the call to PtILEUnlink(). PtILEUnlink() will return PTL_IN_USE if the list
entry is on the overflow list and has associated unexpected headers.

63

PtILEUnlink() is frequently used to implement the cancel of receive operations in higher level protocols. If the list
entry handle passed to PtILEUnlink() has pending operations, e.g., an unfinished put operation or the list entry is in
the overflow list and there are unexpected headers associated with the list entry, then PtILEUnlink() will return
PTL_IN_USE, and the list entry will not be unlinked. An implementation must ensure that list entry handles remain
valid for calls to PtILEUnlink() until the next call to PtILEAppend() after the last event associated with the list entry
is delivered to an event queue or counting event. If the list entry has been unlinked before a call to PtILEUnlink() but
before the next call to PtILEAppend(), PtILEUnlink() must return PTL_IN_USE.

IMPLEMENTATION
NOTE 10:

PtILEUnlink() and unlinked handles

PtILEUnlink() may be used to unlink list entries which are use-once.
In this case, there is a race condition between a network operation
causing a list entry to unlink and the list entry being explicitly unlinked.
Requiring the handle to remain valid until the next call to
PtILEAppend() allows higher level protocols to implement the
serialization necessary to prevent such race conditions from impacting
correctness. A Portals implementation does not need to limit the
lifespan of handles to that specified. For example, a generation counter
embedded in the handle may allow the handle to remain valid for the
purposes of PtILEUnlink() for significantly longer than specified.

Function Prototype for PtILEUnlink

int PtlLEUnlink(ptl_handle_le_t le_handle);

Arguments

le_handle input The list entry handle to be unlinked

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_IN_USE Indicates that the list entry has pending operations and cannot be unlinked.

3.11.4 PtILESearch

The PtILESearch() function is used to search for a message in the unexpected list associated with a specific portal
table entry specified by pt_index for the portal table for ni_handle. PtILESearch() uses the exact same search of the
unexpected list as PULEAppend(); however, the list entry specified in the PtILESearch() call is never linked into a
priority list.

The PtILESearch() function can be called in two modes. If ptl_search_op is set to PTL_SEARCH_ONLY, the
unexpected list is searched, but matching entries are left in the list. If ptl_search_op is set to PTL_SEARCH_DELETE,

64

the unexpected list is searched and any matching items are deleted. Searches using LEs with the PTL_LE_USE_ONCE
option set will cause exactly one match while searches without the PTL_LE_USE_ONCE option set (persistent) can
cause multiple matches. Persistent LE searches with the LE defined with wildcards can be useful for draining the
match list during graceful application shutdown. When used with PTL_SEARCH_ONLY, a PTL_EVENT_SEARCH event
with nijail_type PTL_NI_OK is generated when a matching message is found in the unexpected list. When used with
PTL_SEARCH_DELETE, the event that is generated corresponds to the type of operation that is found (e.g.,
PTL_EVENT_PUT_OVERFLOW, PTL_EVENT_GET_OVERFLOW, PTL_EVENT_ATOMIC_OVERFLOW, or
PTL_EVENT_FETCH_ATOMIC_OVERFLOW). In either case, if no matching message is found, a PTL_EVENT_SEARCH
event is generated with a failure indication of PTL_NI_NO_MATCH. If the list entry specified in the PtILESearch() call
is persistent, an event is generated for every match in the unexpected list. No permissions check is performed during
search; only matching criteria are used to determine if an event should be generated. Users should use the generated
event data to perform any required permissions check.

Event generation for the search functions works just as it would for an append function. If a search is performed with
full events disabled (either through option or through the absence of an event queue on the portal table entry), the
search will succeed, but no full events will be generated. Status registers, however, are handled slightly differently for
a search in that a PtILESearch() never causes a status register to be incremented.

Discussion: Searches with persistent LEs could have unexpected performance and resource usage
characteristics if a large overflow list has accumulated, since a PtILESearchO that uses a persistent LE
can cause multiple matches.

List Entry Search Operation Constants (ptl_search_op_t)

PTL_SEARCH_ONLY

PTL_SEARCH_DELETE

Function Prototype for PtILESearch

Use the LE/ME to search the overflow list, without consuming an item in
the list.

Use the LE/ME to search the overflow list and delete the item from the
list.

int PtlLESearch(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index,
const ptl_le_t *le,
ptl_search_op_t ptl_search_op,
void *user_ptr);

Arguments

ni_handle input The interface handle to use.

pt_index input The portal table index that should be searched.

le input Provides values for the user-visible parts of a list entry to use for searching.

ptl_search_op input Determines whether the function only searches the list or searches the list and deletes the
matching entries from the list.

65

user_ptr

Return Codes

input A user-specified value that is associated with each command that can generate an event.
The value does not need to be a pointer, but must fit in the space used by a pointer. This
value (along with other values) is recorded in full events associated with operations on this
list entry.

PTL OK

PTL_ARG_INVALID

Indicates success.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

3.12 Match List Entries and Matching Lists

Matching list entries add matching semantics to the basic list constructs. Each match list entry (ME) adds a set of
match criteria to the basic memory region description in the list entry. The match criteria added can be used to reject
incoming requests based on process identifier or the match bits provided in the request. The PtIMEAppend() function
appends a single match list entry to the specified portal index and returns the match list entry handle. Matching list
entries can be removed from a list using the PtIMEUnlink() function.

Like a list entry, a match list entry describes a memory region using a base address and length. A zero-length list
entry may be created by setting start to NULL and length to O. Zero-length buffers (NULL ME) are useful to record
events. If truncation is not disabled, messages that are outside the bounds of the ME are truncated to zero bytes (e.g.,
zero-length buffers or an offset beyond the length of the ME). If the interface set the
P TL_TARGET_B I ND_I NACCE S S I BLE bit in the features field of the actual limits (See Section 3.6.1), then it is not a
requirement for all of the memory described by the match list entry to be allocated or accessible within the
application. For example, an application could create a match list entry that covers the entire virtual address range by
setting start to NULL and length to PTL_S I ZE_MAX, even though the entire region is not currently allocated (See
Implementation Note 9). If an incoming operation (e.g., put) attempts to access an unallocated region of the ME, the
implementation may either cause a segmentation fault of the application or may simply fail the operation. If a full
event is delivered, it must set nijail_type to P TL_NI_SEGV. The target may, however, set the
PTL_ME_I S_ACCESS IBLE option to indicate that the entire memory space described by the ME is accessible. If the
match list entry sets the P TL_IOVEC option, the memory region(s) described by the ptl_iovec_t must all be accessible
within the application. Note that a message with a length of zero bytes is not considered to have accessed memory. A
message with an invalid address/offset pair that is of zero bytes will not cause a PTL_NI_SEGV nijail_type to be set
in a full event or increment the number of failures in a ptl_ct_event_t structure.

Matching list entries can be appended to either the priority list or the overflow list associated with a portal table entry;
however, when attached to an overflow list, additional semantics are implied that require the implementation to track
messages that arrive in match list entries. Essentially, the memory region identified is provided to the implementation
for use in managing unexpected messages; however, the application may use the match bits and other matching
criteria to further constrain how these buffers are used. Buffers provided in the overflow list will post a full event
(PTL_EVENT_AUTO_UNL INK) when the buffer space has been consumed, to notify the application that more buffer
space may be needed. When the application is free to reuse the buffer (i.e. the implementation is done with it),
another full event (P TL_EVENT_AUTO_FREE) will be posted. The PTL_EVENT_AUTO_FREE full event will be posted
after all other events associated with the buffer have been posted to the event queue.

Match list entries provide semantics to allow the target of an operation to determine data placement, through the use
of locally managed offsets and the ability to automatically unlink when a minimum free space value is reached.
These semantics are useful for the efficient implementation of unexpected or active message semantics. The locally

66

managed offset is changed when data is delivered into a given match list entry and, likewise, the minimum free test is
applied when data is delivered into a list entry. Therefore, when a locally managed, persistent match list entry is
appended to the priority list and matches headers in the unexpected headers list, the match list's local offset will not
move based on the unexpected headers.

In the case where a match list operation fails (e.g., a hardware error), there is the possibility that the local offset is
incremented without data being delivered. If an error occurred and the locally managed offset was incremented, the
min free test must still be performed.

Incoming match bits are compared to the match bits stored in the match list entry using the ignore bits as a mask. An
optimized version of this is shown in the following code fragment:

((incoming_bits A match_bits) & -ignore_bits) == 0

Discussion: It is the responsibility of the application to ensure that the implementation has sufficient
buffer space to manage unexpected messages. Failure to do will cause messages to be dropped. The
PTL EVENT ACK at the initiator will indicate the failure as described in Section 3.13.3. Note that
overflow events can readily exhaust the event queue. Proper use of the API will generally require the
application to post at least two (and typically several) buffers so that the application has time to notice
the PTL EVENT AUTO UNLINK and replace the buffer.

It is the responsibility of the implementation to determine when a buffer unlinked from an overflow list
can be reused. It must note that it is no longer holding state associated with the buffer and deliver a
PTL EVENT AUTO FREE full event after all other events associated with that buffer have been
delivered.

Match list entries may only be appended to a matching network interface. The interpretation of the match_id field in
a match list entry is determined by whether the network interface is physically or logically addressed.

3.12.1 The Match List Entry Type

The ptl_me_t type defines the visible parts of a match list entry. Values of this type are used to initialize and update
the match list entries.

typedef struct {
void *start;
ptl_size_t length;
ptl_handle_ct_t ct_handle;
ptl_uid_t uid;
unsigned int options;
ptl_process_t match_id;
ptl_match_bits_t match_bits;
ptl_match_bits_t ignore_bits;
ptl_size_t min_free;

} ptl_me_t;

67

Members

start, length

ct_handle

minjree

uid

options

P TL_ME_OP_PUT

P TL_ME_OP_GET

Specify the memory region associated with the match list entry. The start
member specifies the starting address for the memory region and the
length member specifies the length of the region. There are no restrictions
on buffer alignment, the starting address or the length of the region;
although messages that are not natively aligned (e.g. to a four byte or
eight byte boundary) may be slower (i.e., lower bandwidth and/or longer
latency) on some implementations.

A handle for counting events associated with the memory region. If this
argument is P TL_CT_NONE, operations performed on this match list entry
are not counted.

When the unused portion of a match list entry (length - local offset) falls
below this value, the match list entry automatically unlinks . A minjree
value of 0 disables the minjree capability (the free space cannot fall
below 0). This value is only used if P TL_ME_MANAGE_LOCAL is set.

Specifies the usage ID that may access this match list entry. The usage ID
may be set to a wildcard (P TL_UID_ANY). If the access control check fails,
then the message is dropped without modifying Portals state. This is
treated as a permissions failure and the status register indexed by
P T L_S R_P E RMI S S I ON_V I OLAT I ON S is incremented. This failure is also
indicated to the initiator. If a full event is delivered to the initiator, the
nijail_type in the P TL_EVENT_ACK full event must be set to
P TL_NI_PERM_VIOLAT I ON.

Specifies the behavior of the match list entry. The following options can
be selected: enable put operations (yes or no), enable get operations (yes
or no), offset management (local or remote), message truncation (yes or
no), acknowledgment (yes or no), use scatter/gather vectors and control
event delivery. Values for this argument can be constructed using a
bitwise OR of the following values:

Specifies that the match list entry will respond to put operations. By
default, match list entries reject put operations. If a put operation targets a
list entry where P TL_ME_OP_P UT is not set, it is treated as an operations
failure and P T L_S R_OP E RAT I ON_VI OLAT I ONS is incremented. If a full
event is delivered to the initiator, the nijail_type in the P TL_EVENT_ACK
event must be set to P TL_NI_OP_VI OLAT ION.

Specifies that the match list entry will respond to get operations. By
default, match list entries reject get operations. If a get operation targets a
list entry where P TL_ME_OP_GET is not set, it is treated as an operations
failure and P T L_S R_OP E RAT I ON_VI OLAT I ON S is incremented. If a full
event is delivered to the initiator, the nijail_type in the P TL_EVENT_ACK
event must be set to P TL_NI_OP_VI OLAT I ON.

Note: It is not considered an error to have a match list entry that responds
to both put and get operations. In fact, a match list entry must be
configured to respond to both put and get operations to properly handle a
PtlFetchAtomic() or PtlSwap() operation.

68

PTL_ME_MANAGE_LOCAL Specifies that the offset used in accessing the memory region is managed
locally. By default, the offset is in the incoming message. When the offset
is maintained locally, the offset is incremented by the length of the
request so that the next operation (put and/or get) will access the next part
of the memory region.

Note that only one offset variable exists per match list entry. If both put
and get operations are performed on a match list entry, the value of that
single variable is updated each time.

PTL_ME_NO_TRUNCATE Specifies that the length provided in the incoming request cannot be
reduced to match the memory available in the region. This will cause the
matching to fail for a match list entry and continue with the next entry.
(The memory available in a memory region is determined by subtracting
the offset from the length of the memory region.) Note that zero length
messages not checked for truncation, meaning that they will never fail to
match due to an offset that does not pass the truncation check. By default,
if the length in the incoming operation is greater than the amount of
memory available, the operation is truncated.

PTL_ME_USE_ONCE Specifies that the match list entry will only be used once and then
automatically unlinked by the implementation. If this option is not set, the
match list entry persists until it is explicitly unlinked or another unlink
condition is triggered.

PTL_ME_MAY_AL I GN Indicate that messages deposited into this match list entry may be aligned
by the implementation to a performance optimizing boundary. Essentially,
this is a performance hint to the implementation to indicate that the
application does not care about the specific placement of the data. This
option is only relevant when the PTL_ME_MANAGE_LOCAL option is set.

P TL_ME_ACK_D I SABLE Specifies that an acknowledgment should not be sent for incoming put
operations, even if requested. By default, acknowledgments are sent for
put operations that request an acknowledgment. See Section 3.13.3 for
exceptions to this rule. This applies to both standard and counting events.
Acknowledgments are never sent for get operations. The data sent in the
reply serves as an implicit acknowledgment.

PTL_ME_UNEXPECTED_HDR_D I SABLE Specifies that the header for a message delivered to this match list entry
should not be added to the unexpected list. This option only has meaning
if the match list entry is inserted into the overflow list. By creating a
match list entry which truncates messages to zero bytes, disables comm
events, and sets this option, a user may create a match list entry which
consumes no target side resources. A list entry with this flag set does not
generate P TL_EVENT_AUTO_FREE events.

P TL_I OVEC Specifies that the st art argument is a pointer to an array of type
pt1 jovec_t (Section 3.10.2) and the length argument is the length of the
array. This allows for a scatter/gather capability for match list entries. A
scatter/gather match list entry behaves exactly as a match list entry that
describes a single virtually contiguous region of memory. All other
semantics are identical.

PTL_ME_I S_ACCESS IBLE Indicate that this match list entry only contains memory addresses that are
accessible by the application.

PTL_ME_EVENT_L INK_D I SABLE Specifies that this match list entry should not generate a
P TL_EVENT_L INK full event indicating the list entry successfully linked.

69

match_id

match_bits, ignore_bits

PTL_ME_EVENT_COMM_D I SABLE Specifies that this match list entry should not generate full events that
indicate a communication operation. This includes PTL_EVENT_GET,
P TL_EVENT_P UT , P TL_EVENT_ATOMIC, PTL_EVENT_FETCH_ATOMIC, and
P TL_EVENT_SEARCH.

PTL_ME_EVENT_FLOWCTRL_D I SABLE Specifies that this match list entry should not generate a
P TL_EVENT_P T_D I SABLED full event that indicate a flow control failure.

PTL_ME_EVENT_SUCCES S_D I SABLE Specifies that this match list entry should not generate full events if the
nijail_type would be PTL_OK. This flag does not affect counting events.
Disabling full events for successful operations is useful in scenarios when
a counting event is sufficient for completion, but more information is
needed for error recovery.

PTL_ME_EVENT_OVER_D I SABLE Specifies that this match list entry should not generate overflow list full
events. This includes PTL_EVENT_PUT_OVERFLOW,
P TL_EVENT_GE T_OVERFL OW, P TL_EVENT_ATOMI C_OVERFL OW, and
P TL_EVENT_FETCH_ATOMIC_OVERFLOW.

PTL_ME_EVENT_UNL INK_D I SABLE Specifies that this match list entry should not generate auto-unlink
(P TL_EVENT_AUTO_UNL INK) or free (PTL_EVENT_AUTO_FREE) full events.

PTL_ME_EVENT_CT_COMM Enable the counting of communication events (P TL_EVENT_P UT ,
P TL_EVENT_GET, P TL_EVENT_ATOMIC, PTL_EVENT_FETCH_ATOMIC and
P TL_EVENT_SEARCH).

PTL_ME_EVENT_CT_OVERFLOW Enable the counting of overflow events (P TL_EVENT_PUT_OVERFLOW,
P TL_EVENT_GET_OVERFLOW, PTL_EVENT_ATOMIC_OVERFLOW,

P TL_EVENT_FETCH_ATOMIC_OVERFLOW).

PTL_ME_EVENT_CT_BYTES By default, counting events count events. When set, this option causes
bytes to be counted instead for success events. Byte counts must be
incremented exactly once per operation. The increment is by the number
of bytes counted (mlength). Failure events always increment the count by
one.

Specifies the match criteria for the process identifier of the requester. The
constants P TL_P I D_ANY and P TL_N I D_ANY can be used to wildcard either
of the physical identifiers in the ptl_process_t structure, or PTL_RANK_ANY
can be used to wildcard the rank for logical addressing.

Specify the match criteria to apply to the match bits in the incoming
request. The ignore _bits are used to mask out insignificant bits in the
incoming match bits. The resulting bits are then compared to the match
list entry's match bits to determine if the incoming request meets the
match criteria.

Discussion: The default behavior from Portals 3.3 (no truncation and locally managed offsets) has been
changed to match the default semantics of the list entry, which does not provide matching.

When the PTL_ME USE ONCE option is set, an event associated with a target side operation (e.g. a
PTL EVENT PUT event) also implies that the associated match list entry has unlinked; hence, it is safe
on these match list entries to set the PTL_ME EVENT UNLINK DISABLE option.

PTL ME EVENT FLOWCTRL DISABLE only disables flow control events which are the direct result
of an incoming message matching the current match list entry. This includes a message matching the
match list entry but the associated event queue is full or a message matching a match list entry in the
overflow list but the unexpected headers list is full. If flow control is enabled on the portal table entry and
a message does not match in either the priority or overflow lists, a PTL EVENT PT DISABLED event
is always generated.

Although the MD, ME, and LE can all map inaccessible memory, only the ME and LE have an option to
allow the user to indicate to the implementation that the entire region is accessible. This is because the

70

typical usage model for the MD is expected to bind inaccessible memory, while a very common usage
model for both the ME and LE is expected to only use accessible memory.

3.12.2 PtIMEAppend

The PtIMEAppend() function creates a single match list entry. If PTL_PRIORITY_LIST or PTL_OVERFLOW_LIST is
specified by ptl_list, this entry is appended to the end of the appropriate list specified by ptl_list associated with the
portal table entry specified by pt_index for the portal table for ni_handle.

When a match list entry is posted to the priority list, the unexpected list is searched to see if a matching message has
been delivered in the overflow list prior to the posting of the match list entry. If so, an appropriate overflow event is
generated, the matching header is removed from the unexpected list, and a match list entry with the
PTL_ME_USE_ONCE option is not inserted into the priority list. If a persistent match list entry is posted to the priority
list, it may cause multiple overflow events to be generated, one for every matching entry in the unexpected list. No
permissions checking is performed on a matching message in the unexpected list. No searching of the unexpected list
is performed when a match list entry is posted to the overflow list. When the list entry has been linked (inserted) into
the specified list, a PTL_EVENT_LINK event is generated.

Discussion: Generally speaking, the user should attempt to insure that persistent match list entries (or
simple list entries) are inserted before messages arrive that match them. Appending of persistent entries
could have unexpected performance and resource usage characteristics if a large unexpected list has
accumulated, since a PtIMEAppendO that appends a persistent ME can cause multiple matches.

See the PtILEAppend() definition in Section 3.11.2 for the definition of ptllist_t.

Function Prototype for PtIMEAppend

int Pt1MEAppend(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index,
const ptl_me_t *me,
ptl_list_t ptl_list,
void *user_ptr,
ptl_handle_me_t *me_handle);

Arguments

ni_handle

pt_index

me

ptl_list

user_ptr

input The interface handle to use.

input The portal table index where the match list entry should be appended.

input Provides initial values for the user-visible parts of a match list entry. Other than its use for
initialization, there is no linkage between this structure and the match list entry maintained
by the API.

input Determines whether the match list entry is appended to the priority list or the overflow list.

input A user-specified value that is associated with each command that can generate an event.
The value does not need to be a pointer, but must fit in the space used by a pointer. This
value (along with other values) is recorded in full events associated with operations on this
match list entry.

me_handle output On successful return, this location will hold the newly created match list entry handle.

71

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL_LIST_TOO_LONG Indicates that the resulting list is too long. The maximum length for a list is defined by
the interface.

Discussion: Tying commands to a user-defined value is useful at the target when the command needs to
be associated with a data structure maintained by the process outside of the portals library. For example,
an MPI implementation can set the user_ptr argument to the value of an MPI Request. This direct
association allows for processing of match list entries by the MPI implementation without a table look up
or a search for the appropriate MPI Request.

IMPLEMENTATION
NOTE 11:

Checking match_id Argument

Checking whether a match id is a valid process identifier may require
global knowledge. However, PtIMEAppend() is not meant to cause
any communication with other nodes in the system. Therefore,
PTL_ARG_INVALID may not be returned in some cases where it would
seem appropriate.

3.12.3 PtIMEUnlink

The PtIMEUnlink() function can be used to unlink a match list entry from a list. If PtIMEUnlink() returned PTL_OK,
it is an error to use the match list entry handle after the call to PtIMEUnlink(). PtIMEUnlink() should return
PTL _IN_USE if the match list entry is on the overflow list and has associated unexpected headers.

PtIMEUnlink() is frequently used to implement the cancel of receive operations in higher level protocols. If the list
entry handle passed to PtIMEUnlink() has pending operations, e.g., an unfinished put operation, then PtIMEUnlink()
will return PTL_IN_USE, and the list entry will not be unlinked. An implementation must ensure that list entry
handles remain valid for calls to PtIMEUnlink() until the next call to PtIMEAppend() after the last event associated
with the list entry is delivered to an event queue or counting event (See Implementation Note 10). If the match list
entry has been unlinked before a call to PtIMEUn I ink() but before the next call to PtIMEAppend(), PtIMEUnlink()
must return PTL_IN_USE.

Function Prototype for PtIMEUnlink

int Pt1MEUnlink(ptl_handle_me_t me_handle);

Arguments

me_handle input The match list entry handle to be unlinked

72

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_IN_USE Indicates that the match list entry has pending operations and cannot be unlinked

3.12.4 PtIMESearch

The PtIMESearch() function is used to search for a message in the unexpected list associated with a specific portal
table entry specified by pt_index for the portal table for ni_handle. PtIMESearch() uses the exact same search of the
unexpected list as PtIMEAppend(); however, the match list entry specified in the PtIMESearch() call is never linked
into a priority list.

The PtIMESearch() function can be called in two modes. If ptl_search_op is set to PTL_SEARCH_ONLY, the
unexpected list is searched to support the MPI_Probe functionality. If ptl_search_op is set to PTL_SEARCH_DELETE,
the unexpected list is searched and any matching items are deleted from the list. Searches using MEs with the
PTL_ME_USE_ONCE option set will cause exactly one match while searches with persistent MEs can cause multiple
matches. When used with PTL_SEARCH_ONLY, a PTL_EVENT_SEARCH event with nijail_type PTL_NI_OK is generated
when a matching message was found in the unexpected list. When used with PTL_SEARCH_DELETE, the event that is
generated corresponds to the type of operation that is found (e.g. PTL_EVENT_PUT_OVERFLOW,
PTL_EVENT_GET_OVERFLOW, PTL_EVENT_ATOMIC_OVERFLOW, or PTL_EVENT_FETCH_ATOMIC_OVERFLOW). In either
case, if no matching message is found, a PTL_EVENT_SEARCH event is generated with a failure indication of
PTL_NI_NO_MATCH. If the match list entry specified in the PtIMESearch() call is persistent, a full event is generated
for every match in the unexpected list. No permissions checking is performed during search; only matching criteria
are used to determine if an event should be generated. Users should use the generated event data to perform any
required permissions check.

Event generation for the search functions works just as it would for an append function. If a search is performed with
full events disabled (either through option or through the absence of an event queue on the portal table entry), the
search will succeed, but no events will be generated. Status registers, however, are handled slightly differently for a
search in that a PtIMESearch() never causes a status register to be incremented.

See the PtILESearch() definition in Section 3.11.4 for the definition of ptl_search_op and important notes associated
with implementing and using PtIMESearch().

Function Prototype for PtIMESearch

int Pt1MESearch(ptl_handle_ni_t ni_handle,
ptl_pt_index_t pt_index,
const ptl_me_t *me,
ptl_search_op_t ptl_search_op,
void *user_ptr);

Arguments

ni_handle

pt_index

input The interface handle to use.

input The portal table index that should be searched.

73

me

ptl_search_op

user_ptr

Return Codes

input Provides values for the user-visible parts of a match list entry to use for searching.

input Determines whether the function only searches the list or searches the list and deletes the
matching entries from the list.

input A user-specified value that is associated with each command that can generate an event.
The value does not need to be a pointer, but must fit in the space used by a pointer. This
value (along with other values) is recorded in full events associated with operations on this
match list entry.

PTL_OK

PTL_ARG_INVALID

Indicates success.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

3.13 Events and Event Queues

Event queues are used to log operations performed on memory descriptors, list entries, match list entries, or portal
table entries. In particular, they signal the end of a data transmission into or out of a memory region. They can also be
used to hold acknowledgments for completed put operations and indicate when a list entry has been unlinked.
Multiple memory descriptors or portal table entries can share a single event queue.

In addition to the ptl_handle_eq_t type, the Portals API defines two types associated with full events: The
ptl_event_kind_t type is an integral type which defines the kinds of events that can be stored in an event queue. The
ptl_event_t type defines the structure that is placed into event queues.

The Portals API provides five functions for dealing with event queues: The PtIEQAlloc() function is used to allocate
the API resources needed for an event queue, the PtIEQFree() function is used to release these resources, the
PtIEQGet() function can be used to get the next full event from an event queue, the PtIEQWait() function can be used
to block a process (or thread) until an event queue has at least one full event, and the PtIEQPOII0 function can be used
to test or wait on multiple event queues, which may be associated with different logical network interfaces if they all
belong to a single physical network interface. Thread safety requires that an event can only be returned to one
Pt1EQGet, Pt1EQPo11, or Pt1EQWait call.

3.13.1 Kinds of Events

The Portals API defines sixteen types of events that can be logged:

Event Type Constants (ptl event_kind_t)

PTL_EVENT_GET

PTL_EVENT_GET_OVERFLOW

PTL_EVENT_PUT

A get operation completed at the target. Portals will not read from
memory on behalf of this operation once this event has been logged.

A list entry posted by PtILEAppend() or PtIMEAppend() matched a get
header in the unexpected list.

A put operation completed at the target. Portals will not alter memory on
behalf of this operation once this event has been logged.

74

P TL_EVENT_PUT_OVERFL OW

PTL_EVENT_ATOMIC

PTL_EVENT_ATOMIC_OVERFLOW

PTL_EVENT_FETCH_ATOMIC

PTL_EVENT_FETCH_ATOMIC_OVERFLOW

PTL_EVENT_REPLY

PTL_EVENT_SEND

PTL_EVENT_ACK

PTL_EVENT_PT_D I SABLED

PTL_EVENT_L INK

PTL_EVENT_AUTO_UNL INK

PTL_EVENT_AUTO_FREE

A list entry posted by PtILEAppend() or PtIMEAppend() matched a put
header in the unexpected list.

An atomic operation that does not return data to the initiator completed at
the target. Portals will not read from or alter memory on behalf of this
operation once this event has been logged.

A list entry posted by PtILEAppend() or PtIMEAppend() matched an
atomic header in the unexpected list for an operation which does not
return data to the initiator.

An atomic operation that returns data to the initiator completed at the
target. These include PtlFetchAtomic() and PtlSwap(). Portals will not
read from or alter memory on behalf of this operation once this event has
been logged.

A list entry posted by PtILEAppend() or PtIMEAppend() matched an
atomic header in the unexpected list for an operation which returns data to
the initiator.

A reply operation has completed at the initiator, either due to a get
operation or an atomic which returned data to the initiator. This event is
logged after the data (if any) from the reply has been written into the
memory descriptor. Receipt of a P TL_EVENT_REPLY indicates remote
completion of the operation.

A put or atomic has completed at the initiator. This event is logged after
it is safe to reuse the buffer, but does not mean the message has been
processed by the target.

An acknowledgment was received. This event is logged when the
acknowledgment is received. Receipt of a PTL_EVENT_ACK indicates
remote completion of the operation. Remote completion indicates that
local completion has also occurred.

Resources exhaustion has occurred on this portal table entry, which has
entered a flow control situation. See Section 2.7.

A list entry posted by PtILEAppend() or PtIMEAppend() has successfully
linked into the specified list.

A list entry/match list entry was automatically unlinked (Sections 3.12.2
and 3.11.2). A PTL_EVENT_AUTO_UNL INK event is generated even if the
list entry/match list entry passed into the PtILEAppend()/PtIMEAppend()
operation was marked with the PTL_LE_USE_ONCE/P TL_ME_USE_ONCE
option and found a corresponding unexpected message before being
"linked" into the priority list. A P TL_EVENT_AUTO_UNL INK must be
delivered after all PTL_EVENT_GET, PTL_EVENT_PUT,
P TL_EVENT_ATOMIC, and P TL_EVENT_FETCH_ATOMIC events associated
with the list entry/match list entry have been delivered.

A list entry/match list entry previously automatically unlinked from the
overflow list is now free to be reused by the application. A
P TL_EVENT_AUTO_FREE event is generated when Portals will not generate
any further events which resulted from messages delivered into the
specified overflow list entry. This also indicates that the unexpected list
contains no more items associated with this entry. A list entry/match list
entry which disabled unexpected headers will not generate this event,
even if placed in the overflow list.

75

PTL_EVENT_SEARCH

PTL_EVENT_ERROR

A PtILESearch() or PtIMESearch() call completed. If a matching
message was found in the overflow list, P TL_NI_OK is returned in the
nijail_type field of the event and the event queue entries are filled in as if
it were an overflow event. Otherwise, a failure is recorded in the
nijail_type field using PTL_NI_NO_MATCH, the user_ptr is filled in
correctly, and the other fields are undefined.

An error occurred that is not specified or cannot return all of the required
fields in a valid error type.

Discussion: PTL EVENT ERROR is intended to be used in cases where unspecified errors may be
detectable and recoverable by the application. For example, file systems may be able to recover from
errors that cannot be fully described by a Portals implementation.

Overflow events are used to indicate that a message matching the list entry or match list entry posted by
PtILEAppend() or PtIMEAppend() was previously delivered into the overflow list and its header was found in the
unexpected list (See Section 2.4). The operation was processed as specified by the list entry in the overflow list to
which it matched, meaning that all, some, or none of the message may have been written to or read from the matching
list entry in the overflow list. The full event's start will point to the start of the message (or where the message was
read, in the case of a get operation). The rlength and mlength of the full event may be used to determine whether the
message was fully delivered or truncated.

Discussion: When an application wishes to record unexpected messages, it may place an entry on the
overfiow list which has no memory associated with it and truncates all messages to zero bytes. The
hdr_data field, along with a higher-level protocol, may be used to complete the transaction at a later
time. In the case of MPI, a number of match list entries on the overflow list with locally managed offsets
may additionally be used to optimize unexpected short messages.

3.13.2 Event Occurrence

The diagrams in Figure 3.1 show when events occur in relation to portals operations and whether they are recorded
on the initiator or the target side. Note that local and remote events are not synchronized or ordered with respect to
each other.

Figure 3.1(a) shows the events that are generated for a put operation including the optional acknowledgment. The
diagram shows which events are generated at the initiator and the target side of the put operation. Figure 3.1(b) shows
the corresponding events for a get operation, and Figure 3.1(c) shows the events generated for an atomic operation.

When the initiator of an operation receives a remote completion event (e.g. P TL_EVENT_ACK), local completion is
also implied. While no ordering is required between local and remote completion events at the initiator (i.e. there is
no guaranteed ordering between PTL_EVENT_SEND and PTL_EVENT_ACK for the same operation), a user may reuse a
buffer after either the local or remote completion event is received.

If, as a result of any of the operations shown in the diagrams of Figure 3.1, a match list entry is unlinked, then a
PTL_EVENT_AUTO_UNL INK event is generated on the target. This is not shown in the diagrams. No initiator events are
generated if the memory descriptor does not have an attached event queue. Similarly, no target events are generated if
the portal table entry associated with the matched list entry does not have an attached event queue. See the
description of PTL_EQ_NONE on page 49 of Section 3.10.1) for more information. The various types of events can also
be disabled by type (e.g. see the description of P TL_ME_EVENT_COMM_D I SABLE and
PTL_ME_EVENT_UNL INK_D I SABLE on page 70, also in Section 3.12.1.).

Table 3.2 summarizes the portals event types and where each event type may be generated.

76

Initiator Target

Operation on
MD pending

PTL_EVENT_SEND

Initiator Target

e0
9

PTL_EVENT_GET

PTL_EVENT_ACK

(a) put operation with optional acknowledgment

Initiator

PTL_EVENT_SEND

PTL_EVENT_REPLY

PTL_EVENT_REPLY

(b) get operation

Ta rg et

PTL_EVENT_FETCH_ATOMIC

(c) FetchAtomic operation

Figure 3.1. Portals Operations and Event Types: The red bars indicate the
times a local memory descriptor is considered to be in use by the system; i.e., it
has operations pending. Users should not modify memory descriptors or match
list entries during those periods.

3.13.3 Failure Notification

There are three ways in which operations may fail to complete successfully: the system (hardware or software) can
fail in a way that makes the message undeliverable, a permissions violation can occur at the target, or resources can
be exhausted at a target that has enabled flow-control. In any other scenario, every operation that is started will
eventually complete. While an operation is in progress, the memory on the target associated with the operation
should not be viewed (in the case of a put or a reply) or altered on the initiator side (in the case of a put or get).
Operation completion, whether successful or unsuccessful, is final. That is, when an operation completes, the
memory associated with the operation will no longer be read or altered by the operation. A network interface can use
the integral type ptl_ni_fail_t to define specific information regarding the failure of the operation and record this
information in the ni_fail_type field of an full event. Portals defines a number of event failure constants:

Event Failure Type Constants (ptl_ni_fail_t)

PTL_NI_OK

PTL_NI_UNDELIVERABLE

The operation causing the event was successful.

Indicates a system failure that prevents message delivery.

77

PTL_NI_PT_DISABLED

PTL_NI_DROPPED

PTL_NI_PERM_VIOLATION

PTL_NI_OP_VIOLATION

PTL_NI_SEGV

PTL_NI_NO_MATCH

Indicates that the portal table entry at the target was disabled and did not
process the operation, either because the entry was disabled with
PtIPTDisable() or because the entry provides flow control and a resource
has been exhausted. This failure type should only be returned on initiator
events.

Indicates that the message associated with this full event was dropped at
the target for reasons other than a disabled portal table entry. This failure
type should only be returned on initiator events.

Indicates that the remote Portals addressing has indicated a permissions
violation for the operation that caused this event. This failure type should
only be returned on initiator events.

Indicates that the remote Portals addressing has indicated an operation
violation for the operation that caused this event. This failure type should
only be returned on initiator events.

A message attempted to access inaccessible memory.

A search did not find an entry in the unexpected list.

To allow PTL_EVENT_SEND events to be local operations, all errors requiring remote information are delivered in
PTL_EVENT_ACK or PTL_EVENT_REPLY events. This means that a PTL_EVENT_ACK will be delivered if it is requested,
except when: 1) the message is successfully delivered at the target and the remote target has disabled event
generation, 2) flow control is not enabled on the target portal table entry and the message does not match in either the
priority list or overflow list or the message matches in the overflow list and the unexpected headers list is full, or 3) a
locally generated failure is delivered in the PTL_EVENT_SEND. Certain classes of failures (e.g. a
PTL_NI_UNDELIVERABLE that results from the network bifurcating) may require a local timeout to guarantee that the
PTL_EVENT_ACK or PTL_EVENT_REPLY event is delivered.

Discussion: Because remote errors are indicated in the PTL EVENT ACK or PTL EVENT REPLY
events, the PTL EVENT SEND event only guarantees that the Portals implementation will not touch the
buffer again. If the user intends to recover from a remote error, then the user cannot determine that an
operation is done until the PTL_EVENT ACK or PTL EVENT REPLY event is received.

IMPLEMENTATION
NOTE 12:

Completion of portals operations

Portals guarantees that every operation started will finish with an event
if events are not disabled. While this document cannot enforce or
recommend a suitable time, a quality implementation will keep the
amount of time between an operation initiation and a corresponding
event as short as possible. That includes operations that do not
complete successfully. Timeouts of underlying protocols should be
chosen accordingly.

3.13.4 The Event Structure

An event queue contains ptl_event_t structures. An operation on the target needs information about the local match
list entry modified, the initiator of the operation and the operation itself. The initiator, in contrast, can track all
information about the attempted operation; however, it does need the result of the operation and a pointer to resolve
back to the local structure tracking the information about the operation.

Many fields in the ptl_event_t structure only have meaning for a subset of the event types. Further, an implementation

78

Table 3.2. Event Type Summary: A list of event types and where (initiator or
target) they can occur.

Event Type initiator target
PTL_EVENT_GET •

PTL_EVENT_GET_OVERFLOW •

PTL_EVENT_PUT •

PTL_EVENT_PUT_OVERFLOW •

PTL_EVENT_ATOMIC •

PTL_EVENT_ATOMIC_OVERFLOW •

PTL_EVENT_FETCH_ATOMIC •

PTL_EVENT_FETCH_ATOMIC_OVERFLOW •

PTL_EVENT_REPLY •

PTL_EVENT_SEND •

PTL_EVENT_ACK •

PTL_EVENT_PT_DISABLED •

PTL_EVENT_L INK •

PTL_EVENT_AUTO_UNL INK •

PTL_EVENT_AUTO_FREE •

PTL_EVENT_SEARCH •

PTL_EVENT_ERROR •

is not required to provide all fields in the ptl_event_t structure when the event is reporting an error. Table 3.3 defines
which fields are defined in both success and error conditions.

typedef struct {
void *start;
void *user_ptr;
ptl_hdr_data_t hdr_data;
ptl_match_bits_t match_bits;
ptl_size_t rlength;
ptl_size_t mlength;
ptl_size_t remote_offset;
ptl_uid_t uid;
ptl_process_t initiator; /* nid, pid or rank */
ptl_event_kind_t type;
ptl_list_t ptl_list;
ptl_pt_index_t pt_index;
ptl_ni_fail_t ni_fail_type;
ptl_op_t atomic_operation;
ptl_datatype_t atomic_type;

} ptl_event_t;

79

Members

start The starting location (virtual, byte address) where the message has been
placed. The start variable is the sum of the start variable in the list entry
and the offset used for the operation. The offset can be determined by the
operation (Section 3.15) for a remote managed match list entry or by the
local memory descriptor (Section 3.12). In the case of iovecs, the start is
still the first address where the message was placed or read from, even if
multiple iovec entries were used.

When an append call matches a message that has arrived in the overflow
list, the start address points to the address in the overflow list where the
matching message resides. This may require the application to copy the
message to the desired buffer.

user_ptr The user-specified value associated with the local command that
generated the full event. Note that, unlike hdr_data, the user_ptr is a
locally-generated value. For example, the user_ptr for a full event of type
PTL_EVENT_PUT is the user_ptr specified to the associated call to
PtILEAppend() or PtIMEAppend(). For further discussion of user_ptr,
see Section 3.12.2.

hdr_data 64 bits of out-of-band user data (Section 3.15.2).

match_bits The match bits specified by the initiator. This field should be set to 0 if
the event is associated with a non-matching list entry.

rlength The length (in bytes) specified in the request.

mlength The length (in bytes) of the data that was manipulated by the operation.
For PTL_EVENT_SEND events, the manipulated length is the number of
bytes sent, which may be larger than the number of bytes delivered
(which can be determined by examining the mlength of the associated
PTL_EVENT_ACK event). For PTL_EVENT_PUT, PTL_EVENT_GET,
PTL_EVENT_ATOMIC, or PTL_EVENT_FETCH_ATOMIC events, the
manipulated length is the number of bytes manipulated (delivered into or
read from memory) at the target, which may be less than the rlength in the
case of truncated operations. For PTL_EVENT_SEARCH and the overflow
events, the manipulated length is the same value as the mlength returned
in the corresponding PTL_EVENT_PUT, PTL_EVENT_GET,
PTL_EVENT_ATOMIC, or PTL_EVENT_FETCH_ATOMIC event generated
when the operation completed in the list entry on the overflow list.

remote_offset The offset requested/used by the other end of the communication. At the
initiator, this is the displacement (in bytes) into the memory region that
the operation used at the target. The offset can be determined by the
operation (Section 3.15) for a remote managed offset in a match list entry
or by the match list entry (Section 3.12) at the target for a locally
managed offset.
At the target, this is the offset requested by the initiator.

uid The usage identifier of the initiator.

initiator The identifier of the initiator.

type Indicates the type of the full event.

ptl_list The list entry or match list entry list in which the operation was delivered
(See Sections 3.11.2 and 3.12.2).

pt_index The portal table index where the message arrived.

80

nijail_type

atomic_operation

atomic_type

Used to convey the failure of an operation. Success is indicated by
P TL_NI_OK; see section 3.13.3.

If this full event corresponds to an atomic operation, this indicates the
atomic operation that was performed.

If this full event corresponds to an atomic operation, this indicates the
data type of the atomic operation that was performed.

Discussion: Notably, the full event structure does not contain a handle to the ME, LE, or MD that was
associated with the full event. The user_ptr field is provided as the mechanism for the user to determine
which ME, LE, or MD an even might be associated with.

Event Type

Table 3.3. Event Field Definition: Specification of which fields in a

ptl_event_t structure are defined for a given event type. Fields marked with a
• are defined for both success and error conditions. Fields marked with a o are

defined only for success conditions.

4 .. , . . x e2 41 V0 = •- fdl t V—0.) 1 : c u= : , .1 I I al c i .)
V. - . E - E . , - E . , 1 E T.' E re

mo
te

 o
ff
se
t

at
om
ic
_o
pe
ra
ti
on

P TL_EVENT_GET

P TL_EVENT_GE T_OVERFL OW

P TL_EVENT_P UT

P TL_EVENT_P UT_OVERFL OW

P TL_EVENT_ATOMIC

P TL_EVENT_ATOMIC_OVERFLOW

P TL_EVENT_FETCH_ATOMI C

P TL_EVENT_FETCH_ATOMI C_OVERFLOW

P TL_EVENT_REPLY

P TL_EVENT_SEND

P TL_EVENT_ACK

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

•

•

•

• • o • o • • •

• • o • o • • •

• • o • o • • • •

• • o • o • • • •

• • o • o

• • o • o

• • o • o

• • o • o • •

o 0 0 • •

o • •

o o o • •

P TL_EVENT_P T_D I SABLED

P TL_EVENT_L INK

P TL_EVENT_AUTO_UNL INK

P TL_EVENT_AUTO_FREE

P TL_EVENT_SEARCH

P TL_EVENT_ERROR

• • •

• • • •

• • • •

• • • •

•

3.13.5 PtIEQAIIoc

The PtIEOAlloco function is used to build an event queue. An event queue has room for at least count number of full
events. If the event queue overflows, older events will be overwritten by new ones in most situations. If flow control
is enabled on the portal table entry (See Sections 3.7.1 and 2.7) for an incoming operation, events associated with that
operation will not cause an overflow, but will instead trigger a flow control event.

81

Function Prototype for PtlE0Alloc

int Pt1EQAlloc(ptl_handle_ni_t ni_handle,
ptl_size_t count,
ptl_handle_eq_t *eq_handle);

Arguments

ni_handle input The interface handle with which the event queue will be associated.

count input A hint as to the number of full events to be stored in the event queue. An implementation
may provide space for more than the requested number of event queue slots.

eq_handle output On successful return, this location will hold the newly created event queue handle.

Return Codes

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

PTL_NO_SPACE

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

Indicates that there is insufficient memory to allocate the event queue.

IMPLEMENTATION
NOTE 13:

Size of event queue and reserved space

Because flow control may be enabled on the portal table entries that
this EQ is attached to, the implementation should insure that the space
allocated for the EQ is large enough to hold the requested number of
full events plus the number of portal table entries associated with this
ni handle. For each PtIPTAlloc() that enables flow control and uses a
given EQ, one space should be reserved for a
PTL_EVENT_PT_DISABLED full event associated with that EQ.

3.13.6 PtIEQFree

The PtIEOFree() function releases the resources associated with an event queue. It is up to the user to ensure that no
memory descriptors or portal table entries are associated with the event queue before it is freed.

Function Prototype for PtIEQFree

int Pt1EQFree(ptl_handle_eq_t eq_handle);

Arguments

eq_handle input The event queue handle to be released.

82

•

Return Codes

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

3.13.7 PtIEQGet

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that eq_handle is not a valid event queue handle.

The PtIEQGet() function is a non-blocking function that can be used to get the next event in an event queue. The
event is removed from the queue. This function must be called with an event pointer to a valid ptl_event_t structure,
which will hold the values associated with the next event in the event queue upon successful return.

Function Prototype for PtIEQGet

int Pt1EQGet(ptl_handle_eq_t eq_handle,
ptl_event_t *event);

Arg uments

eq_handle input The event queue handle.

event output On successful return, this location will hold the values associated with the next event in the
event queue. event must point to a valid ptl_event_t structure.

Return Codes

PTL_OK

PTL_EQ_DROPPED

PTL_NO_INIT

PTL_EQ_EMPTY

PTL_ARG_INVALID

3.13.8 PtIEQWait

Indicates success.

Indicates success (i.e., an event is returned) and that at least one full event between this
full event and the last full event obtained—using PtIEQGet(), PUB:Main or
PtIEOPOIIO—from this event queue has been dropped due to limited space in the event
queue.

Indicates that the Portals API has not been successfully initialized.

Indicates that eq_handle is empty or another thread is waiting in PtIEQWait().

Indicates that eq_handle is not a valid event queue handle.

The PtIEOWait() function can be used to block the calling process or thread until there is a full event in an event
queue. This function returns the next event in the event queue, removes it from the queue, and returns it in the
ptl_event_t structure passed in via the event pointer. In the event that multiple threads are waiting on the same event
queue, PtIEOWait() is guaranteed to wake exactly one thread, but the order in which they are awakened is not
specified.

83

Function Prototype for PtIEQWait

int Pt1EQWait(ptl_handle_eq_t eq_handle,
ptl_event_t *event);
•

Arguments

eq_handle input The event queue handle to wait on. The calling process (thread) will be blocked until the
event queue is not empty.

event output On successful return, this location will hold the values associated with the next event in the
event queue. event must point to a valid ptl_event_t structure.

Return Codes

PTL_OK

PTL_EQ_DROPPED

PTL_NO_INIT

PTL_ARG_INVALID

PTL_INTERRUPTED

Indicates success.

Indicates success (i.e., an event is returned) and that at least one full event between this
full event and the last full event obtained—using PtIEQGet(), PUB:Malt°, or
PtIEOPOII0—from this event queue has been dropped due to limited space in the event
queue.

Indicates that the Portals API has not been successfully initialized.

Indicates that eq_handle is not a valid event queue handle.

Indicates that PtIEOFree() or PtINIFini() was called by another thread while this thread
was waiting in PtIEQWait(). See Implementation note 14 for more information.

IMPLEMENTATION
NOTE 14:

PTL_INTERRUPTED return code

While adding complexity to the implementation of PtIEC1Wait() and
PtIECIPOII(), allowing PtIEOFree() or PtINIFini() to interrupt the
potentially blocking calls is necessary for failure tolerance.

3.13.9 PtIEQPoII

The PtIEQPOII0 function can be used by the calling process to look for a full event from a set of event queues. Should
an event arrive on any of the queues contained in the array of event queue handles, the full event will be removed
from the given EQ and returned in the ptl_event_t struct passed in by event, which will also contain the index of the
event queue from which the event was taken. In the event that multiple threads are polling the same event queue,
PtIEOPOII0 is guaranteed to wake exactly one thread, but the order in which they are awakened is not specified.

If PtIEQPOII0 returns success, the corresponding full event is consumed. PtIEQPOII0 provides a timeout to allow
applications to poll, block for a fixed period, or block indefinitely. PtIEOPOII0 is sufficiently general to implement
both PtIEOGeto and PtIEQWait(), but these functions may allow significant optimization. If events are available on
multiple event queues when PtIEOPOII0 is called, the event returned must be from the first event queue in eq_handles
with an available event. If all event queues are empty when PtIEQPOII0 is called, the timeout is non-zero and events
are inserted into multiple event queues, it is unspecified which event will be returned.

84

Function Prototype for PtIEQPOII

int Pt1EQPo11(const ptl_handle_eq_t *eq_handles,
unsigned int size,
ptl_time_t timeout,
ptl_event_t *event,
unsigned int *which);

Arguments

eq_handles input An array of event queue handles. All the handles must refer to the same interface although
they may be from different logical network interfaces.

size input Length of the array.

timeout input Time in milliseconds to wait for a full event to occur on one of the event queue handles.
The constant P TL_T IME_FOREVER can be used to indicate an infinite timeout.

event output On successful return (PTL_OK or PTL_EQ_DROPPED), this location will hold the values
associated with the next event in the event queue. event must point to a valid ptl_event_t
structure.

which output On successful return, this location will contain the index into eq_handles of the event
queue from which the event was taken.

Return Codes

PTL_OK

PTL_EQ_DROPPED

PTL_NO_INIT

PTL_ARG_INVALID

PTL_EQ_EMPTY

PTL_INTERRUPTED

Indicates success.

Indicates success (i.e., an event is returned) and that at least one full event between this
full event and the last full event obtained from the event queue indicated by which has
been dropped due to limited space in the event queue.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

Indicates that the timeout has been reached and all of the event queues are empty.

Indicates that PtIEQFree() or PtINIFini() was called by another thread while this thread
was waiting in PtIEQPoll(). See Implementation note 14 for more information.

3.14 Lightweight Counting Events

Full events copy a significant amount of data from the implementation to the application. While this data is critical
for many uses (e.g. MPI), other programming models (e.g. PGAS) require very little information about individual
operations. To support lightweight operations, Portals provide a lightweight event mechanism known as counting
events.

Counting events are similar in semantics and event occurrence to full events (See Section 3.13.2). A counting event
may be independently enabled/disabled with options on the memory descriptor, list entry, or match list entry, similar
to full events. Unlike full events, counting events are disabled by default and must be explicitly enabled for a given
event type. Counting events are enabled by attaching a ptl_handle_ct_t to a memory descriptor or list entry and

85

specifying which operations are to be counted in the options field. By default, counting events count the total number
of operations; however, a counting event may also count the number of bytes successfully manipulated for counted
operations by setting an option on the associated memory descriptor or list entry.

Counting events introduce two additional types: a user-visible representation of the counting event itself, of type
ptl_ct_event_t, and a handle to a counting event, of type ptl_handle_ct_t. A counting event is allocated through a call
to PtICTAlloc(), queried with PtICTGet(), PtICTWait(), or PtICTPoll(), set with PtICTSet(), incremented with
PtICTInc(), and freed through a call to PtICTFree(). To mirror the failure semantics of the full events, counting events
count success and failure events independently.

Portals event counters use unsigned integer types throughout the Portals API. Portals event counters follow the r
modulo behavior for integer arithmetic, as specified by the ISO/IEC 10967-1 standard for language-independent
arithmetic

IMPLEMENTATION
NOTE 15:

Minimizing cost of counting events

A quality implementation will attempt to minimize the cost of counting
events. In many implementations, this can be done by making the
ptl_handle_ct_t type a pointer to a ptl_ct_event_t structure and
providing PtICTGet(), PtICTWaitO, PtICTSet(), and PtICTInc() as
macros which manipulate the internal structure. This may not be
possible in hardware offload implementations, but PtICTGet() should
remain as close to a pair of loads in performance as possible.

Counting events are a critical component of triggered operations, described in Section 3.16.

3.14.1 The Counting Event Type

A ct_handle refers to a ptl_ct_event_t structure. The user visible portion of this structure contains both a count of
succeeding events and a count of failing events.

typedef struct {
ptl_size_t success;
ptl_size_t failure;

) ptl_ct_event_t;

Members

success

failure

3.14.2 PtICTAIIoc

A count associated with successful events that counts events or bytes.

A count of the number of failed events associated with the counting event.

The PtICTAlloco function is used to allocate a counting event that counts either operations or bytes manipulated for
operations on associated memory descriptors, list entries, and match list entries. While a PtICTAlloc() call could be
as simple as a malloc of a structure holding the counting event, it may be necessary to allocate the counting event in
low memory or some other protected space. Also, it may be desirable to place all counting events in a pre-allocated

86

array and make the ct_handle a simple index. A newly allocated counting event will have both the success and failure
counts initialized to zero.

Function Prototype for PtICTAlloc

int Pt1CTAlloc(ptl_handle_ni_t ni_handle,
ptl_handle_ct_t *ct_handle);

Arg u me n ts

ni_handle

ct_handle

Return Codes

 1
input The interface handle with which the counting event will be associated.

output On successful return, this location will hold the newly created counting event handle.

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the counting event.

3.14.3 PtICTFree

The PtICTFree() function releases the resources associated with a counting event. It is up to the user to ensure that no
memory descriptors or match list entries are associated with the counting event before it is freed. On a successful
return, the counting event has been released and is ready to be reallocated. As a side-effect of PtICTFree(), any
triggered operations waiting on the freed counting event whose thresholds have not been met will be deleted.

Function Prototype for PtICTFree

int PfiCTFree(ptl_handle_ct_t ct_handle);

Arguments

ct_handle input The counting event handle to be released.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

87

3.14.4 PtICTCancelTriggered

In certain circumstances, it may be necessary to cancel triggered operations that are pending. For example, an error
condition may mean that a counting event will never reach the designated threshold. PtICTCancelTriggered() is
provided to handle these circumstances. Upon return from PtICTCancelTriggered(), all triggered operations waiting
on ct_handle are permanently deleted. The operations are not triggered and will not modify any application-visible
state. All other state associated with ct_handle is left unchanged.

Function Prototype for PtICTCancelTriggered

int PfiCTCancelTriggered(ptl_handle_ct_t ct_handle);

Arguments

ct_handle input The counting event handle associated with the triggered operations to be canceled.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

3.14.5 PtICTGet

The PtICTGet() function is used to obtain the current value of a counting event. Calling PtICTSet() or PtICTFree() in
a separate thread while PtICTGet() is executing may yield undefined results in the returned value.

Function Prototype for PtICTGet

int Pt1CTGet(ptl_handle_ct_t ct_handle,
ptl_ct_event_t *event);

Arguments

ct_handle input The counting event handle.

event output On successful return, this location will hold the current value associated with the counting
event. event must point to a valid ptl_ct_event_t structure.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

88

3.14.6 PtICTWait

The PtICTWait() function provides blocking semantics to wait for a counting event to reach a given value.
PtICTWait() returns when either the success field of a counting event is greater than or equal to the test value or when
the failure field is non-zero. All threads that are waiting on a single counting event with a given test value will return
from PtICTWait() when that test value is reached.

Function Prototype for PtICTWait

int Pt1CTWait(ptl_handle_ct_t ct_handle,
ptl_size_t test,
ptl_ct_event_t *event);

Arguments

ct_handle input The counting event handle.

test input On successful return, the success field of the counting event will be greater than or equal to
this value or the failure field of the counting event will be non-zero.

event output On successful return, this location will hold the current value associated with the counting
event. event must point to a valid ptl_ct_event_t structure.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

PTL_INTERRUPTED Indicates that PtICTFree() or PtINIFini() was called by another thread while this thread
was waiting in PtICTWait(). See Implementation note 14 for more information.

3.14.7 PtICTPoII

The PtICTPoll() function can be used to look for one of an array of counting events where the success field has
reached its respective test value. Should a counting event reach the test value for any of the counting events contained
in the array of counting event handles, the value of the counting event will be returned in event and which will contain
the index of the counting event from which the value was returned. PtICTPoll() may be called with counting event
handles associated with different logical network interfaces if those logical network interfaces all belong to the same
physical network interface. PtICTPoll() will also return whenever the failure field of any of the counting events is
non-zero.

PtICTPoll() provides a timeout to allow applications to poll, block for a fixed period, or block indefinitely. If multiple
counting events have reached their threshold when PtICTPoll() is called, the counting event returned must be from the
first counting event in ct_handles which has reached the threshold. If all counting events have not reached their
thresholds when PtICTPoll() is called, the timeout is non-zero and multiple counting events reach their thresholds, it
is unspecified which counting event will be returned.

89

Function Prototype for PtICTPoII

int Pt1CTPo11(const ptl_handle_ct_t *ct_handles,
const ptl_size_t *tests,
unsigned int size,
ptl_time_t timeout,
ptl_ct_event_t *event,
unsigned int *which);

Arguments

ct_handles input An array of counting event handles. All of the handles must refer to the same interface,
although they may be from different logical network interfaces.

tests input An array of success values. PtICTPoll() returns when any counting event in ct_handles
would return from PtICTWait() with the corresponding test in tests.

size input Length of the ct_handles and tests arrays.

timeout input Time in milliseconds to wait for an event to occur on one of the counting event handles.
The constant P TL_T IME_FOREVER can be used to indicate an infinite timeout.

event output On successful return, this location will hold the current value associated with the counting
event that caused PtICTPoll() to return. event must point to a valid ptl_ct_event_t structure.

which output On successful return, this location will contain the index into ct_handles of the counting
event that reached its test value.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates an invalid argument (e.g. a bad ct_handle).

PTL_CT_NONE_REACHED Indicates that none of the counting events reached their test before the timeout was
reached.

PTL_INTERRUPTED Indicates that PtICTFree() or PtINIFini() was called by another thread while this thread
was waiting in PtICTPoll(). See Implementation note 14 for more information.

3.14.8 PtICTSet

The PtICTSet() function is used to set a new value for a counting event. Each field in the counting event is updated
atomically relative to other updates of that field. However, there is no guarantee that the two fields are updated
atomically relative to each other. The counting event must be updated before returning from PtICTSet(), however the
update may not be immediately visible to PtICTGet(), particularly in hardware offload implementations. Both the
atomicity of field updates and the delay in updating the user-visible portions of the counting event may be visible to
the user, but should not affect correctness in common usage scenarios.

90

Function Prototype for PtICTSet

int Pt1CTSet(ptl_handle_ct_t ct_handle,
ptl_ct_event_t new_ct);

Arguments

ct_handle

new_ct

Return Codes

input The counting event handle.

input On successful return, the value of the counting event will have been set to this value.

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

3.14.9 PtICTInc

PtICTInco provides the ability to increment the success or failure field of a counting event. The update is atomic
relative to other modifications of the counting event. To simplify implementation, the increment field can only be
non-zero for either the success orfailure field in a given call to PtICTInc0. The counting event must be updated
before returning from PtICTIncO, however the update may not be immediately visible to PtICTGetO, particularly in
hardware offload implementations. This may be visible to the user, but should not affect correctness in common
usage scenarios.

Function Prototype for PtICTInc

int Pt1CTInc(ptl_handle_ct_t ct_handle,
ptl_ct_event_t increment);

Discussion: While it is possible to use negative values in calls to PtICT* functions they will be
interpreted as very large positive numbers by the Portals implementation. As such, users are discouraged
from using negative values as inputs to any Portal counting event calls.

Arguments

ct_handle input The counting event handle.

increment input On successful return, the value of the counting event will have been incremented by this
value.

91

Return Codes

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that ct_handle is not a valid counting event handle.

3.15 Data Movement Operations

The Portals API provides five data movement operations: PtIPuto, PtIGet(), PtlAtomic(), PtlFetchAtomic(), and
PtlSwap().

3.15.1 Portals Acknowledgment Type Definition

Portals put and atomic operations which do not return data may optionally request an acknowledgment upon message
delivery. Values of the type ptl_ack_req_t are used to specify the type of acknowledgment requested by the initiator.
Acknowledgments are sent by the target when the operation has completed (i.e., when the data has been written to a
list entry of the target process). If counting of acknowledgment events is enabled, the P TL_MD_EVENT_CT_BYTES
option is set, and the operation is successful, the manipulated length (mlength) from the target is counted. If the event
would indicate "failure" or the P TL_MD_EVENT_CT_BYTES option is not set, the number of acknowledgments is
counted.

Ack Request Constants (ptl_ack_req_t)

P TL_ACK_REQ

P TL_CT_ACK_REQ

An acknowledgment capable of generating both a full event and counting
event is requested.

An acknowledgment capable of generating a counting event is requested.
Full events may or may not be generated, dependent on if an event queue
is associated with the memory descriptor. If a full event is generated it is
not guaranteed to contain valid data in all of the fields defined for a
P TL_EVENT_ACK in table 3.3.

P TL_OC_ACK_REQ An acknowledgment capable of generating a counting event upon
operation completion is requested. An operation is considered completed
when it has successfully completed Portals operation processing at the
target. P TL_OC_ACK_REQ does not support the P TL_MD_EVENT_CT_BYTE S
option. The operation completion acknowledgment will indicate success
as long as operation processing completed successfully. A message being
dropped due to a failure to match or a permissions violation does not
represent an operational failure.

P TL_NO_ACK_REQ No acknowledgment is requested.

Discussion: The PTL CT ACK REQ and PTL OC ACK REQ acknowledgment types provide
significantly weaker semantics than PTL ACK REQ, in that the acknowledgment from the target may
only contain data necessary to generate a counting event, which may improve efficiency.

The PTL_OC ACK REQ acknowledgment type is useful when only operation counting is required and it
is known that there is a list entry at the target that will accept the message. The PTL_OC ACK REQ
acknowledgment type may be more efficient in some implementations because the PTL_OC ACK REQ

92

acknowledgment type communicates no information about the state of the target when the message
arrived. Therefore, P TL_OC ACK REQ may, in some implementations, be possible to implement based
on transport level ACKs.

3.15.2 PtlPut

The PtIPut() function initiates an asynchronous put operation. There are several events associated with a put
operation: completion of the send on the initiator node (P TL_EVENT_SEND) and the receipt of an acknowledgment
(P TL_EVENT_ACK) indicating that the operation was processed by the target. The event P TL_EVENT_P UT is used at the
target node to indicate the end of data delivery. In addition, P TL_EVENT_PUT_OVERFLOW can be used on the target
node when a new entry being appended to a priority list matches a message that arrived before the corresponding
match list entry had been associated with the target portal table entry (Figure 3.1 on page 77).

These (local) events will be logged using full events in the event queue or counting events in the ct_handle associated
with the memory descriptor (md_handle) used in the put operation. Using a memory descriptor that does not have
either an associated event queue or counting event results in these events being discarded. In this case, the caller must
have another mechanism (e g , a higher level protocol) for determining when it is safe to modify the memory region
associated with the memory descriptor.

The local (initiator) offset is used to determine the starting address of the memory region within the region specified
by the memory descriptor and the length specifies the length of the region in bytes. It is an error for the local offset
and length parameters to specify memory outside the memory described by the memory descriptor.

Function Prototype for PtlPut

int PtlPut(ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_ack_req_t ack_req,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data);

Arguments

md_handle input The memory descriptor handle that describes the memory to be sent. If the memory
descriptor has an event queue associated with it, it will be used to record events when the
message has been sent (P TL_EVENT_SEND, P TL_EVENT_ACK). If the memory descriptor has
a counting event associated with it, it may optionally be used to record the same events.

local_offset input Offset from the start of the memory descriptor.

length input Length of the memory region to be sent.

ack_req input Controls whether an acknowledgment event is requested. Acknowledgments are only sent
when they are requested by the initiating process and the memory descriptor has an event
queue or counting event and the target memory descriptor enables them.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

93

match_bits input The match bits to use for message selection at the target process (only used when matching
is enabled on the network interface).

remote_offset input The offset into the target memory region (used unless the target match list entry has the
PTL_ME_MANAGE_LOCAL option set).

user_ptr input A user-specified value that is associated with each command that can generate an event.
The value does not need to be a pointer, but must fit in the space used by a pointer. This
value (along with other values) is only recorded in initiator full events associated with this
put operation.

hdr_data input 64 bits of user data that can be included in the message header. This data is written to the
full event generated at the target by this operation.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

Discussion: Tying commands to a user-defined value is useful for quickly locating a user data structure
associated with the put operation. For example, an MPI implementation can set the user_ptr argument to
the value of an MPI Request. This direct association allows for processing of a put operation completion
full event by the MPI implementation without a table look up or a search for the appropriate MPI
Request.

3.15.3 PtlGet

The PtIGet() function initiates a remote read operation. There are two events associated with a get operation. When
the data is sent from the target node, a PTL_EVENT_GET event is registered on the target node if the message matched
in the priority list. The message can also match in the overflow list, which will cause a PTL_EVENT_GET event to be
registered on the target node and will later cause a PTL_EVENT_GET_OVERFLOW to be registered on the target node
when a matching entry is appended. In either case, when the data is returned from the target node, a
PTL_EVENT_REPLY event is registered on the initiator node. (Figure 3.1)

The local (initiator) offset is used to determine the starting address of the memory region and the length specifies the
length of the region in bytes. It is an error for the local offset and length parameters to specify memory outside the
memory described by the memory descriptor.

Function Prototype for PtlGet

int PfiGet(ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr);

94

Arguments

md_handle input The memory descriptor handle that describes the memory into which the requested data
will be received. The memory descriptor can have an event queue associated with it to
record full events, such as when the message receive has started. If the memory descriptor
has a counting event associated with it, it may optionally be used to record the same events.

local_offset input Offset from the start of the memory descriptor.

length input Length of the memory region for the reply.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process (only used when matching
is enabled on the network interface).

remote_offset input The offset into the target match list entry (used unless the target match list entry has the
PTL_ME_MANAGE_LOCAL option set).

user_ptr input See the discussion for PtlPut().

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.15.4 Portals Atomics Overview

Portals defines three closely related types of atomic operations. The PtlAtomic() function is a one-way operation that
performs an atomic operation on data at the target with the data in the specified memory descriptor. The
PtlFetchAtomic() function extends PtlAtomic() to be an atomic fetch-and-update operation. The value at the target
before the operation is returned in a reply message and placed into the get memory descriptor of the initiator. Finally,
the PtlSwap() operation atomically swaps data (including compare-and-swap and swap under mask, which require an
operand argument).

The length of the operations performed by a PtlAtomic() is restricted to no more than max_atomic_size bytes. The
max_atomic_size limit also guarantees that any byte in an operation (whether an atomic operation or not) that is
smaller than max_atomic_size will only be written once in the host memory. PtlFetchAtomic() and PtlSwap()
operations can be up to max_fetch_atomic_size bytes, except for PTL_CSWAP and PTL_MSWAP operations and their
variants, which are further restricted to the length of the longest native data type.

While the length of an atomic operation is potentially multiple data items, the granularity of the atomic access is
limited to the basic datatype. That is, atomic operations from different sources may be interleaved at the level of the
datatype being accessed. Furthermore, atomic operations are only atomic with respect to other calls to the Portals
API on the same network interface (ni_handle). If a network interface returned P TL_COHERENT_ATOMI CS in the
features field of PtINIInito, atomic operations are atomic relative to processor-initiated atomic operations, as well as
any other network interface that also returned P TL_COHERENT_ATOMI CS. If a network interface does not return
PTL_COHERENT_ATOMI CS, Portals atomic operations are not atomic relative to other host operations except those
requested through the Portals API. Network interfaces that support PTL_COHERENT_ATOMICS do not need to use
PtlAtomicSync() (a no-op for coherent interfaces), while interfaces that do not offer coherent atomics require
PtlAtomicSync() to guarantee host visibility of data. In addition, an implementation is only required to support

95

Portals atomic operations that are natively aligned to the size of the datatype, but it may choose to provide support for
unaligned accesses. If the list entry sets the P TL_I OVEC option, a single datatype may not span multiple iovec entries.
Atomicity is only guaranteed for two atomic operations using the same datatype, and overlapping atomic operations
that use different datatypes are not atomic with respect to each other. The routine PtlAtomicSync() is provided to
enable the host (or atomic operations using other datatypes) to modify memory locations that have been previously
touched by an atomic operation.

The target match list entry must be configured to respond to put operations and to get operations if a reply is desired.
The length argument at the initiator is used to specify the size of the request. If the length argument is not an integral
multiple of the datatype size, the implementation may truncate to zero, truncate to a multiple of the datatype or return
PTL_ARG_INVALID at the time of the call. The mlength in the acknowledgment will reflect the size of the actual
operation performed. If the P TL_ME_MAY_AL I GN option is set, the increment of the locally managed offset may be
larger than mlength.

There are several events that can be associated with atomic operations. When data is sent from the initiator node, a
P TL_EVENT_SEND event is registered on the initiator node. It can be tracked in the event queue and/or in the counting
event specified in the put_md_handle. The event P TL_EVENT_ATOMIC is registered on the target node to indicate
completion of an atomic operation; and if data is returned from the target node, a P TL_EVENT_REPLY event is
registered on the initiator node in the event queue and/or the counting event specified by the get_md_handle.
Similarly, a P TL_EVENT_ACK can be registered on the initiator node in the event queue and/or counting event specified
by the put_md_handle for the atomic operations that do not return data. Note that the target match list entry must
have the P TL_ME_OP_P UT flag set and must also set the P TL_ME_OP_GET flag to enable a reply. As with other Portals
operations, the delivery of an event indicates that the data for the associated atomic operation has been updated in
application memory. This does not alleviate the requirement that all modifications of a memory location that is
accessed by atomic operations must go through the Portals API. A P TL_EVENT_ATOMI C_OVERFL OW event may occur
if a atomic operation matched an overflow list entry. When atomic operations match in the overflow list, the atomic
operation itself is not performed on the buffer. It is the responsibility of software on the host to perform the atomic
operation on the correct application memory. For atomic fetch or swap operations that match on the overflow list, the
fetch operation functions in the same way as a PtIGet() operation that matched in the overflow list (see 3.15.3).

The three atomic functions share two new arguments introduced in Portals 4: an operation (ptl_op_t) and a datatype
(ptl_datatype_t), as described below.

Discussion: To allow upper level libraries with both system defined datatype widths and fixed width
datatypes to easily map to Portals, Portals provides fixed width integer types. The one exception is the
long double floating-point types (P TL_LONG DOUBLE). Because of the variability in long double
encodings across systems and the lack of standard syntax for fixed width floating-point types, Portals
uses a system defined width for PTL_LONG DOUBLE and PTL_LONG DOUBLE COMPLEX.

Discussion: In the case of composed atomic operations like the PTL DIFF operation, that can be
composed using a combination of two operations, a negate and sum, the event generated for matches on
the priority list may not contain the PTL DIFF operation in its optype field. For atomics that match in
the unexpected list, the operation will always be listed correctly in the corresponding event. The optype
field is typically used to allow for the atomic to be properly applied when the matching request is posted,
for cases where the operation matched and was performed by the NIC, there is no need for the optype
field in the event. When atomics can be composed from multiple different fundamental operations, the
last operation performed may be inserted into the event by hardware for atomics that have successfully
matched in the priority list and have been completed.

Atomic Operation Constants (ptl_op_t)

PTL_MIN Compute and return the minimum of the initiator and target value.

96

PTL_MAX

PTL_SUM

PTL_DIFF

PTL_PROD

PTL_LOR

PTL_LAND

PTL_BOR

PTL_BAND

PTL_LXOR

PTL_BXOR

PTL_SWAP

PTL_CSWAP

PTL_CSWAP_NE

PTL_CSWAP_LE

PTL_CSWAP_LT

PTL_CSWAP_GE

PTL_CSWAP_GT

PTL_MSWAP

Atomic Datatype Constants (ptl_datatype_t)

PTL_INT8_T

PTL_UINT8_T

PTL_INT16_T

PTL_UINT16_T

PTL_INT32_T

PTL_UINT32_T

PTL_INT64_T

PTL_UINT64_T

Compute and return the maximum of the initiator and target value.

Compute and return the sum of the initiator and target value.

Compute and return the difference of the initiator and target value.

Compute and return the product of the initiator and target value.

Compute and return the logical OR of the initiator and target value.

Compute and return the logical AND of the initiator and target value.

Compute and return the bitwise OR of the initiator and target value.

Compute and return the bitwise AND of the initiator and target value.

Compute and return the logical XOR of the initiator and target value.

Compute and return the bitwise XOR of the initiator and target value.

Swap the initiator and target value and return the target value.

A conditional swap. If the value of the operand is equal to the target
value, the initiator and target value are swapped. The target value is
always returned. This operation is limited to single data items.

A conditional swap. If the value of the operand is not equal to the target
value, the initiator and target value are swapped. The target value is
always returned. This operation is limited to single data items.

A conditional swap. If the value of the operand is less than or equal to the
target value, the initiator and target value are swapped. The target value is
always returned. This operation is limited to single data items.

A conditional swap. If the value of the operand is less than the target
value, the initiator and target value are swapped. The target value is
always returned. This operation is limited to single data items.

A conditional swap. If the value of the operand is greater than or equal to
the target value, the initiator and target value are swapped. The target
value is always returned. This operation is limited to single data items.

A conditional swap. If the value of the operand is greater than the target
value, the initiator and target value are swapped. The target value is
always returned. This operation is limited to single data items.

A masked version of the swap operation. Update the bits of the target
value that are set to 1 in the operand using the bits in the initiator value.
Return the target value. This operation is limited to single data items.

8-bit signed integer

8-bit unsigned integer

16-bit signed integer

16-bit unsigned integer

32-bit signed integer

32-bit unsigned integer

64-bit signed integer

64-bit unsigned integer

97

PTL_FLOAT 32-bit floating-point number

PTL_FLOAT_COMPLEX 32-bit floating-point complex number

PTL_DOUBLE 64-bit floating-point number

PTL_DOUBLE_COMPLEX 64-bit floating-point complex number

PTL_LONG_DOUBLE System defined long double type

PTL_LONG_DOUBLE_COMPLEX System defined long double complex type

The legal combinations of atomic operation type, datatype, and function call are shown in Table 3.4. Generally
speaking, swap operations are limited to the PtlSwap() function and bitwise operation are limited to integral types.

Table 3.4. Legal Atomic Operation, Datatype, and Function Combinations

Integral
Types

Floating-Point
Types

Complex
Types

PtlAtomic() PtlFetchAtomic() PtlSwap()

PTL_MIN

PTL_MAX

PTL_SUM

PTL_PROD

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

PTL_LOR • • •

PTL_LAND • • •

PTL_BOR • • •

PTL_BAND • • •

PTL_LXOR • • •

PTL_BXOR • • •

PTL_SWAP • • • •

PTL_CSWAP • • • •

PTL_CSWAP_NE • • • •

PTL_CSWAP_LE • • •

PTL_CSWAP_LT • • •

PTL_CSWAP_GE • • •

PTL_CSWAP_GT • • •

PTL_MSWAP • •

PTL_DIFF • • • • •

3.15.5 PtlAtomic

The PtlAtomic() function initiates an asynchronous atomic operation. The events behave like the PtlPut() function
(see Section 3.15.2), with the exception of the target side event, which is a PTL_EVENT_ATOMIC (and
PTL_EVENT_ATOMIC_OVERFLOW) instead of a PTL_EVENT_PUT. Similarly, the arguments mirror PtlPut() with the
addition of a ptl_datatype_t and ptl_op_t to specify the datatype and operation being performed, respectively.
Operations performed by PtlAtomic() are constrained to be no more than max_atomic_size bytes and must be aligned
at the target to the size of ptl_datatype_t passed in the datatype argument.

98

Function Prototype for PtlAtomic

int PtlAtomic(ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_ack_req_t ack_req,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data,
ptl_op_t operation,
ptl_datatype_t datatype);

Arguments

md_handle

local_offset

length

ack_req

target_id

pt_index

match_bits

remote_offset

user_ptr

hdr_data

operation

datatype

Return Codes

input The memory descriptor handle that describes the memory to be sent. If the memory
descriptor has an event queue associated with it, it will be used to record events when the
message has been sent (P TL_EVENT_SEND, P TL_EVENT_ACK). If the memory descriptor has
a counting event associated with it, it may optionally be used to record the same events.

input Offset from the start of the memory descriptor referenced by the md_handle to use for
transmitted data.

input Length of the memory region to be sent and/or received. The length field must be less than
or equal to max_atomic_size.

input Controls whether an acknowledgment event is requested. Acknowledgments are only sent
when they are requested by the initiating process and the memory descriptor has an event
queue or counting event and the target memory descriptor enables them.

input A process identifier for the target process.

input The index in the target portal table.

input The match bits to use for message selection at the target process.

input The offset into the target memory region (used unless the target match list entry has the
P TL_ME_MANAGE_LOCAL option set).

input See the discussion for PtlPut().

input See the discussion for PtlPut().

input The operation to be performed using the initiator and target data.

input The type of data being operated on at the initiator and target.

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

99

3.15.6 PtlFetchAtomic

The PtlFetchAtomic() function extends the PtlAtomic() function to return the value from the target prior to the
operation being performed. When data is sent from the initiator node, a PTL_EVENT_SEND event is registered on the
initiator node in the event queue and/or the counting event specified by the put_md_handle. The event
PTL_EVENT_FETCH_ATOMIC (and potentially PTL_EVENT_FETCH_ATOMIC_OVERFLOW) is registered on the target node
to indicate completion of an atomic operation; and if data is returned from the target node, a PTL_EVENT_REPLY event
is registered on the initiator node in the event queue and/or counting event specified by the get_md_handle. It is an
error to use memory descriptors bound to different network interfaces in a single PtlFetchAtomic() call. The
behavior that occurs when the local_get_offset into the get_md_handle overlaps with the local_put_offset into the
put_md_handle is undefined. Operations performed by PtiFetchAtomic() are constrained to be no more than
maxjetch_atomic_size bytes and must be aligned at the target to the size of ptl_datatype_t passed in the datatype
argument.

Function Prototype for PtlFetchAtomic

int PtlFetchAtomic(ptl_handle_md_t get_md_handle,
ptl_size_t local_get_offset,
ptl_handle_md_t put_md_handle,
ptl_size_t local_put_offset,
ptl_size_t length,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data,
ptl_op_t operation,
ptl_datatype_t datatype);

Arguments

get_md_handle input The memory descriptor handle that describes the memory into which the result of the
operation will be placed. The memory descriptor can have an event queue associated with
it to record events, such as when the result of the operation has been returned. Similarly,
the memory descriptor can have a counting event to record these events.

local_get_offset input Offset from the start of the memory descriptor referenced by the get_md_handle to use for
received data.

put_md_handle input The memory descriptor handle that describes the memory to be sent. If the memory
descriptor has an event queue associated with it, it will be used to record events when the
message has been sent. If the memory descriptor has a counting event associated with it, it
may optionally be used to record the same events.

local_put_offset input Offset from the start of the memory descriptor referenced by the put_md_handle to use for
transmitted data.

length input Length of the memory region to be sent and/or received. The length field must be less than
or equal to max_atomic_size.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process.

100

remote_offset input The offset into the target memory region (used unless the target match list entry has the
PTL_ME_MANAGE_LOCAL option set).

user_ptr input See the discussion for PtlPut().

hdr_data input See the discussion for PtlPut().

operation input The operation to be performed using the initiator and target data.

datatype input The type of data being operated on at the initiator and target.

Return Codes

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

3.15.7 PtlSwap

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

The PtISwap() function provides an extra argument (the operand) beyond the PtiFetchAtomic() function. Like the
PtlFetchAtomic() function, it returns the value from the target prior to the operation being performed. PtlSwap()
handles the PTL_SWAP, PTL_CSWAP (and variants), and PTL_MSWAP operations and is subject to the additional
restriction that PTL_CSWAP (and variants) and PTL_MSWAP operations can only be as long as a single datatype item.
Events are handled in the same way as they are for PtiFetchAtomic(), since Pt!Swap() is a special case of a
PtlFetchAtomic(). Like PtlFetchAtomic(), receiving a PTL_EVENT_REPLY inherently implies that the flow control
check has passed on the target node. It is an error to use memory descriptors bound to different network interfaces in
a single PtlSwap() call. The behavior that occurs when the local_get_offset into the get_md_handle overlaps with the
local_put_offset into the put_md_handle is undefined. Operations performed by PtlSwap() are constrained to be no
more than maxjetch_atomic_size bytes and must be aligned at the target to the size of ptl_datatype_t passed in the
datatype argument. PTL_CSWAP and PTL_MSWAP operations are further restricted to one item, whose size is defined by
the size of the datatype used.

Function Prototype for PtlSwap

int PtlSwap(ptl_handle_md_t get_md_handle,
ptl_size_t local_get_offset,
ptl_handle_md_t put_md_handle,
ptl_size_t local_put_offset,
ptl_size_t length,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data,
const void *operand,
ptl_op_t operation,
ptl_datatype_t datatype);

101

Arguments

get_md_handle input The memory descriptor handle that describes the memory into which the result of the
operation will be placed. The memory descriptor can have an event queue associated with
it to record events, such as when the result of the operation has been returned. Similarly,
the memory descriptor can have a counting event to record these events.

local_get_offset input Offset from the start of the memory descriptor referenced by the get_md_handle to use for
received data.

put_md_handle input The memory descriptor handle that describes the memory to be sent. If the memory
descriptor has an event queue associated with it, it will be used to record events when the
message has been sent. If the memory descriptor has a counting event associated with it, it
may optionally be used to record the same events.

local_put_offset input Offset from the start of the memory descriptor referenced by the put_md_handle to use for
transmitted data.

length input Length of the memory region to be sent and/or received. The length field must be less than
or equal to max_atomic_size for PTL_SWAP operations and can only be as large as a single
datatype item for PTL_CSWAP and PTL_MSWAP operations, and variants of those.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process.

remote_offset input The offset into the target memory region (used unless the target match list entry has the
PTL_ME_MANAGE_LOCAL option set).

user_ptr input See the discussion for PtlPut().

hdr_data input See the discussion for PtlPut().

operand input A pointer to the data to be used for the PTL_CSWAP (and variants) and PTL_MSWAP
operations (ignored for other operations). The data pointed to is of the type specified by the
datatype argument and must be included in the message.

operation input The operation to be performed using the initiator and target data.

datatype input The type of data being operated on at the initiator and target.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.15.8 PtlAtomicSync

The PtlAtomicSync() function ensures host visibility of the atomic accesses previously completed through the
Portals API. When a data item is accessed by a Portals atomic operation, modification of the same data item by the
host or by an atomic operation using a different datatype can lead to undefined behavior. When PtlAtomicSync() is
called, it will block until it is safe for the host (or other atomic operations with a different datatype) to modify the
data items touched by previous Portals atomic operations. PtlAtomicSync() is called at the target of atomic
operations. For NIs that provide PTL_COHERENT_ATOMICS calls to PtlAtomicSync() are unnecessary.

102

IMPLEMENTATION
NOTE 16:

Portals Atomic Synchronization

The atomicity definition for Portals allows a network interface to offload
atomic operations and to have a non-coherent cache on the network
interface. With a non-coherent cache, any access to a memory
location by an atomic operation makes it impossible to safely modify
that location on the host. PtlAtomicSync() is provided to make
modifications from the host safe again.

Function Prototype for PtlAtomicSync

int PtlAtomicSyncO;

Return Codes

PTL_OK

PTL_NO_INIT

Indicates success.

Indicates that the Portals API has not been successfully initialized.

3.16 Triggered Operations

For a variety of scenarios, it is desirable to setup a response to incoming messages. As an example, a tree based
reduction operation could be performed by having each layer of the tree issue a PtlAtomic() operation to its parent
after receiving a PtlAtomic() from all of its children. To provide this operation, triggered versions of each of the data
movement operations are provided. To create a triggered operation, a trig_ct_handle and an integer threshold are
added to the argument list. When the success field of the count (not including failures) referenced by the
trig_ct_handle argument reaches or exceeds the threshold (equal to or greater), the operation proceeds at the initiator
of the operation. For example, a PtlTriggeredGet() or a PtlTriggeredAtomic() will not leave the initiator until the
threshold is reached. A triggered operation does not use the state of the buffer when the application calls the Portals
function. Instead, it uses the state of the buffer after the threshold condition is met. Pending triggered operations can
be canceled using PtICTCancelTriggered().

Triggered operations are processed in order of threshold values, even if the counting event is increased by a large
amount at once (such as through a call to PtICTInc()). If a counting event has already reached the threshold when a
triggered operation is created, that operation is immediately processed.

Triggered operations proceed in the order their trigger threshold is reached, implying ordering within the
implementation.

Discussion: The use of a trig_ct_handle and threshold enables a variety of usage models. A single
match list entry can trigger one operation (or several) by using an independent trig_ct_handle on the
match list entry. One operation can be triggered by a combination of previous events (include a
combination of initiator and target side events) by having all of the earlier operations reference a single
trig_ct_handle and using an appropriate threshold. Users are strongly encouraged to order calls to
triggered operations by increasing threshold value as there may be significant performance advantages to
ordering calls this way.

103

IMPLEMENTATION
NOTE 17:

Ordering of Triggered Operations

The semantics of triggered operations imply that (at a minimum)
operations will proceed in the order that their trigger threshold is
reached. An implementation will release operations that reach their
threshold simultaneously on the same trig ct handle in the order that
they are issued. Users should also create triggered operations in
ascending threshold values to decrease sorting work on
implementations.

3.16.1 PtlTriggeredPut

The PtiTriggeredPutO function adds triggered operation semantics to the PtIPut() function described in
Section 3.15.2.

Function Prototype for PtlTriggeredPut

int PtlTriggeredPut(ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_ack_req_t ack_req,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data,
ptl_handle_ct_t trig_ct_handle,
ptl_size_t threshold);

Arguments

md_handle

local_offset

length

ack_req

target_id

pt_index

match_bits

remote_offset

user_ptr

hdr_data

trig_ct_handle

threshold

input

input

input

input

input

input

input

input

input

input

input

input

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

See PtlPut() description in Section 3.15.2.

Handle used for triggering the operation.

Threshold at which the operation triggers.

104

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID

3.16.2 PtlTriggeredGet

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

The PtlTriggeredGet() function adds triggered operation semantics to the PtlGet() function described in
Section 3.15.3.

Function Prototype for PtlTriggeredGet

int PtlTriggeredGet(ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
void *user_ptr,
ptl_size_t remote_offset,
ptl_handle_ct_t ct_handle,
ptl_size_t threshold);

Arguments

md_handle

target_id

pt_index

match_bits

user_ptr

remote_offset

local_offset

length

trig_ct_handle

threshold

Return Codes

PTL_OK

PTL_NO_INIT

input

input

input

input

input

input

input

input

input

input

See PtlGet() description in Section 3.15.3.

See PtlGet() description in Section 3.15.3.

See PtlGet() description in Section 3.15.3.

See PtlGet() description in Section 3.15.3.

See PtlGet() description in Section 3.15.3.

See PtIGet() description in Section 3.15.3.

See PtlGet() description in Section 3.15.3.

See PtIGet() description in Section 3.15.3.

Handle used for triggering the operation.

Threshold at which the operation triggers.

Indicates success.

Indicates that the Portals API has not been successfully initialized.

105

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.16.3 PtlTriggeredAtomic

The PtlTriggeredAtomic() function adds triggered operation semantics to the PtlAtomic() function described in
Section 3.15.5. When combined with triggered counting increments (PtiTriggeredCTInc()) and sets
(PtiTriggeredCTset()), triggered atomic operations enable an offloaded, non-blocking implementation of most
collective operations.

Function Prototype for PtlTriggeredAtomic

int PtlTriggeredAtomic(ptl_handle_md_t md_handle,
ptl_size_t local_offset,
ptl_size_t length,
ptl_ack_req_t ack_req,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data,
ptl_op_t operation,
ptl_datatype_t datatype,
ptl_handle_ct_t trig_ct_handle,
ptl_size_t threshold);

Arguments

md_handle input See PtlAtomic() description in Section 3.15.5.

local_offset input See PtlAtomic() description in Section 3.15.5.

length input See PtlAtomic() description in Section 3.15.5.

ack_req input See PtlAtomic() description in Section 3.15.5.

target_id input See PtlAtomic() description in Section 3.15.5.

pt_index input See PtlAtomic() description in Section 3.15.5.

match_bits input See PtlAtomic() description in Section 3.15.5.

remote_offset input See PtlAtomic() description in Section 3.15.5.

user_ptr input See PtlAtomic() description in Section 3.15.5.

hdr_data input See PtlAtomic() description in Section 3.15.5.

operation input See PtlAtomic() description in Section 3.15.5.

datatype input See PtlAtomic() description in Section 3.15.5.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

106

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.16.4 PtlTriggeredFetchAtomic

The PtlTriggeredFetchAtomic() function adds triggered operation semantics to the PtlFetchAtomic() function
described in Section 3.15.6.

Function Prototype for PtlTriggeredFetchAtomic

int PtlTriggeredFetchAtomic(ptl_handle_md_t get_md_handle,
ptl_size_t local_get_offset,
ptl_handle_md_t put_md_handle,
ptl_size_t local_put_offset,
ptl_size_t length,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data,
ptl_op_t operation,
ptl_datatype_t datatype,
ptl_handle_ct_t trig_ct_handle,
ptl_size_t threshold);

Arguments

get_md_handle

local_get_offset

put_md_handle

local_put_offset

length

target_id

pt_index

match_bits

remote_offset

user_ptr

hdr_data

operation

input

input

input

input

input

input

input

input

input

input

input

input

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

See PtlFetchAtomic() description in Section 3.15.6.

107

datatype

trig_ct_handle

threshold

Return Codes

input

input

input

See PtlFetchAtomic() description in Section 3.15.6.

Handle used for triggering the operation.

Threshold at which the operation triggers.

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID

3.16.5 PtITriggeredswap

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

The PtITriggereciswap() function adds triggered operation semantics to the PtlSwap() function described in
Section 3.15.7.

Function Prototype for PtiTriggeredswap

int Pt1Triggeredswap(ptl_handle_md_t get_md_handle,
ptl_size_t local_get_offset,
ptl_handle_md_t put_md_handle,
ptl_size_t local_put_offset,
ptl_size_t length,
ptl_process_t target_id,
ptl_pt_index_t pt_index,
ptl_match_bits_t match_bits,
ptl_size_t remote_offset,
void *user_ptr,
ptl_hdr_data_t hdr_data,
const void *operand,
ptl_op_t operation,
ptl_datatype_t datatype,
ptl_handle_ct_t trig_ct_handle,
ptl_size_t threshold);

Arguments

get_md_handle

local_get_offset

put_md_handle

local_put_offset

length

target_id

pt_index

input

input

input

input

input

input

input

See PtISwap() description in Section 3.15.7.

See PtISwap() description in Section 3.15.7.

See PtISwap() description in Section 3.15.7.

See PtISwap() description in Section 3.15.7.

See PtISwap() description in Section 3.15.7.

See Pt!swap() description in Section 3.15.7.

See PtlSwap() description in Section 3.15.7.

108

match_bits

remote_offset

user_ptr

hdr_data

operand

operation

datatype

trig _ct_handle

threshold

Return Codes

input

input

input

input

input

input

input

input

input

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

See PtlSwap() description in Section 3.15.7.

See PtlSwap() description in Section 3.15.7.

See PtlSwap() description in Section 3.15.7.

See PtlSwap() description in Section 3.15.7.

See PtlSwap() description in Section 3.15.7.

See PtlSwap() description in Section 3.15.7.

See PtlSwap() description in Section 3.15.7.

Handle used for triggering the operation.

Threshold at which the operation triggers.

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.16.6 PUTriggeredCTInc

The triggered counting event increment extends the counting event increment (PtICTIncO) with the triggered
operation semantics. It is a convenient mechanism to provide chaining of dependencies between counting events.
This allows a relatively arbitrary ordering of operations. For example, a PtlTriggeredPut() and a
PtITriggeredCTInc() could be dependent on ct_handle A with the same threshold. If the Pt1TriggeredCTInc() is set to
increment ct_handle B and a second PtlTriggeredPut() is dependent on ct_handle B, the second PtlTriggeredPut()
will occur after the first.

Function Prototype for PtlTriggeredCTlnc

int PtlTriggeredCTlnc(ptl_handle_ct_t ct_handle,
ptl_ct_event_t increment,
ptl_handle_ct_t trig_ct_handle,
ptl_size_t threshold);

Arguments

ct_handle

increment

trig_ct_handle

threshold

input

input

input

input

See PtICTInco description in Section 3.14.9.

See PtICTInc() description in Section 3.14.9.

Handle used for triggering the operation.

Threshold at which the operation triggers.

109

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.16.7 PUTriggeredCTset

The triggered counting event increment extends the counting event set (PtICTSetO) with the triggered operation
semantics. It is a convenient mechanism to provide reinitialization of counting events between invocations of an
algorithm.

Function Prototype for PtITriggeredCTSet

int Pt1TriggeredCTSet(ptl_handle_ct_t ct_handle,
ptl_ct_event_t new_ct,
ptl_handle_ct_t trig_ct_handle,
ptl_size_t threshold);

Arguments

ct_handle

new_ct

trig_ct_handle

threshold

Return Codes

input

input

input

input

PTL_OK

PTL_NO_INIT

PTL_ARG_INVALID

See PtICTSet() description in Section 3.14.8.

See PtICTSet() description in Section 3.14.8.

Handle used for triggering the operation.

Threshold at which the operation triggers.

Indicates success.

Indicates that the Portals API has not been successfully initialized.

Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.17 Deferred Communication Operations

Frequently, upper layer protocols and applications generate a stream of operations with loose synchronization
requirements between operations. For example, an MPI implementation may need to start a large number of
operations to implement the fan-out portion of a collective operation. The portals deferred communication operations
provide a mechanism for allowing the Portals implementation to optimize for these situations.

110

3.17.1 PtlStartBundle

The PtiStartBundle0 function is used by the application to indicate to the implementation that a group of
communication operations is about to start. PtiStartBundle0 takes an ni_handle as an argument and only impacts
operations on that ni_handle. PtlStartBundle() can be called multiple times, and each call to PtlStartBundle()
increments a reference count and must be matched by a call to PtiEndBundle(). After a call to PtiStartBundleo, the
implementation may begin deferring communication operations until a call to PtiEndBundle().

Function Prototype for PtlStartBundle

int PtlStartBundle(ptl_handle_ni_t ni_handle);

Arguments

ni_handle input An interface handle to start bundling operations.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

Discussion: Layered libraries and heavily nested PtIstartBundle0 calls can yield unexpected results.
The PtIstartBundleo and PtlEndBundleo interface was designed for use in short periods of high
activity (e.g. during the setup of a collective operation or during an inner loop for PGAS languages).
The interval between PtIstartBundleo and the corresponding PtlEndBundleo should be kept short.

IMPLEMENTATION
NOTE 18:

Purpose of Bundling

The PtlStartBundle() and PtiEndBundle() interface was designed to
allow the implementation to avoid unnecessary sfence()/memory
barrier operations during periods that the application expects high
message rate. A quality implementation will attempt to minimize
latency while maximizing message rate. For example, an
implementation that requires writes into "write-combining" space may
require sfence() operations with every message to have relatively
deterministic latency. Between a PtlStartBundle() and
PtiEndBundle0, the implementation might simply omit the sfence()
operations.

3.17.2 PtlEndBundle

The PtlEndBundle() function is used by the application to indicate to the implementation that a group of
communication operations has ended. PtlEndBundle() takes an ni_handle as an argument and only impacts
operations on that ni_handle. PtlEndBundle() must be called once for each PtlStartBundle() call. At each call to

111

PtiEndBundle(), the implementation must initiate all communication operations that have been deferred; however,
the implementation is not required to cease bundling future operations until the reference count reaches zero.

Function Prototype for PtlEndBundle

int PtlEndBundle(ptl_handle_ni_t ni_handle);

Arguments

ni_handle input An interface handle to end bundling operations.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are
checked is implementation dependent.

3.18 Operations on Handles

Handles are opaque data types. The only operation defined on them by the Portals API is a comparison function.

3.18.1 PtlHandlelsEqual

The PtlHandlelsEqual() function compares two handles to determine if they represent the same object.
PtlHandlelsEqual() does not check whether the two handles are valid, but only whether they are equal.

Function Prototype for PtlHandlelsEqual

int PtlHandleIsEqual(ptl_handle_any_t handlel,
ptl_handle_any_t handle2);

Arguments

handlel

handle2

Return Codes

input An object handle. May be the constant value PTL_INVALID_HANDLE, which represents the
value of an invalid handle.

input An object handle. May be the constant value P TL_INVALID_HANDLE, which represents the
value of an invalid handle.

zero Indicates that the two handles are not equivalent.

112

non-zero Indicates that the two handles are equivalent.

Discussion: PUHandlelsEqual0 returns a value suitable for direct evaluation in a conditional
expression. While different from all other Portals functions and previous Portals versions, it does greatly
simplify usage of PtlHandlelsEqualO.

3.19 Summary

We conclude this chapter by summarizing the names introduced by the Portals API. We start with the data types
introduced by the API. This is followed by a summary of the functions defined by the API which is followed by a
summary of the function return codes. Finally, we conclude with a summary of the other constant values defined by
the API.

Table 3.5 presents a summary of the types defined by the Portals API. The first column in this table gives the type
name, the second column gives a brief description of the type, the third column identifies the section where the type is
defined, and the fourth column lists the functions that have arguments of this type and structures with members of this
type.

Table 3.5. Portals Data Types: Data Types Defined by the Portals API.

Name Meaning Definition Functions/Data Structures

ptl_ack_req_t

ptl_ct_event_t

ptl_datatype_t

ptl_event_kind_t

ptl_event_t

ptl_handle_any_t
ptl_handle_ct_t

ptl_handle_eq_t

ptl_handle_le_t

acknowledgment request types

counting event structure

datatype for atomic operation

event kind
event queue entry
any object handles
counting event handles

event queue handles

list entry handles

3.15.1 PtlAtomic(), PtlPut(),

PtITriggeredAtomic(),

PtlTriggeredPut()
3.14.1 PtICTGet(), PtICTInc(), PtICTPoll(),

PtICTSet(), PtITriggeredCTInc(),

PtITriggeredCTSet(), PtICTWait()
3.15.4 PtlAtomic(), PtlFetchAtomic(),

PtlSwap(), PtITriggeredAtomic(),
PtITriggeredFetchAtomic(),

PtlTriggeredSwap(), ptl_event_t

3.13.1 ptl_event_t
3.13.4 PtIEOGetO, PtIEQWait(), PUEOPoll()

3.3.2 PtlHandlelsEqual(), PtINIHandle()

3.3.2 PtICTAlloc(), PtICTCancelTriggered
PtICTFree(), PtICTGet(), PtICTInc(),
PtICTPoll(), PtICTSet(), PtICTWait(),

PtITriggeredAtomic(),

PtITriggeredCTInc(),

PtITriggeredCTSet(),
PtlTriggeredFetchAtomic(),

PtITriggeredGet(), PtITriggeredPut(),

PtITriggeredswap(), ptl_le_t, ptl_md_t,
ptl me t

3.3.2 PtIEQAlloc(), PtIEQFree(), PtIEQGet(),
PtIEQPoll(), PtIEQWait(), PtIPTAlloc(),

ptl_md_t

3.3.2 PtILEAppend(), PtILEUnlink()

0,

continued on next page

113

Name Meaning

continued from previous page

Definition Functions/Data Structures

pti_handle_rnd_t rnemory descriptor handles

ptl_handle_me_t match list entry handles

ptl_handle_ni_t network interface handles

ptl_hdr_data_t user header data

ptl_interface_t

ptl_iovec_t
ptl_le_t

ptl_list_t

ptl_match_bits_t

pti_md_t
ptl_rne_t

ptl_ni_fail_t

pti_ni_limits_t

pti_nid_t

ptl_op_t

network interface identifiers

scatter/gather buffer descriptors
list entries

type of list attached to a portal

table entry

match (and ignore) bits

memory descriptors
match list entries

network interface specific failures

implementation dependent limits

node identifiers

atomic operation type

ptl_pid_t process identifier

3.3.2 PtlAtomic0, PtlFetchAtomic0, PtlGet(),
PtIMDBind(), PtIMDReleaseO, PtIPutO,

Pt1SwapO, PtlTriggeredAtomic(),

PtITriggeredFetchAtomic(),

PtlTriggeredGet(), PtITriggeredPut(),

PtITriggeredswap()
3.3.2 PtIMEAppendO, PtIMEUnlink()

3.3.2 PtICTAIIocO, PtIEGAlloc(),

PtlEndBundle(), PtlGetld(),

PtIGetMap(), PtIGetPhysId(),

PtIGetUid(), PtILEAppend(),

PtILESearch(), PtIMDBind(),

PtIMEAppend(), PtIMESearch(),

PtINIFini0, PtINIHandle(), PtINI!nit°,
PtINIStatus(), PtIPTAIIoc(),

PtIPTDisable(), PtIPTEnable(),

PtIPTFree(), PtISetMap(),
PtlStartBundle()

3.15.2 PtlAtomic(), PtlFetchAtomic(), PtIPut(),

PtISwap(), PtlTriggeredAtomic(),

PtITriggeredFetchAtomic(),
PtITriggeredPut(), PtITriggeredswap(),
ptl_event_t

3.3.5 PtINIInit()

3.10.2
3.11.1

3.12.2

PtILEAppend(), PtILESearch()
PtILEAppend(), PtILEAppend(),

ptl_event_t

3.3.4 PtlAtomic(), PtlFetchAtomic(), PtIGet(),

PtlPut(), Pt!Swap°,

PtITriggeredAtomic(),

PtITriggeredFetchAtomic(),

PtlTriggeredGet(), PtITriggeredPut(),
PtITriggeredswap(), ptl_event_t,

ptl_rne_t

3.10.1 PtIMDBind()
3.12.1 PtIMEAppend(), PtIMESearch()

3.13.3 ptl_event_t

3.6.1 PtINI!nit()

3.3.6 ptl_process_t

3.15.4 PtlAtomic(), PtlFetchAtomic(),

PtlSwap(), PtITriggeredAtomic(),

PtITriggeredFetchAtomic(),
PtITriggeredswap(), ptl_event_t

3.3.6 PtINI!nit°, ptl_process_t

continued on next page

114

Name Meaning

continued from previous page

Definition Functions/Data Structures

ptl_process_t

ptl_pt_index_t

ptl_rank_t

ptl_search_op_t

ptl_size_t

process identifiers

portal table indexes

rank within a group of

communicating processes

operation performed by list
search

sizes

ptl_sr_index_t status register indexes

ptl_sr_value_t status register values

ptl_time_t time in milliseconds
ptl_uid_t usage identifier

3.9.1 PtlAtomicO, PtlFetchAtomicO, PtlGet(),
PtIGetIdO, PtIGetMap(), PtIGetPhysIdO,

PtIPut(), PtISetMapO, PtISwapO,

PtlTriggeredAtomic(),

PtITriggeredFetchAtomic(),

PtlTriggeredGet(), PtITriggeredPut(),
PtITriggeredswap(), ptl_event_t,

ptl_me_t
3.3.3 PtlAtomic(), PtlFetchAtomic(), PtIGet(),

PtILEAppend(), PtILESearch(),
PtIMEAppend(), PtIMESearch(),
PtIPTAlloc(), PtIPTDisable(),
PtIPTEnable(), PtIPTFree(), PtIPut(),

Pt!Swap°, PtlTriggeredAtomic(),

PtITriggeredFetchAtomic(),

PtlTriggeredGet(), PtITriggeredPut(),
PtITriggeredswap(), ptl_event_t

3.3.6 ptl_process_t

3.12.4 PtILESearch(), PtIMESearch()

3.3.1 PtlAtomic(), PtICTPoll(), PtICTWait(),

PtIEQAfioc(), PtlFetchAtomic(),

PtlGet(), PtIGetMap(), PtlPut(),

PtIsetMap(), PtlSwap(),

PtITriggeredAtomic(),

PtITriggeredCTInc(),

PtITriggeredCTSet(),
PtITriggeredFetchAtomic(),

PtITriggeredGet(), PtITriggeredPut(),
PtITriggeredswap(), ptl_ct_event_t,

ptl event t, ptl iovec t, ptl le t, ptl_rnd_t,

ptl_me_t, ptl_ni_lirnits_t

3.3.7 PtINIStatus()

3.3.7 PtINIStatus()

3.13.9 PtICTPoll(), PtIEQPoll()

3.3.6 PtlGetuid(), ptl_event_t, ptl_le_t,

ptl_rne_t

Table 3.6 presents a summary of the functions defined by the Portals API. The first column in this table gives the

name for the function, the second column gives a brief description of the operation implemented by the function, and
the third column identifies the section where the function is defined.

Name

Table 3.6. Portals Functions: Functions Defined by the Portals API.

Meaning Definition

PtlAtomic()

PtlAtomicSync()

PtICTAIIoc()

PtICTCancelTriggered()
PtICTFree()

perform an atomic operation

synchronize results of atomic operations with the host
create a counting event

cancel pending triggered operations

free a counting event

3.15.5

3.15.8
3.14.2

3.14.4

3.14.3

continued on next page

115

continued from previous page
Name Meaning Definition
PtICTGet()
PtICTInc()
PtICTPoll()
PtICTSet()
PtICTWait()
PtlEndBundle()
PtIEQA1Ioc()
PtIEQFree()
PtIEQGet()
PtIEQPoll()
PtIEQWait()
PtlFetchAtomic()
PtlFini()
PtlGet()
PtlGetld()
PtIGetMap()
PtIGetPhysId()
PtIGetUid()
PtlHandlelsEqual()
Ptllnit()
PtILEAppend()
PtILESearch()
PtILEUnlink()
PtIMDBind()
PtIMDRelease()
PtIMEAppend()
PtIMESearch()
PtIMEUnlink()
PtINIFini()
PtINIHandle()
PtINIInit()
PtINIStatus()
PtIPTAlIoc()
PtIPTFree()
PtIPTDisable()
PtIPTEnable()
PtlPut()
PtISetMap()
PtlStartBundle()
PtlSwap()
PtlTriggeredAtomic()
Pt1TriggeredCTInc()
PtITriggeredCTSet()
PUTriggeredFetchAtomic()
PtlTriggeredGet()
PtlTriggeredPut()
PUTriggeredswap()

get the current value of a counting event
increment a counting event by a certain value
wait for an array of counting events to reach certain values
set a counting event to a certain value
wait for a counting event to reach a certain value
end a communications bundle
create an event queue
release the resources for an event queue
get the next event from an event queue
poll for a new event on multiple event queues
wait for a new event in an event queue
perform an fetch and atomic operation
shut down the Portals API
perform a get operation
get the identifier for the current process
retrieve a rank to physical mapping
get the physical identifier for the current process
get the network interface specific usage identifier
compares two handles to determine if they represent the same object
initialize the Portals API
create a list entry and append it to a portal table
search an unexpected header
remove a list entry from a list and release its resources
create a free-floating memory descriptor
release resources associated with a memory descriptor
create a match list entry and append it to a portal table
search an unexpected header
remove a match list entry from a list and release its resources
shut down a network interface
get the network interface handle for an object
initialize a network interface
read a network interface status register
allocate a free portal table entry
free a portal table entry
disable a portal table entry
enable a portal table entry that has been disabled
perform a put operation
initialize a rank to physical mapping
start a communications bundle
perform a swap operation
perform a triggered atomic operation
a triggered increment of a counting event by a certain value
a triggered set of a counting event by a certain value
perform a triggered fetch and atomic operation
perform a triggered get operation
perform a triggered put operation
perform a triggered swap operation

3.14.5
3.14.9
3.14.7
3.14.8
3.14.6
3.17.2
3.13.5
3.13.6
3.13.7
3.13.9
3.13.8
3.15.6
3.5.2

3.15.3
3.9.2
3.6.7
3.9.3
3.8.1

3.18.1
3.5.1

3.11.2
3.11.4
3.11.3
3.10.3
3.10.4
3.12.2
3.12.4
3.12.3
3.6.3
3.6.5
3.6.2
3.6.4
3.7.1
3.7.2
3.7.3
3.7.4

3.15.2
3.6.6

3.17.1
3.15.7
3.16.3
3.16.6
3.16.7
3.16.4
3.16.2
3.16.1
3.16.5

Table 3.7 summarizes the return codes used by functions defined by the Portals API. The first column of this table
gives the symbolic name for the constant, the second column gives a brief description of the value, and the third
column identifies the functions that can return this value.

116

Table 3.7. Portals Return Codes: Function Return Codes for the Portals API.

Name Meaning Functions
PTL_ARG_INVALID invalid argument passed

PTL_CT_NONE_REACHED timeout reached before any
counting event reached the test

PTL_EQ_DROPPED at least one event has been dropped
PTL_EQ_EMPTY no events available in an event

queue
PTL_FAIL error during initialization
PTL_IGNORED Logical map set failed
PTL_IN_USE MD, ME, or LE has pending

operations
PTL_INTERRUPTED wait/get operation was interrupted

PTL_LIST_TOO_LONG
PTL_NO_INIT

list too long
uninitialized API

PTL_NO_SPACE insufficient memory

PTL_OK
PTL_PID_IN_USE
PTL_PT_EQ_NEEDED

PTL_PT_FULL
PTL_PT_IN_USE

success
pid is in use
EQ must be attached when flow
control is enabled
portal table is full
portal table index is busy

all, except PtlAtomicSync(), PtlFini(),
PtlHandlelsEqual(), Ptllnit()
PtICTPOII()

PtIEQGet(), PtIEOPOII0, PtIEQWait()
PtIEQGet(), PtIEOPOII0

Ptllnit()
PtISetMap()
POLEUnlink°, PtIMEUnlink0

PtICTPOII0, PtICTWaitO, PtIEQPOII0,
PtIEQWait()
PtILEAppend(), PtIMEAppend()
all, except PtlFini(), PtlHandlelsEqual(),
Ptllnit()
PtICTAlloc(), PtIEQAIIoc(),
PtIGetMap(), PtILEAppend(),
PtIMDBind(), PtIMEAppend(),
PtINIInito, PtISetMapo
all, except PtlFini(), PtlHandlelsEqual()
PtINIInit0
PtIPTAlloc()

PtIPTAlloc()
PtIPTAlloc(), PUPTFree()

Table 3.8 summarizes the remaining constant values introduced by the Portals API. The first column in this table
presents the symbolic name for the constant, the second column gives a brief description of the value, the third
column identifies the type for the value, and the fourth column identifies the section in which the constant is
introduced or described.

Name

Table 3.8. Portals Constants: Other Constants Defined by the Portals API.

Meaning Base Type Definition
P TL_ACK_REQ
P TL_BAND

P TL_BOR

P TL_BXOR

P TL_COHERENT_ATOMI CS

request an acknowledgment ptl_ack_req_t
Compute and return the ptl_op_t
bitwise AND of the
initiator and target value
Compute and return the ptl_op_t
bitwise OR of the initiator
and target value
Compute and return the ptl_op_t
bitwise XOR of the
initiator and target value
a flag to indicate that the int
implementation provides
atomic operations which
are coherent with processor
atomic operations

3.15
3.15.4

3.15.4

3.15.4

3.15.4

continued on next page

117

Name Meaning
P TL_CSWAP

P TL_CSWAP_GE

P TL_CSWAP_GT

P TL_CSWAP_LE

P TL_CSWAP_LT

P TL_CSWAP_NE

P TL_CT_ACK_REQ

P TL_CT_NONE

P TL_D IFF

P TL_DOUBLE

P TL_DOUBLE_COMP LE X

P TL_EQ_NONE

P TL_EVENT_ACK

P TL_EVENT_ATOMIC

P TL_EVENT_ATOMI C_OVERFL OW

P TL_EVENT_AUTO_FREE

P TL_EVENT_AUTO_UNL INK

P TL_EVENT_FETCH_ATOMI C

P TL_EVENT_FETCH_ATOMI C_-

OVERFLOW

P TL_EVENT_GET

P TL_EVENT_GET_OVERFLOW

P TL_EVENT_L INK

P TL_EVENT_P T_D I SABLED

P TL_EVENT_P UT

P TL_EVENT_PUT_OVERFLOW

P TL_EVENT_REPLY

P TL_EVENT_SEARCH

P TL_EVENT_SEND

P TL_FLOAT

P TL_FLOAT_COMP LE X

P TL_IFACE_DEFAULT

Conditional swap if target
and operand equal
Conditional swap if the
operand is greater than or
equal to the target
Conditional swap if the
operand is greater than the
target
Conditional swap if the
operand is less than or
equal to the target
Conditional swap if the
operand is less than the
target
Conditional swap if the
operand and target are not
equal
request a counting
acknowledgment
a NULL count handle
Compute the difference
between the target initiator
64-bit floating-point
number
64-bit floating-point
complex number
a NULL event queue handle
acknowledgment event
atomic event
atomic overflow event
automatic free event
automatic unlink event
fetching atomic event
fetching atomic overflow
event
get event
get overflow event
event generated when a list
entry links ptl_event_kind_t
portal table entry disabled
event
put event
put overflow event
reply event
search event
send event
32-bit floating-point
number
32-bit floating-point
complex number
default interface

continued from previous page

Base Type Definition

ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_ack_req_t 3.15

ptl_handle_ct_t 3.3.2
ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_handle_eq_t 3.3.2
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1

ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1

3.13.1

ptl_event_kind_t 3.13.1

ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_event_kind_t 3.13.1
ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_interface_t 3.3.5

continued on next page

118

Name Meaning
continued

Base Type
from previous page

Definition
P TL_INT16_T

PTL_INT32_T

PTL_INT64_T

PTL_INT8_T

P TL_INVALID_HANDLE

P TL_I OVEC

P TL_LAND

P TL_LE_ACK_D I SABLE

P TL_LE_EVENT_COMM_D I SABLE

P TL_LE_EVENT_CT_BYTE S

P TL_LE_EVENT_CT_COMM

P TL_LE_EVENT_CT_OVERFLOW

P TL_LE_EVENT_FLOWCTRL_D I SABLE

P TL_LE_EVENT_LINK_D I SABLE

P TL_LE_EVENT_OVER_D I SABLE

P TL_LE_EVENT_SUCCESS_D I SABLE

P TL_LE_EVENT_UNLINK_D I SABLE

P TL_LE_IS_ACCESS IBLE

P TL_LE_OP_GET

P TL_LE_OP_P UT

P TL_LE_UNEXPECTED_HDR_D I SABLE

P TL_LE_USE_ONCE

P TL_LONG_DOUBLE

P TL_LONG_DOUBLE_COMP LEX

P TL_LOR

16-bit signed integer
32-bit signed integer
64-bit signed integer
8-bit signed integer
invalid handle
a flag to enable
scatter/gather memory
descriptors
Compute and return the
logical AND of the initiator
and target
a flag to disable
acknowledgments
a flag to disable events
associated with new
communications
a flag to count bytes instead
of operations
a flag to count
communication events
a flag to count overflow
events
a flag to disable events
associated with flow
control
a flag to disable link events
a flag to disable overflow
events
a flag to disable events that
indicate success
a flag to disable unlink
events
a flag to indicate the entire
LE is accessible
a flag to enable get
operations
a flag to enable put
operations
a flag to disable adding
headers to the unexpected
headers list
a flag to indicate that the
list entry will only be used
once
System defined long double
type
System defined long double
complex type
Compute and return the
logical OR of the initiator
and target

ptl_op_t 3.15.4
ptl_op_t 3.15.4
ptl_op_t 3.15.4
ptl_op_t 3.15.4
ptl_handle_any_t 3.3.2
int 3.12.1

ptl_op_t 3.15.4

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1
int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

int 3.11.1

ptl_op_t 3.15.4

ptl_op_t 3.15.4

ptl_op_t 3.15.4

continued on next page

119

Name Meaning
P TL_LXOR

P TL_MAX

P TL_MD_EVENT_CT_ACK

P TL_MD_EVENT_CT_BYTE S

P TL_MD_EVENT_CT_REPLY

P TL_MD_EVENT_CT_SEND

P TL_MD_EVENT_SEND_D I SABLE

P TL_MD_EVENT_SUCCESS_D I SABLE

P TL_MD_UNORDERED

P TL_MD_VOLAT ILE

P TL_ME_ACK_D I SABLE

P TL_ME_EVENT_COMM_D I SABLE

P TL_ME_EVENT_CT_BYTE S

P TL_ME_EVENT_CT_COMM

P T L_ME_EVENT_C T_OVERFL OW

P TL_ME_EVENT_FLOWCTRL_D I SABLE

P TL_ME_EVENT_L INK_D I SABLE

P TL_ME_EVENT_OVER_D I SABLE

P TL_ME_EVENT_SUCCESS_D I SABLE

P TL_ME_EVENT_UNL INK_D I SABLE

P TL_ME_I S_ACCESS I BLE

P TL_ME_MANAGE_LOCAL

Compute and return the
logical XOR of the initiator
and target
Compute and return the
maximum of the initiator
and target
a flag to count
acknowledgment events
a flag to count bytes instead
of operations
a flag to count reply events
a flag to count send events
a flag to disable send events
a flag to disable events that
indicate success
a flag to indicate that
messages from this MD do
not need to be ordered
a flag to indicate that the
application will modify the
put buffer immediately
upon operation return,
before receiving a send
event.
a flag to disable
acknowledgments
a flag to disable events
associated with new
communications
a flag to count bytes instead
of operations
a flag to count
communication events
a flag to count overflow
events
a flag to disable events
associated with flow
control
a flag to disable link events
a flag to disable overflow
events
a flag to disable events that
indicate success
a flag to disable unlink
events
a flag to indicate the entire
ME is accessible
a flag to enable the use of
local offsets

continued from previous page

Base Type Definition
ptl_op_t 3.15.4

ptl_op_t 3.15.4

int 3.10.1

int 3.10.1

int 3.10.1
int 3.10.1
int 3.10.1
int 3.10.1

int 3.10.1

int 3.10.1

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1
int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

continued on next page

120

Name Meaning

P TL_ME_MAY_AL I GN a flag to indicate that the
implementation may align
an incoming message to a
natural boundary to
enhance performance

PTL_ME_NO_TRUNCATE a flag to disable truncation
of a request

PTL_ME_OP_GET a flag to enable get
operations

PTL_ME_OP_PUT a flag to enable put
operations

PTL_ME_UNEXPECTED_HDR_DISABLE a flag to disable adding
headers to the unexpected
headers list

PTL_ME_USE_ONCE a flag to indicate that the
match list entry will only
be used once

PTL_MIN Compute and return the
minimum of the initiator
and target

PTL_MSWAP A masked version of the
swap operation

PTL_NI_DROPPED message was dropped
PTL_NI_LOGICAL a flag to indicate that the

network interface must
provide logical addresses
for network endpoints

PTL_NI_MATCHING a flag to indicate that the
network interface must
provide matching portals
addressing

PTL_NI_NO_MATCH search did not find an entry
in the unexpected list

PTL_NI_NO_MATCHING a flag to indicate that the
network interface must
provide non-matching
portals addressing

PTL_NI_OK successful event
P TL_NI_OP_VIOLAT ION message encountered an

operation violation
PTL_NI_PERM_VIOLATION message encountered a

permissions violation
PTL_NI_PHYSICAL a flag to indicate that the

network interface must
provide physical addresses
for network endpoints

PTL_NI_PT_DISABLED message encountered a
disabled portal table entry

PTL_NI_SEGV message attempted to
access inaccessible
memory

continued from previous page

Base Type Definition

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

int 3.12.1

3.15.4

ptl_op_t 3.15.4

ptl_ni_fail_t 3.13.3
int 3.6.2

int 3.6.2

ptl_ni_fail_t 3.13

int 3.6.2

ptl_ni_fail_t 3.13.3
ptl_ni_fail_t 3.13 .3

3.13 .3

int 3.6.2

ptl_ni_fail_t 3.13.3

ptl_ni_fail_t 3.13.3

continued on next page

121

Name Meaning

P TL_NI_UNDELIVERABLE

P TL_N I D_ANY

P TL_NO_ACK_REQ

P TL_OC_ACK_REQ

P TL_OVERFLOW_L I ST

P TL_P I D_ANY

P TL_P I D_MAX

P TL_P RI ORI TY_L I ST

P TL_P ROD

P TL_P T_ANY

P TL_P T_FLOWCTRL

P T L_P T_ONLY_TRUNCATE

P TL_P T_ONLY_USE_ONCE

P TL_RANK_ANY

P TL_SEARCH_DELETE

P TL_SEARCH_ONLY

P TL_S I Z E_MAX

P TL_SR_DROP_COUNT

message could not be
delivered
wildcard for node identifier
fields
request no acknowledgment
request an operation
completed
acknowledgment
specifies the overflow list
attached to a portal table
entry
wildcard for process
identifier fields
Maximum legal process
identifier
specifies the priority list
attached to a portal table
entry
Compute and return the
product of the initiator and
target value
wildcard for portal table
entry identifier fields
a flag to request flow
control
a flag to indicate that the
priority list on this portal
table entry will only have
entries without the
P TL_ME_NO_TRUNCATE

option set
a flag to indicate that the
priority list on this portal
table entry will only have
entries with the
P TL_ME_USE_ONCE or
P TL_LE_USE_ONCE option
set
wildcard for rank fields
specifies that the
unexpected list should be
searched and the matching
item should be deleted
specifies that the
unexpected list should only
be searched
maximum value of a
ptl_size_t

index for the dropped count
register

continued from previous page

Base Type Definition

ptl_ni_fail_t 3.13.3

ptl_nid_t 3.3.6

ptl_ack_req_t 3.15
ptl_ack_req_t 3.15

int 3.12.2

ptl_pid_t 3.3.6

ptl_pid_t 3.6.2

int 3.12.2

ptl_op_t 3.15.4

ptl_pt_index_t 3.7.1

int 3.7.1

int 3.7.1

int 3.7.1

ptl_rank_t 3.3.6
int 3.12.4

int 3.12.4

ptl_size_t 3.3.1

ptl_sr_index_t 3.3.7

continued on next page

122

Name Meaning
P TL_SR_OPERAT ION_VIOLAT IONS index for the operation

violations register
P TL_SR_PERMISSION_VIOLAT IONS index for the permission

violations register
PTL_SUM Compute and return the

sum of the initiator and
target

PTL_SWAP Swap the initiator and
target value

PTL_TARGET_BIND_INACCESSIBLE A flag to indicate that the
implementation should
allow LEs to be bound over
ranges of memory that are
not allocated

PTL_TIME_FOREVER a flag to indicate
unbounded time

PTL_TOTAL_DATA_ORDERING A flag to indicate that the
implementation should
attempt to provide total
data ordering

PTL_UID_ANY wildcard for usage
identifier

PTL_UINT16_T 16-bit unsigned integer
P TL_UINT 3 2_T 32-bit unsigned integer
PTL_UINT 6 4_T 64-bit unsigned integer
PTL_UINT8_T 8-bit unsigned integer

123

continued from previous page

Base Type Definition
ptl_sr_index_t 3.3.7

ptl_sr_index_t 3.3.7

ptl_op_t 3.15.4

ptl_op_t 3.15.4

int 3.6.1

ptl_time_t 3.13.9

int 3.6.1

ptl_uid_t 3.3.6

ptl_op_t 3.15.4
ptl_op_t 3.15.4
ptl_op_t 3.15.4
ptl_op_t 3.15.4

124

Chapter 4

Guide to Implementors

In this chapter, we provide a number of notes and clarifications useful to implementors of the Portals specification.
This chapter is not normative; that is, this chapter only seeks to clarify and raise subtle points in the standard. Should
any statement in this chapter conflict with statements in another chapter, the other chapter is correct.

4.1 Run-time Support

The Portals API does not include a run-time interface; this is assumed to be provided by other sources, such as the
machine system software or as part of an upper-layer protocol. This is similar to Open Fabrics, Myrinet/MX, and
TCP/IP, which provide communication semantics, but say little about process lifespan or interaction. Interaction with
a run-time is clearly unavoidable due to logically addressed network interfaces, but the proper interaction between the
run-time and PUSetMap()/PtIGetMap() is the responsibility of the upper layer protocol.

Many implementations of the Portals specification (both Portals 4 and earlier specifications) were tightly coupled
with a specific run-time. It is expected that such coupling will continue on tightly integrated platforms in which
Portals is the lowest layer communication interface. While the user of the portals library must always call
PtISetMap() before using a logically addressed interface, the implementation is free to ignore the requested mapping
and provide it's own by returning PTL_IGNORED.

4.2 Data Transfer

The Portals API uses five types of messages: put, acknowledgment, get, reply, and atomic. In this section, we
describe the information passed on the wire for each type of message. We also describe how this information is used
to process incoming messages. The Portals specification does not enforce a given wire protocol or in what order and
what manner information is passed along the communication path.

4.2.1 Sending Messages

Table 4.1 summarizes the information that is transmitted for a put request. The first column provides a descriptive
name for the information, the second column provides the type for this information, the third column identifies the
source of the information, and the fourth column provides additional notes. Most information that is transmitted is
obtained directly from the put operation.

It may not be necessary for the implementation to transmit all fields listed in Table 4.1. For example, portals
semantics require that an acknowledgment event contains the user_ptr and it must be placed in the event queue
referenced by the eq_handle found in the MD referenced by the md_handle associated with the put; i.e., the
acknowledgment event provides a pointer that the application can use to identify the operation and must be placed the
in the right memory descriptor's event queue. One approach would be to send the user_ptr and md_handle to the

125

Table 4.1. Send Request: Information Passed in a Send Request — PtlPut().

Information Type PtlPut()
Argument

Notes

operation
ack type
options
initiator
usage
target
portal index
match bits
offset
memory desc
header data
put user pointer

length
data

int
ptl_ack_req_t

unsigned int
ptl_process_t

ptl_uid_t

ptl_process_t

ptl_pt_index_t

ptl_match_bits_

ptl_size_t

ptl_handle_md

ptl_hdr_data_t

void *

ptl_size_t

bytes

t

_t

ack_req
md_handle

target_id
pt_index
match_bits
remote_offset
md_handle
hdr_data
user_ptr

length
md_handle

indicates a put request

options field from NI associated with MD
local information
local information

opt. if options.P T L_N I_NO_MAT CH I NG

opt. if ack_req =P TL_NO_ACK_REQ
user data in header
opt. if ack_req =P TL_NO_ACK_REQ
or ack_req =P TL_CT_ACK_REQ
or ack_req =P TL_OC_ACK_REQ
length argument
user data

target in the put and back again in the acknowledgment message. If an implementation has another way of tracking
the user_ptr and md_handle at the initiator, then sending the user_ptr and md_handle should not be necessary.

Notice that the match_bits, md_handle and user_ptr fields in the put operation are optional. If the put is originating
from a non-matching network interface, there is no need for the match_bits to be transmitted since the destination
will ignore them. Similarly, if no acknowledgment was requested, md_handle and user_ptr do not need to be sent. If
an acknowledgment is requested (either P TL_ACK_REQ, P TL_CT_ACK_REQ, or P TL_OC_ACK_REQ), then the md_handle
may be sent in the put message so that the target can send it back to the initiator in the acknowledgment message.
The md_handle is needed by the initiator to find the right event queue for the acknowledgment event. The user_ptr is
only required in the case of a full acknowledgment (P TL_ACK_REQ). P TL_CT_ACK_REQ and P TL_OC_ACK_REQ requests
do not require the user_ptr field to generate the acknowledgment event at the initiator of the put operation.

A portals header contains 8 bytes of user supplied data specified by the hdr_data argument passed to PtlPut(). This is
useful for out-of-band data transmissions with or without bulk data. The header bytes are stored in the event
generated at the target. (See Section 3.15.2 on page 94.)

Tables 4.2 and 4.3 summarizes the information transmitted in an acknowledgment. Most of the information is simply
echoed from the put request. Notice that the initiator and target are obtained directly from the put request but are
swapped in generating the acknowledgment. The only new pieces of information in the acknowledgment are the
manipulated length, which is determined as the put request is satisfied, and the actual offset used.

If an acknowledgment has been requested, the associated memory descriptor remains in use by the implementation
until the acknowledgment arrives and can be logged in the event queue. See Section 3.10.4 for how pending
operations affect when memory descriptors may be unlinked.

If the target match list entry has the P TL_ME_MANAGE_LOCAL flag set, the offset local to the target match list entry is
used. If the flag is not set, the offset requested by the initiator is used. An acknowledgment message returns the
actual value used.

Lightweight "countine acknowledgments do not require the actual offset used or user pointer since they do not
generate a ptl_event_t at the put operation initiator.

126

Information

Table 4.2. Acknowledgment: Information Passed in an Acknowledgment.

Type PtlPut()
Argument

Notes

operation
options
initiator
target
memory descriptor
put user pointer
offset
manipulated length
matched list

int
unsigned int
ptl_process_t
ptl_process_t
ptl_handle_md_
void *
ptl_size_t
ptl_size_t
ptl_list_t

put_md_handle
target_id
initiator

t md_handle
user_ptr
remote_offset

indicates an acknowledgment
options field from NI associated with MD
echo target of put
echo initiator of put
echo md_handle of put
echo user_ptr of put
obtained from the operation
obtained from the operation
obtained from the operation

Information

Table 4.3. Acknowledgment: Information Passed in a "Countine Acknowl-
edgment.

Type PtlPut()
Argument

Notes

operation
options
initiator
target
memory descriptor
manipulated length

int
unsigned int
ptl_process_t
ptl_process_t
ptl_handle_md_
ptl_size_t

put_md_handle
target_id
initiator

t md_handle

indicates an acknowledgment
options field from NI associated with MD
local information on put target
echo initiator of put
echo md_handle of put
obtained from the operation

Table 4.4 summarizes the information that is transmitted for a get request. Like the information transmitted in a put
request, most of the information transmitted in a get request is obtained directly from the PtIGet() operation. The
memory descriptor must not be unlinked until the reply is received.

Information

Table 4.4. Get Request: Information Passed in a Get Request — PtlGet() and
PtIGetRegion().

Type PtlGet()
Argument

Notes

operation
options
initiator
usage
target
portal index
match bits

offset
memory descriptor
length
initiator offset
get user pointer

int
unsigned int
ptl_process_t
ptl_uid_t
ptl_process_t
ptl_pt_index_t
ptl_match_bits_t

ptl_size_t
ptl_handle_md_t
ptl_size_t
ptl_size_t
void *

md_handle

target_id
pt_index
match_bits

remote_offset
md_handle
length
local_offset
user_ptr

indicates a get operation
options field from NI associated with MD
local information
local information

optional if the P T L_N I_NO_MAT CH ING option
is set.

destination of reply

127

Table 4.5 summarizes the information transmitted in a reply. Like an acknowledgment, most of the information is
simply echoed from the get request. The initiator and target are obtained directly from the get request but are
swapped in generating the reply. The only new information in the reply are the manipulated length, the actual offset
used, and the data, which are determined as the get request is satisfied.

Information Type

Table 4.5. Reply: Information Passed in a Reply.

PtlGet()
Argument

Notes

operation
options
initiator
target
memory descriptor
initiator offset
get user pointer
manipulated length
offset
matched list
data

int
unsigned int
ptl_process_t
ptl_process_t
ptl_handle_md
ptl_size_t
void *
ptl_size_t
ptl_size_t
ptl_list_t
bytes

get_md_handle
target_id
initiator

_t md_handle
local_offset
user_ptr

remote_offset

indicates an reply
options field from NI associated with MD
local information on get target
echo initiator of get
echo md_handle of get
echo local_offset of get
echo user_ptr of get
obtained from the operation
obtained from the operation
obtained from the operation
obtained from the operation

Table 4.6 presents the information that needs to be transmitted from the initiator to the target for an atomic operation.
The result of an atomic operation is a reply and (optionally) an acknowledgment as described in Table 4.5.

Information

Table 4.6. Atomic Request: Information Passed in an Atomic Request.

Type PtlAtomic()
Argument

Notes

operation

options
ack type
initiator
usage
target
portal index
memory descriptor
user pointer

match bits

offset
memory descriptor
length
operand
data

int

unsigned int
ptl_ack_req_t
ptl_process_t
ptl_uid_t
ptl_process_t
ptl_pt_index_t
ptl_handle_md_t
void *

ptl_match_bits_t

ptl_size_t
ptl_handle_md_t
ptl_size_t
bytes
bytes

put_md_handle
ack_req

target_id
pt_index
put_md_handle
user_ptr

match_bits

remote_offset
get_md_handle
put_md_handle
operand
put_md_handle

indicates the type of atomic
operation and datatype
options field from NI associated with MD

local information
local information

opt. if ack_req =P TL_NO_ACK_REQ
opt. if ack_req =P TL_NO_ACK_REQ
or ack_req =P TL_CT_ACK_REQ
or ack_req =P TL_OC_ACK_REQ
optional if the P T L_N I_NO_MAT CH ING option
is set.

destination of reply
length member
Used in CSWAP and MSWAP operations
user data

128

4.2.2 Receiving Messages

When an incoming message arrives on a network interface, the communication system first checks that the target
process identified in the request is a valid process that has initialized the network interface (i.e., that the target process
has a valid portal table). If this test fails, the communication system discards the message and increments the dropped
message count for the interface. The remainder of the processing depends on the type of the incoming message. put,
get, and atomic messages go through portals address translation (searching a list) and must then pass an access control
test. In contrast, acknowledgment and reply messages bypass the access control checks and the translation step.

Acknowledgment messages include the memory descriptor handle used in the original PtIPuto operation. This
memory descriptor will identify the event queue where the event should be recorded. Upon receipt of an
acknowledgment, the runtime system only needs to confirm that the memory descriptor and event queue still exist.
Should any of these conditions fail, the message is simply discarded, and the dropped message count for the interface
is incremented. Otherwise, the system builds an acknowledgment event from the information in the acknowledgment
message and adds it to the event queue.

Reception of reply messages is also relatively straightforward. Each reply message includes a memory descriptor
handle. If this descriptor exists, it is used to receive the message. A reply message will be dropped if the memory
descriptor identified in the request does not exist or it has become inactive. In this case, the dropped message count
for the interface is incremented. Every memory descriptor accepts and truncates incoming reply messages,
eliminating the other potential reasons for rejecting a reply message.

The critical step in processing an incoming put, get, or atomic request involves mapping the request to a match list
entry (or list entry). This step starts by using the portal index in the incoming request to identify a list of match list
entries (or list entries). On a matching interface, the list of match list entries is searched in sequential order until a
match list entry is found whose match criteria matches the match bits in the incoming request and that accepts the
request. On a non-matching interface, the first item on the list is used and a permissions check is performed.

Because acknowledgment and reply messages are generated in response to requests made by the process receiving
these messages, the checks performed by the runtime system for acknowledgments and replies are minimal In
contrast, put, get, and atomic messages are generated by remote processes and the checks performed for these
messages are more extensive. Incoming put, get, or atomic messages may be rejected because:

• the portal index supplied in the request is not valid;

• the match bits supplied in the request do not match any of the match list entries that accepts the request, or

• the access control information provided in the list entry does not match the information provided in the
message.

In all cases, if the message is rejected, the incoming message is discarded and the dropped message count for the
interface is incremented.

A list entry or match list entry may reject an incoming request if the P T L_ME_OP_P UT or P TL_ME_OP_GET option has
not been enabled and the operation is put, get, or atomic (Table 4.7). In addition, a match list entry may reject an
incoming request if the length specified in the request is too long for the match list entry and the
P TL_ME_NO_TRUNCATE option has been enabled. Truncation is always enabled on standard list entries; thus, a
message cannot be rejected for this reason on a non-matching network interface.

Also see Sections 2.4 and Figure 2.11.

4.3 Event Generation and Error Reporting

The types of events and when they are generated is discussed in Chapter 3.13. Operations related to memory
descriptors, list entries, and match list entries may both generate a full event (of type ptl_event_t) and update a

129

Table 4.7. Portals Operations and ME/LE Flags: A - indicates that the oper-
ation will be rejected, and a • indicates that the operation will be accepted.

Target ME/LE Flags Operation
put get atomic PtlSwap() PtlFetchAtomic()

none
P TL_ME_OP_PUT/P T L_LE_OP_P UT

P TL_ME_OP_GET/P TL_LE_OP_GET

both

• •
•

• • •

•

•

•

•

counting event. There is no implied ordering between the generation of a full event and updating of a counting event,
although if the user requests both a full event and a counting event, the implementation must deliver both in a timely
fashion.

Acknowledgment events require special attention due the the flexibility Portals provides the user in controlling
acknowledgments. An acknowledgment event is only generated if the initiator requests an acknowledgment and
either the target enables sending an acknowledgment in the list entry or an error occurs during the operation.
Requesting a full acknowledgment (P TL_ACK_REQ) without an event queue on the associated memory descriptor (or
with success events disabled) still results in the generation of a counting event.

130

Bibliography

[1] N.R. Adiga and et. al. An Overview of the BlueGene/L Supercomputer. In In Proceedings of the SC 2002
Conference on High Performance Networking and Computing, Baltimore, MD, November 2002.

[2] Robert Alverson. Red Storm. In Invited Talk, Hot Chips 15, August 2003.

[3] Christian Bell and Dan Bonachea. A new dma registration strategy for pinning-based high performance
networks. Parallel and Distributed Processing Symposium, International, 0:198a, 2003.

[4] Ron Brightwell, David S. Greenberg, Arthur B. Maccabe, and Rolf Riesen. Massively Parallel Computing with
Commodity Components. Parallel Computing, 26:243-266, February 2000.

Ron Brightwell, Trammell Hudson, Rolf Riesen, and Arthur B. Maccabe. The Portals 3.0 message passing
interface. Technical Report SAND99-2959, Sandia National Laboratories, December 1999.

[6] Ron Brightwell and Arthur B. Maccabe. Scalability limitations of VIA-based technologies in supporting MPI.
In Fourth MPI Developers' and Users' Conference, March 2000.

[7] Ron Brightwell and Lance Shuler. Design and implementation of MPI on Puma portals. In Proceedings of the
Second MPI Developer's Conference, pages 18-25, July 1996.

[8] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn, Chuck Koelbel, and Lauren
Smith. Introducing openshmem: Shmem for the pgas community In Proceedings of the Fourth Conference on
Partitioned Global Address Space Programming Model, page 2. ACM, 2010.

[9] Compaq, Microsoft, and Intel. Virtual Interface Architecture Specification Version 1.0. Technical report,
Compaq, Microsoft, and Intel, December 1997.

[10] Cray Research, Inc. SHMEM Technical Note for C, SG-2516 2.3, October 1994.

[11] Infiniband Trade Association. http://www.infinibandta.org, 1999.

[12] Y. Ishikawa, H. Tezuka, and A. Hori. PM: A High-Performance Communication Library for Multi-user Parallel
Envrionments. Technical Report TR-96015, RWCP, 1996.

[13] Mario Lauria, Scott Pakin, and Andrew Chien. Efficient Layering for High Speed Communication: Fast
Messages 2.x. In Proceedings of the IEEE International Symposium on High Performance Distributed
Computing, 1998.

[5]

[14] Arthur B. Maccabe, Kevin S. McCurley, Rolf Riesen, and Stephen R. Wheat. SUNMOS for the Intel Paragon:
A brief user's guide. In Proceedings of the Intel Supercomputer Users' Group. 1994 Annual North America
Users' Conference., pages 245-251, June 1994.

[15] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The International Journal of
Supercomputer Applications and High Performance Computing, 8:159-416, 1994.

[16] Message Passing Interface Forum. MPI: A Message-Passing Interface Version 3.1, June 2015.

[17] Myricom, Inc. The GM Message Passing System. Technical report, Myricom, Inc., 1997.

[18] Rolf Riesen, Ron Brightwell, and Arthur B. Maccabe. The evolution of Portals, an API for high performance
communication. To be published, 2005.

131

[19] Rolf Riesen, Ron Brightwell, Arthur B. Maccabe, Trammell Hudson, and Kevin Pedretti. The Portals 3.3
message passing interface: Document revision 2.0. Technical report SAND2006-0420, Sandia National
Laboratories, January 2006.

[20] Lance Shuler, Chu Jong, Rolf Riesen, David van Dresser, Arthur B. Maccabe, Lee Ann Fisk, and T. Mack
Stallcup. The Puma operating system for massively parallel computers. In Proceeding of the 1995 Intel
Supercomputer User's Group Conference. Intel Supercomputer User's Group, 1995.

[21] Task Group of Technical Committee T11. Information Technology - Scheduled Transfer Protocol - Working
Draft 2.0. Technical report, Accredited Standards Committee NCITS, July 1998.

132

Appendix A

Portals Design Guidelines

Early versions of Portals were based on the idea of using data structures to describe to the transport mechanism how
data should be delivered. This worked well for the Puma OS on the Intel Paragon but not so well under Linux on
Cplant. The solution was to create a thin API over those data structures and add a level of abstraction. The result was
Portals 3.x. While Portals 3.x supported MPI well for kernel level implementations, more advanced offloading
network interfaces and the rising importance of PGAS models exposed several weaknesses. This led to several
enhancements that became Portals 4.x.

When designing and expanding this API, we were guided by several principles and requirements. We have divided
them into three categories: requirements that must be fulfilled by the API and its implementations, requirements that
should be met, and a wish list of things that would be nice if Portals 4.x could provide them.

A.1 Mandatory Requirements

Message passing protocols. Portals must support efficient implementations of commonly used message passing
protocols.

Partitioned Global Address Space (PGAS) Support. Portals must support efficient implementations of typical
PGAS languages and programming interfaces.

Portability. It must be possible to develop implementations of Portals on a variety of existing message passing
interfaces.

Scalability. It must be possible to write efficient implementations of Portals for systems with millions of nodes.

Performance. It must be possible to write high performance (e.g., low latency, high bandwidth) implementations of
Portals on existing hardware and on hardware capable of offloading Portals processing.

Multiprocess support. Portals must support use of the communication interface by tens of processes per node.

Communication between processes from different executables. Portals must support the ability to pass messages
between processes instantiated from different executables.

Runtime independence. The ability of a process to perform message passing must not depend on the existence of an
external runtime environment, scheduling mechanism, or other special utilities outside of normal UNIX process
startup.

Memory protection. Portals must ensure that a process cannot access the memory of another process without
consent.

133

A.2 The Will Requirements

Operational API. Portals will be defined by operations, not modifications to data structures. This means that the
interface will have explicit operations to send and receive messages. (It does not mean that the receive operation will
involve a copy of the message body.)

MPI. It will be possible to write an efficient implementation of the point-to-point operations in MPI 1 using Portals.

PGAS. It will be possible to write an efficient implementation of the one-sided and atomic operations found in
PGAS models using Portals.

Network Interfaces. It will be possible to write an efficient implementation of Portals using a network interface that
provides offload support.

Operating Systems. It will be possible to write an efficient implementation of Portals using a lightweight kernel or
Linux as the host OS.

Message Size. Portals will not impose an arbitrary restriction on the size of message that can be sent.

OS bypass. Portals will support an OS bypass message passing strategy. That is, high performance implementations
of the message passing mechanisms will be able to bypass the OS and deliver messages directly to the application.

Put/Get. Portals will support remote put/get operations.

Packets. It will be possible to write efficient implementations of Portals that packetize message transmission.

Receive operation. The receive operation of Portals will use an address and length pair to specify where the
message body should be placed.

Receiver managed communication. Portals will support receive-side management of message space, and this
management will be performed during message receipt.

Sender managed communication. Portals will support send-side management of message space.

Parallel I/0. Portals will be able to serve as the transport mechanism for a parallel file 1/0 system.

Gateways. It will be possible to write gateway processes using Portals. A gateway process is a process that receives
messages from one implementation of Portals and transmits them to another implementation of Portals.

Asynchronous operations. Portals will support asynchronous operations to allow computation and communication
to overlap.

Receive side matching. Portals will allow matching on the receive side before data is delivered into the user buffer.

A.3 The Should Requirements

Message Alignment. Portals should not impose any restrictions regarding the alignment of the address(es) used to
specify the contents of a message.

Striping. Portals should be able to take advantage of multiple interfaces on a single logical network to improve the
bandwidth

Socket API. Portals should support an efficient implementation of sockets (including UDP and TCP/IP).

Internetwork consistency. Portals should not impose any consistency requirements across multiple
networks/interfaces. In particular, there will not be any memory consistency/coherency requirements when messages
arrive on independent paths.

134

Ease of use. Programming with Portals should be no more complex than programming traditional message passing
environments such as UNIX sockets or MPI. An in-depth understanding of the implementation or access to
implementation-level information should not be required.

Minimal API. Only the smallest number of functions and definitions necessary to manipulate the data structures
should be specified. That means, for example, that convenience functions, which can be implemented with the
already defined functions, will not become part of the API.

135

136

Appendix B

README Definition

Each Portals implementation should provide a README file that details implementation-specific choices. This
appendix describes such a file by listing which parameters should be specified.

Limits. The call PtINIInito accepts a desired set of limits and returns a set of actual limits. The README should
state the possible ranges of actual limits for this implementation, as well as the acceptable ranges for the values
passed into PtINIInit(). See Section 3.6.1

Resource Usage. The implementation will be required to consume some user memory for the limits specified in
PtINIInito. The README should document the memory resources required by the implementation and should
enumerate the relationship between the memory resources consumed and the limits requested in the desired set of
limits passed into PtINIInit(). See Section 3.6.1

Status Registers. Portals define a set of status registers (Section 3.3.7). The type ptl_sr_index_t defines the
mandatory PTL_SR_DROP_COUNT, PTL_SR_PERMISSION_VIOLATIONS, and PTL_SR_OPERATION_VIOLATIONS, as
well as all other, implementation specific indexes. The README should list what indexes are available and what
their purposes are.

Network interfaces. Each Portals implementation defines PTL_IFACE_DEFAULT to access the default network
interface on a system (Sections 3.3.5 and 3.6.2). An implementation that supports multiple interfaces must specify
the constants used to access the various interfaces through PtINIInito.

Portal table. The Portals specification says that a compliant implementation must provide at least 250 entries per
portal table (Section 3.6). The README file should state how many entries will actually be provided.

Alignment. If an implementation favors specific alignments for memory descriptors, the README should state
what they are and the (performance) consequences if they are not observed (Sections 3.10.1 and 3.12.1).
Furthermore, if the implementation supports unaligned atomic operations, it should be documented.

137

138

Appendix C

Summary of Changes

This chapter documents significant changes to the Portals specification between releases. Semantic changes are
always noted and significant corrections to the specification are also noted.

C.1 Portals 4.2

• Updated Section 3.15.4 to ensure that atomics operations that match on the overflow list do not perform atomic
operations on the overflow buffer. The atomic operation should be checked for in the event from the overflow
list and the host is responsible for ensuring the atomic is applied correctly to the target buffer.

• Clarified the behavior of truncation checks for MEs with the PTL_ME_NO_TRUNCATE option set. Zero byte
messages will never cause a match to fail, even if their offsets do not pass a truncation check.

• Section 3.12 was updated to clarify that messages with a length of zero bytes are exempt from P TL_NI_SEGV
error checks.

• Section 3.15.1 was modified to allow for full events to be generated for PTL_CT_ACK_REQ and
PTL_OC_ACK_REQ event types, but does not guarantee that these full events will contain valid entries for all of
the fields for a PTL_EVENT_ACK shown in Table 3.3.

• Added text in Section 2.4 that emphasizes that overflow events must only be posted after the corresponding
payload has been delivered to the appropriate buffer.

• Clarified in Section 2.5 that implementations are allowed to alter data in a user buffer used in a reply operation,
but only after that operation has completed.

• Added text in Section 2.6 and 2.6.1 that makes it clear that Portals does not provide write ordering of bytes in
individual messages.

• Section 2.6.3 was updated to remove the restriction that "The result of two simultaneous operations targeting
the same memory address through different list entries is undefined". Section 2.6.3 now describes the expected
behavior of simultaneous operations targeting the same memory through different list entries (identical to
simultaneous operations on the same list entry).

• Text in Section 2.6.4 was re-written to make it clearer that unexpected messages maintain sufficient
information to enable MPI matching ordering semantics.

• Section 2.7 removed direct references to InfiniBand operation and clarified that RNR NACKs can inhibit
pipelining regardless of network.

• Defined the exact semantics used by Portals for counting event arithmetic in Section 3.14.

• Added a discussion to Section 3.14.9 noting that while it is possible to enter negative values through the C
interface for CT calls, they will be interpreted as very large positive numbers.

139

• Added text in discussion in Section 3.16 encouraging users to order calls to triggered operation calls by
increasing trigger threshold.

• Added discussion text for atomic PTL_DIFF in Section 3.15.4 to clarify that the operation field in an atomic
event may be ignored for successful PTL_DIFF operations.

• Updated discussion in Section 3.7.1 to make it clear that the options specified to PtIPTAlloc() are binding
guarantees consistent with the rest of the text.

• Added text to Section 3.6.1 to clarify that although resource limits are specified separately for each NI type, the
resources for each specific NI type are shared amongst all users of that NI.

• Fixed a typo in Section 3.6.1 that erroneously stated the maximum index of PTs was 63, when it should be 249
(250 total PTs).

• Clarified in Section 3.6.2 that in the case where an implementation provided actual limits to the NI that are
equal to the maximum value of the corresponding type of that limit, the actual resources provided may be
bounded by another system resource that is outside of the Portals implementation's control.

• Added clarification to Section 3.6.6 that an application can only create two logically addressed Ms (one
matching and one non-matching). Also noted that the PTL_IGNORED return code for PtISetMapo does not
indicate success, only that no error occurred and the map was not changed.

• Changed return code for PtIGetMapo from PTL_NO_SPACE to PTL_IGNORED for the case where there was
no mapping set for the requested logical network interface as it is not due to lack of memory resources, but a
lack of the mapping existing that is the result of the return code (the request was ignored as it was invalid for
the requested map).

• Added text to Sections 3.11.4 and 3.12.4 that notes that persistent ME/LEs can cause multiple matches in a
PtILESearch() or PtIMESearch() call while use-once ME/LEs will only match once.

• Removed discussion text from Sections 3.11.4 and 3.12.4 that was already covered in the preceding
PtILEAppend() and PtIMEAppend() descriptions in Sections 3.11.2 and 3.12.2.

• Clarified in Section 3.15.2 that PTL_EVENT_ACK events indicate that the remote operation was fully processed
by the target.

• Added text to Section 3.15.4 to explain what conditions may exist that would result in a locally managed offset
that is larger than mlength.

C.2 Portals 4.1

• Clarified in Section 3.2 that the PTL_MINOR_VERS ION constant will be the first integer value in the minor
version numbering (e.g. 4.0.2 minor version is 0).

• Changed the name of user ID to usage ID in Section 3.8.1. This is meant to clarify that UIDs do not need to be
tied to the system defined user identification values.

• Clarified that for interfaces that support PTL_COHERENT_ATOMICS PtlAtomicSync() is not required and that
atomics are coherent with host operations in 3.15.4.

• Defined protected headers in section 2.4 with regards to usage IDs. Protected headers were referred to in the
text in previous Portals versions but never explicitly defined.

• Clarified the role of PtlAtomicSync() in 3.15.8 with respect to the visibility of data on the host.

• Provided a guarantee in section 3.16 that operations that trigger on the same threshold value will trigger in the
order in which the triggered operations were posted.

140

• Clarified that in section 2.4 when matching occurs from a PtIMEAppend() or PtILEAppend() in the overflow
list, the mlength returned is that of the original placement due to the overflow list buffer posted, not that copied
into the user supplied buffer. Length checking does not occur on overflow list matching and therefore the user
must check that the mlength is not greater than the length of the posted buffer to be assured that truncation has
not occurred.

• Corrected and clarified table 4.7 concerning what operations are accepted based on the target's ME/LE flags.

• Clarified that the options specified to PtIPTAlloco in section 3.7.1 are binding guarantees, not non-binding
hints.

• Added PTL_DIFF atomic operation in section 3.15.4, which computes the difference between the target and
initiator. While PTL_DIFF is equivalent to negating the initiator and performing a PTL_SUM, PTL_DIFF
potentially saves a memory copy.

• Increase the minimum number of available portal table entries from 64 to 250 (Section 3.6).

• In section 3.14.6 clarified that the input 'test' in the arguments section is greater than or equal to this value on
successful return as stated in the function description.

• Clarify that either local or remote event completions are sufficient conditions to allow the user to reuse a buffer
in section 3.13.2.

• Changed PTL_LE_EVENT_SUCCESS_DISABLE to only disable success events that are counted by
PTL_LE_EVENT_CT_COMM and PTL_LE_EVENT_CT_OVERFLOW (section 3.11).

• Noted in Section 2.7 that local operations continue to be processed on a disabled portals table entry.

C.3 Portals 4.0.2

• Clarify that P T L_EVENT_AUTO_FREE delivery should also consider counting events.

• Note that the event in PtIEOGet(), PtIEQPOII(), and PtIEQWait() is copied from the EQ not removed and that a
pointer to the local copy of the ptl_event_t structure is returned

• Change the semantics of fairness for PtIEOPOII(), events are now returned on the first queue in the array of
handles. Rationale: Supporting round robin fairness between different calls of PtIEOPOII0 and determining
when a given array of handles matches a previously used array of handles and tracking where in the round
robin rotation each PtIEQPOII0 call should start at requires significant state tracking by the implementation as
well as a comparison of the entire event queue handles array to determine if it has been used previously.

• Change triggered events to only occur on the value of successes rather than successes and failures. This allows
for some possible recovery should failures occur and be recoverable.

• Change PTL_TOTAL_DATA_ORDERING to provide total data ordering only when both initiator and target NIs
have enabled TDO. When targets do not support TDO, they are free to not provide it for incoming messages.
Clarify the differences between max_waw_ordered_size and PTL_TOTAL_DATA_ORDERING.

• Add specification version preprocessor constants to assist application developers in supporting minor revisions
along the Portals 4 lifespan. Also require implementations to provide both portals .h and portals 4 . h header
files.

• Clarify behavior of locally managed offsets and minimum free autounlink for persistent match list entries on
the priority list which match headers in the unexpected headers list.

• Clarify that PTL_LE_EVENT_COMM_DISABLE and PTL_ME_EVENT_COMM_DISABLE should also disable the
generation of PTL_EVENT_FETCH_ATOMIC events. Also clarify that PTL_LE_EVENT_CT_COMM and
PTL_ME_EVENT_CT_COMM should cause the counting event to be updated for PTL_EVENT_FETCH_ATOMIC
events.

141

• Clarified the behavior of P TL_EVENT_AUTO_FREE when used with a list entry/match list entry which disables
unexpected headers.

• Clarified that PtISwap() returns the value from the target prior to the operation being performed.

• Updated PtlAtomic() function descriptions to be consistent with text on PTL_COHERENT_ATOMICS.

• Clarify that PUBDPOII0 and PtICTPoll() may be called with event queues and counting event handles
associated with different logical network interfaces as long as they share the same physical network interface.

• Change the semantics of PTL_MD_VOLATILE. Implementations are required to provided volatile semantics if the
operation length is less than or equal to max_volatile_size, but also must not return an error solely because the
operation length is greater than max_volatile_size.

• Added PTL_EVENT_ERROR event. this event is intended to be used when an unspecified error may be detectable
and recoverable by an application.

• Added clarification to atomics length argument that if it is not a integral multiple of the datatype size that it
may be truncated to zero, a multiple of the datatype or return PTL_ARG_INVALID.

• Added PTL_NI_SEGV and P TL_NI_NO_MATCH to the ptl_ni_fail_t definition in Section 3.13.3

C.4 Portals 4.0.1

• Specify that P TL_EVENT_AUTO_UNL INK must come after all other events on a list entry / match list entry.

• PTL_EVENT_PT_DISABLED, PTL_EVENT_LINK, PTL_EVENT_AUTO_UNLINK, and PTL_EVENT_AUTO_FREE should
provide a user_Nr and nijail_type and not a start and hdr_data field.

• For clarity, remove "and return" from the description of P TL_MIN, P TL_MAX, P TL_SUM, P TL_P ROD , P TL_LOR,
PTL_LAND, PTL_BOR, PTL_BAND, PTL_LXOR, PTL_BXOR from Section 3.15.4.

C.5 Portals 4.0

The most recent version of this document described Portals version 3.3 [19]. Since then we have made changes to the
API and semantics of Portals, as well as changes to the document. This appendix summarizes the changes between
version 3.3 and the current 4.0 version. Many of the fundamental changes were driven by the desire to reduce the
tight coupling required between the application processor and the portals processor, but some additions were made to
better support lighter weight communications models such as PGAS.

Foremost, Portals version 4.0 was substantially enhanced to better support the various PGAS programming models.
Communication operations that do not include matching were added along with key atomic operations. In addition,
the ordering definition was substantially strengthened relative to Portals version 3.3 for small messages. In support of
the lightweight communication semantics required by PGAS models, lightweight "countine events and
acknowledgments were added. A PtlAtomic() function was added to support functionality commonly provided in
PGAS models. Finally, the Portals ordering model was substantially expanded to better support some PGAS models.

An equally fundamental change in Portals version 4.0 adds a mechanism to cope better with the concept of
unexpected messages in MPI. Whereas version 3.3 used PtIMDUpdate() to atomically insert items into the match list
so that the MPI implementation could manage unexpected messages, version 4.0 adds an overflow list where the
application provides buffer space that the implementation can use to store unexpected messages. The implementation
is then responsible for matching new list insertions to items that have arrived and are resident in the overflow list
space. This change was necessary to eliminate round trips between the processor and the NIC for each item that was
added to the match list (now named the priority list).

142

A third major change separated all resources for initiators and targets. Memory descriptors are used by the initiator to
describe memory regions while list entries are used by targets to describe the memory region and matching criteria
(in the case of match list entries). This separation of resources was also extended to events, where the number of
event types was significantly reduced and only required fields for a given event type must be defined.

To better offload collective operations, a set of triggered operations were added. These operations allow an
application to build non-blocking, offloaded collective operations with independent progress. They include variants
of both the data movement operations (get and put) as well as the atomic operations.

Another set of changes arise from a desire to simplify hardware implementations. The threshold value was removed
from the target and was replaced by the ability to specify that a match list entry is "use once' or "persistent7. List
insertions occur only at the tail of the list, since unexpected message handling has been separated out into a separate
list.

Access control entries were found to be a non-scalable resource, so they have been eliminated. At the same time, it
was recognized that the PTL_LE_OP_PUT and PTL_LE_OP_GET semantics required a form of matching. These two
options along with the ability to include usage ID based authentication were moved to permissions fields on the
respective list entry or match list entry.

Ordering only at the message level was found to be insufficient for many PGAS models, which often require ordering
of data. Unfortunately, uniformly requiring data ordering could create unnecessary performance constraints. As such,
the ordering definition has been expanded to include data ordering and to let the user disable that ordering and
message ordering.

143

A

Index

A
ack_req (field) 93, 99, 104, 106, 126, 128
acknowledgment see operations
acknowledgment type 92, 92
actual (field) 32, 33, 43-45, 58, 66, 140
actual_map_size (field) 48
address space opening 21
address translation 21, 23, 26, 30, 129
addressing, portals 35
alignment 137
API 13, [14]
API summary 113
application bypass 18, 19, 20, 21
application space 23
argument names see structure fields
ASC [14]
ASCI [14]
Atomic

alignment 96, 137
atomic see operations

datatypes 97
operations 96

atomic operation 21, 24, 95, 115, 116
atomic swap see swap
atomic_operation (field) 81
atomic_type (field) 81

B
background 18
buffer alignment 55, 60, 68, 137
bypass

application 18, 19, 20, 21
OS 18, 19, 20, 134

c
CAF 17
changes, API and document 139
communication model 19
connection-oriented 18
connectionless 18, 19
constants 38

PTL_ACK_REQ 37, 92, 117, 126, 130
PTL_BAND 97, 98, 117, 142
PTL_BOR 97, 98, 117, 142
PTL_BXOR 97, 98, 117, 142
PTL_COHERENT_ATOMICS 43, 95, 102, 117,

140, 142
PTL_CSWAP 95, 97, 98, 101, 102, 118

144

PTL_CSWAP_GE 97, 98, 118
PTL_CSWAP_GT 97, 98, 118
PTL_CSWAP_LE 97, 98, 118
PTL_CSWAP_LT 97, 98, 118
PTL_CSWAP_NE 97, 98, 118
PTL_CT_ACK_REQ 92, 118, 126, 128, 139
PTL_CT_NONE 39, 56, 60, 68, 118
PTL_DIFF 96-98, 118, 140, 141
PTL_DOUBLE 98, 118
PTL_DOUBLE_COMPLEX 98, 118
PTL_EQ_NONE 39, 49, 56, 76, 118
PTL_EVENT_ACK . 34, 55, 58-60, 67, 68, 75, 76,

78-81, 92, 93, 96, 99, 118, 139, 140
PTL_EVENT_ATOMIC . 61, 62, 70, 75, 79-81, 96,

98, 118
PTL_EVENT_ATOMIC_OVERFLOW . 61, 62, 65,

70, 73, 75, 79, 81, 96, 98, 118
PTL_EVENT_AUTO_FREE 59, 61, 66, 67, 69, 70,

75, 79, 81, 118, 141, 142
PTL_EVENT_AUTO_UNLINK 59, 61, 66, 67, 70,

75, 76, 79, 81, 118, 142
PTL_EVENT_ERROR 76, 79, 81, 142
PTL_EVENT_FETCH_ATOMIC 61, 62, 70, 75,

79-81, 100, 118, 141
PTL_EVENT_FETCH_ATOMIC_OVERFLOW

61, 62, 65, 70, 73, 75, 79, 81, 100, 118
PTL_EVENT_GET .. 61, 62, 70, 74, 75, 79-81, 94,

118
PTL_EVENT_GET_OVERFLOW 61, 62, 65, 70,

73, 74, 79, 81, 94, 118
PTL_EVENT_LINK 61, 62, 69, 71, 75, 79, 81, 118,

142
PTL_EVENT_PT_DISABLED . 28, 34, 50, 61, 62,

70, 75, 79, 81, 82, 118, 142
PTL_EVENT_PUT .. 28, 61, 62, 70,74,75, 79-81,

93, 98, 118
PTL_EVENT_PUT_OVERFLOW 28,61, 62,65,

70, 73, 75, 79, 81, 93, 118
PTL_EVENT_REPLY ...34, 55, 58,75,78, 79,81,

94, 96, 100, 101, 118
PTL_EVENT_SEARCH 61, 62,65,70, 73,76,

79-81, 118
PTL_EVENT_SEND 55, 58, 75, 76,78-81, 93,96,

99, 100, 118
PTL_FLOAT 98,118
PTL_FLOAT_COMPLEX 98,118
PTL_IFACE_DEFAULT 39, 118,137
PTL_INT16_T 97,119
PTL_INT32_T 97,119
PTL_INT64_T 97,119

C
PTL_INT8_T 97, 119
PTL_INVALID_HANDLE 39, 112, 119
PTL JOVEC 54, 56, 59, 61, 66, 69, 96, 119
PTL_LAND 97, 98, 119, 142
PTL_LE_ACK_DISABLE 61, 119
PTL_LE_EVENT_COMM_DISABLE 61, 119, 141
PTL_LE_EVENT_CT_B YTES 62, 119
PTL_LE_EVENT_CT_COMM 62, 119, 141
PTL_LE_EVENT_CT_OVERFLOW 62, 119, 141
PTL_LE_EVENT_FLOWCTRL_DISABLE 61, 62,

119
PTL_LE_EVENT_LINK_DISABLE 61, 119
PTL_LE_EVENT_OVER_DISABLE 61, 119
PTL_LE_EVENT_SUCCESS_DISABLE 61, 119,

141
PTL_LE_EVENT_UNLINK_DISABLE 61, 62,

119
PTL_LE _IS_ACCESSIBLE 59, 61, 119
PTL_LE_OP_GET 60, 119, 130, 143
PTL_LE_OP_PUT 60, 119, 130, 143
PTL_LE_UNEXPECTED_HDR_DISABLE ... 61,

119
PTL_LE_USE_ONCE . 49, 59, 61, 62, 65, 75, 119,

122
PTL_LONG_DOUBLE 96, 98, 119
PTL_LONG_DOUBLE_COMPLEX 96, 98, 119
PTL_LOR 97, 98, 119, 142
PTL_LXOR 97, 98, 120, 142
PTL_MAJOR_VERSION 38
PTL_MAX 97, 98, 120, 142
PTL_MD_EVENT_CT_ACK 55, 120
PTL_MD_EVENT_CT_B YTES 56, 92, 120
PTL_MD_EVENT_CT_REPLY 55, 120
PTL_MD_EVENT_CT_SEND 55, 120
PTL_MD_EVENT_SEND_DISABLE 55, 120
PTL_MD_EVENT_SUCCESS_DISABLE 55, 120
PTL_MD_UNORDERED 32, 33, 56, 120
PTL_MD_VOLATILE 43, 56, 120, 142
PTL_ME_ACK_DISABLE 69, 120
PTL_ME_EVENT_COMM_DISABLE 70, 76, 120,

141
PTL_ME_EVENT_CT_BYTES 70, 120
PTL_ME_EVENT_CT_COMM 70, 120, 141
PTL_ME_EVENT_CT_OVERFLOW 70, 120
PTL_ME_EVENT_FLOWCTRL_DISABLE ...70,

120
PTL_ME_EVENT_LINK_DISABLE 69, 120
PTL_ME_EVENT_OVER_DISABLE 70, 120
PTL_ME_EVENT_SUCCESS_DISABLE 70, 120
PTL_ME_EVENT_UNLINK_DISABLE ... 70, 76,

120
PTL_ME _IS_ACCES SIBLE 66, 69, 120
PTL_ME_MANAGE_LOCAL .. 68, 69, 94, 95, 99,

101, 102, 120, 126

145

PTL_ME_MAY_ALIGN 69, 96, 121
PTL_ME_NO_TRUNCATE .. 30, 49, 69, 121, 122,

129, 139
PTL_ME_OP_GET 68, 96, 121, 129, 130
PTL_ME_OP_PUT 68, 96, 121, 129, 130
PTL_ME_UNEXPECTED_HDR_DISABLE ...69,

121
PTL_ME_USE_ONCE 49, 69-71, 73, 75, 121, 122
PTL_MIN 96, 98, 121, 142
PTL_MINOR_VERSION 38, 140
PTL_MSWAP 95, 97, 98, 101, 102, 121
PTL_NI_DROPPED 78, 121
PTL_NI_LOGICAL 39, 44, 121
PTL_NI_MATCHING 44, 121
PTL_NI_NO_MATCH 65, 73, 76, 78, 121, 142
PTL_NI_NO_MATCHING .. 44, 59, 121, 126-128
PTL_NI_OK 65, 73, 76, 77, 81, 121
PTL_NI_OP_VIOLATION 60, 68, 78, 121
PTL_NI_PERM_VIOLATION 60, 68, 78, 121
PTL_NI_PHYSICAL 39, 44, 121
PTL_NI_PT_DISABLED 34, 78, 121
PTL_NI_SEGV 54, 59, 66, 78, 121, 139, 142
PTL_NI_UNDELIVERABLE 77, 78, 122
PTL_NID_ANY 39, 70, 122
PTL_NO_ACK_REQ 92, 122, 126, 128
PTL_OC_ACK_REQ ... 92, 93, 122, 126, 128, 139
PTL_OVERFLOW_LIST 62, 71, 122
PTL_PID_ANY 39, 44, 70, 122
PTL_PID_MAX 44, 122
PTL_PRIORITY_LIST 62, 71, 122
PTL_PROD 97, 98, 122, 142
PTL_PT_ANY 49, 122
PTL_PT_FLOWCTRL 34, 49, 122
PTL_PT_ONLY_TRUNCATE 49, 50, 122
PTL_PT_ONLY_USE_ONCE 49, 50, 122
PTL_RANK_ANY 39, 70, 122
PTL_SEARCH_DELETE 64, 65, 73, 122
PTL_SEARCH_ONLY 64, 65, 73, 122
PTL_SIZE_MAX 38, 54, 59, 66, 122
PTL_SR_DROP_COUNT 28, 34, 40, 122, 137
PTL_SR_OPERATION_VIOLATIONS .40, 60, 68,

123, 137
PTL_SR_PERMISSION_VIOLATIONS 40, 60, 68,

123, 137
PTL_SUM 97, 98, 123, 141, 142
PTL_SWAP 97, 98, 101, 102, 123
PTL_TARGET_BIND_INACCESSIBLE ... 43, 58,

59, 66, 123
PTL_TIME_FOREVER 85, 90, 123
PTL_TOTAL_DATA_ORDERING 32, 33, 43, 123,

141
PTL_UID_ANY 39, 60, 68, 123
PTL_UINT16_T 97, 123
PTL_UINT32_T 97, 123

C
PTL_UINT64_T 97, 123
PTL_UINT8_T 97, 123
summary 117

count (field) 81, 82
counting event

allocate 86
enable 55, 56, 62, 70
freeing 87
freeing triggered operations 88
get 88
increment 91
poll 89
set 90
triggered increment 109
triggered set 110
type 86
wait 89

counting events 61, 69, 85, 85
Cplant 13
CPU interrupts 19
ct_handle (field) 56, 58, 60, 68, 86-93, 109, 110
ct_handles (field) 89, 90

D
Data Buffers 30
data movement 21, 26, 35, 92
data types 38, 113
datatype (field) 98-102, 106, 108, 109
Deferred Communication Operations 110

end bundle 111
limit bundling 111
start bundle 111

design guidelines 133
desired (field) 32, 44, 45
discarded events 93
discarded messages 19, 22, 129

freeing 82
get 83
poll 84
type 78
wait 83

F
failure (field)
failure notification

86, 87, 89,91
77

faults 20
features (field) 32, 43, 58, 66,95
fetch and atomic operation 116
flow control

support
81,82

34
user-level 18

function return codes
functions

see return codes

PtlAtomic 25, 92, 95, 98, 99, 100, 103, 106,
113-115, 128, 142

PtlAtomicSync 95, 96, 102, 103, 103,115,117,140
Pt1CTAlloc 35, 86, 87,113-115,117
PfiCTCancelTriggered 88, 88,103,113,115
PfiCTFree 35, 86, 87, 87-90,113,115
Pt1CTGet 86, 88, 88, 90, 91,113,116

DMA
dropped message count

[14]
122, 129

dropped messages 40, 83-85, 117

E
eq_handle (field) 49,
eq_handles (field)

56, 58, 82-84, 125
84, 85

event 20, 25,60, 74
disable
occurrence

61, 70, 119, 120
76

overflow list 61, 70
types 74, 77
types (diagram) 77
unlink 61, 70

event (field)
event queue

83-85,88-90
[14]

allocation 81

146

Pt1CTInc 86,91,91,103,109,113,116
Pt1CTPo11 ... 35, 86, 89, 90, 90, 113, 115-117, 142
Pt1CTSet 86, 88, 90, 91, 110, 113, 116
Pt1CTWait 35, 86, 89, 89, 90, 113, 115-117
PtlEndBundle 111, 112, 112, 114, 116
Pt1EQAlloc 35, 37, 74, 81, 82, 113-117
Pt1EQFree 35, 74, 82, 82, 84, 85, 113, 116
Pt1EQGet 74, 83, 83, 84, 113, 116, 117, 141
Pt1EQPo11 35, 74, 83, 84, 85, 85, 113, 115-117, 141,

142
Pt1EQWait ... 35, 74, 83, 84, 84, 113, 116, 117, 141
PtlFetchAtomic 25, 60, 68, 75, 92, 95, 98, 100, 100,

101, 107, 108, 113-116, 130
PtlFini 40, 41, 41, 116, 117
PtlGet 92, 94, 94, 96, 105, 114-116, 127, 128
PfiGetId 43, 52, 53, 114-116
PtlGetMap 47, 48, 48, 114-117, 125, 140
PtlGetPhysId 43, 47, 52, 54, 114-116
PtlGetUid 52, 52, 114-116
PtlHandlelsEqual 112, 112, 113, 116, 117
PtlInit 37, 40, 41, 41, 116, 117
Pt1LEAppend .28, 34, 58, 62, 63, 64, 71, 74-76, 80,

113-117, 140, 141
Pt1LESearch 64, 65, 65, 73, 76, 114-116, 140
PfiLEUnlink 28, 58, 63, 64, 64, 113, 116, 117
Pt1MDBind 39, 54, 57, 57, 114, 116, 117
Pt1MDRelease 39, 54, 58, 58, 114, 116
Pt1MEAppend . 28, 34, 66, 71, 71-76, 80, 114-117,

140, 141
Pt1MESearch 73, 73, 76, 114-116, 140

F
Pt1MEUnlink 28, 35, 66, 72, 72, 114,
Pt1NIFini .. 42, 43, 45, 45, 84, 85, 89, 90,
Pt1NIHandle 38, 42, 46, 46, 113,
Pt1NIInit ... 32, 33, 42, 43, 44, 45, 47, 95,

117, 137

116, 117
114, 116
114, 116
114, 116,

Pt1NIStatus 40, 42, 46, 46,114-116
Pt1PTAlloc 49, 49, 82, 113-117,140, 141
Pt1PTDisable 35, 50, 50, 78,114-116
Pt1PTEnable 34, 35, 51, 51,114-116
Pt1PTFree 50, 50,114-117
Pt1Put 92, 93, 93, 95, 98, 99, 101,102, 104,

113-116, 126, 127, 129
Pt1SetMap 43, 47, 47,48, 114-117,125, 140
PtlStartBundle 111, 111,114, 116
PtlSwap . 60, 68, 75, 92, 95,98, 101, 101,108, 109,

113-116, 130, 142
PtlTriggeredAtomic 103, 106, 106,113-116
PtlTriggeredCTlnc ... 106,109, 109, 113,115, 116
Pt1TriggeredCTset 106, 110, 113,115, 116
PtlTriggeredFetchAtomic 107, 107,113-116
PtlTriggeredGet 103, 105, 105,113-116
PtlTriggeredPut 104, 104, 109,113-116
PtlTriggeredSwap
summary

108, 108,113-116
115

G
gather/scatter
get

see scatter/gather
see operations

get ID 53, 54
Get Map 48
get uid 52
get_md_handle (field) 96,100-102, 107, 108, 128

H
handle 38

comparison 112
operations 112

handle (field) 46
handlel (field) 112
handle2 (field) 112
hdr_data (field) . 76, 80,

109, 126, 142
header data
header, trusted

94,99,101, 102,104,

94,

106, 107,

114, 126
52

I
I/0 vector see scatter/gather, 56
ID 39

get 53, 54
network interface 39
node see node ID
process see process ID
thread see thread ID

uid (get) 52
usage see usage ID

id (field) 53, 54
identifier see ID
iface (field) 44, 45
ignore bits 30, 70
ignore_bits (field) 70
implementation notes 12
implementation, quality 45
increment (field) 91, 109
indexes, portal 39
initialization 40
initiator . . see also target, [14], 19, 21, 23, 24, 27, 30, 57,

59, 67, 75-80, 92-96, 100, 126-128, 130
initiator (field) 80
interrupt 19
interrupt latency 20
iov_base (field) 57
iov_len (field) 57

L
LE 58

access control 26
alignment 60
append 62
list types 62
options 60
pending operation 64
permissions 26
persistent 62
protection 26
search 64, 65

65
65

search and delete
search operations
unlink 58, 63, 64, 75, 116

le (field) 63, 65
le_handle (field) 63, 64
length (field) .. 43, 54-56, 58-60, 66, 68, 93, 95, 96, 99,

100, 102, 104-108, 126-128, 142
lightweight events 85
Limit Usage of Bundling 111
limits 42, 42, 114, 137
Linux 134
list [14], 58
list entries 19
list entry see LE, 58, 59
local offset see offset
local_get_offset (field) 100-102, 107, 108
local_offset (field) 93,95,99,104-106,127,128
local_put_offset (field) 100-102, 107, 108

M
map_size (field) 47, 48

147

mapping (field) 47, 48
match bits 30, 37, 39, 70, 94, 95, 99, 100, 102, 114,

126-129
match ID checking 72
match list 66
match list entry see ME, 59, 66, 70
match_bits (field) 70, 80, 94, 95,

109, 126-128
match_id (field)
matching address translation
max_atomic_size (field)
max_cts (field)
max_entries (field)
max_eqs (field)
max_fetch_atomic_size (field)
max_iovecs (field)
max_list_size (field)
max_mds (field)
max_msg_size (field)
max_pt_index (field)
max_triggered_ops (field)
max_unexpected_headers (field)
max_volatile_size (field) 43, 56, 142
max_war_ordered_size (field) 32, 33, 43
max_waw_ordered_size (field)
MD

alignment
bind
options
pending operation
release
unlink
volatile 43, 56

md (field) 57
md_handle (field) . 57, 58, 93, 95, 99, 104-106, 125-128
ME 66

access control 26, 30
alignment 68, 137
append 71
free 79, 118
ignore bits see ignore bits
link 79
match bits see match bits
message reject 129
options 68
pending operation 72
permissions 26, 30
persistent 71
protection 26, 30
search 65, 73, 76, 79, 118
search and delete 65
search operations 65
truncate 69, 121, 129
unlink 30, 66, 68, 72, 74-76, 79, 116, 118

99,100, 102, 104-107,

67, 70, 72
31

32,43,95,98-100, 102
42
42
42

43,95, 100, 101
43
43
42
43
43
43

35, 42, 45

32,33,43,141
54

55,137
57
55

58,126
 54,58,116

127

me (field) 71, 74
me_handle (field) 71, 72
memory descriptor see also MD, [14], 54
message [14]
message operation [14]
message rejection 129
messages, receiving 129
messages, sending 125
min_free (field) 30, 68
mlength (field) 28, 56, 62, 70, 76, 80, 92, 96, 140, 141
MPI [14], 17, 18, 26, 63, 72, 94, 134

progress rule 18, 20
MPI scalability 18
MPP [14]

N
NAL [14]
naming conventions 37
network [14]
network independence 18
network interface see also NI, 19, 37-40, 41, 43, 59, 129
network interface initialization 43
network interfaces

multiple 137
network scalability 17
new_ct (field) 91, 110
NI

options 44
retrieving logical maps 48
setting logical maps 47

NI fini 45
NI handle 46
NI init 43
NI status 46
ni_fail_type (field) .34, 54, 55, 59-61, 65, 66, 68, 70, 73,

76, 77, 81, 142
ni_handle (field) .. .43-54, 57, 62-65, 71, 73, 82, 87, 95,

111, 112
nid (field) 53
node [14]
node ID 26, 30, 39, 52
non-matching address translation 29
NULL LE 58
NULL ME 66

o
offset

local
remote

one-sided operation
opening into address space
operand
operand (field)

148

68,
26, 126-128

69, 80, 93-95, 120
68,80,94, 95, 99,101,102

19
21
128

95, 101,102,109

operation (field)
operation violations count
operations

acknowledgment
atomic 14, 21, 23, 24, 30, 32, 33, 43, 45, 56, 75, 76,

92, 98, 98, 125, 128-130
atomic sync 102
atomics 95
fetch and atomic 100
get 14, 21, 23, 24, 30, 32, 34, 43, 45, 56, 60, 61, 68,

69, 74-77, 94, 95, 96, 116, 119, 121, 125,
127-130

one-sided 19
put ... 14, 19, 21, 23, 25, 30, 32-34, 43, 45, 54, 56,

59-61, 64, 66, 68, 69, 72, 74-77, 92, 93, 93,
94,96,116,119,121,125-127,129,130

reply 23, 24, 32, 43, 45, 61, 69, 75, 77, 95, 125,
127-129

swap 101
two-sided 19, 30

options (field) 44, 49, 55, 60, 68, 126-128
Ordering 32

adaptive 33
long messages 33
overlapping regions 33
short messages 32
unexpected messages 33

ordering semantics 19, 32, 33, 56
OS bypass 18, 19, 20, 134
overflow list .. 22, 27, 30, 35, 58, 59, 65, 66, 76, 80, 142

99,101, 102, 106,107, 109
123

24,45,61, 69, 74-76,125-129

P
parallel job 19
pending operation see MD
performance 133
permission violations count 123
PGAS 17, 134
pid (field) 43-45, 53
portability 42
portal

indexes 39
table 41, 137
table index 49-51, 58, 66, 126-129

portal table entry 37, 48
allocation 49
disable 50
enable 51
freeing 50

portal table entry disabled event 118
Portals

early versions 13
Version 2.0 13
Version 3.0 13

portals

addressing see address translation
constants see constants, 38
constants summary 117
data buffers 30
data types 38, 113
design 133
functions see functions
functions summary 115
handle 38
multi-threading 35
naming conventions 37
operations see operations
ordering 32
return codes see return codes
return codes summary 116
scalability 19
sizes 38

portals.h 37
portals4.h 37
priority list [14], 22, 27, 29, 58, 59, 64, 73
process [14], 35
process ID . 26, 27, 30, 39, 44, 52, 52-54, 66, 70, 72, 93,

99, 100, 102, 114
well known 44

progress 20
progress rule 18, 20
protected space 23
PT

options 49
pt_index (field)49-51, 62-65, 71, 73, 80, 93, 95, 99,

100, 102, 104-108, 126-128
pt_index_req (field) 49
PtlAtomic (func) 25, 92, 95, 98, 99, 100, 103, 106,

113-115, 128, 142
PtlAtomicSync (func) .. 95, 96, 102, 103, 103, 115, 117,

140
PfiCTAlloc (func) 35, 86, 87, 113-115, 117
Pt1CTCancelTriggered (func) 88, 88, 103, 113, 115
Pt1CTFree (func) 35, 86, 87, 87-90, 113, 115
Pt1CTGet (func) 86, 88, 88, 90, 91, 113, 116
PfiCTInc (func) 86, 91, 91, 103, 109, 113, 116
PfiCTPoll (func) .. 35, 86, 89, 90, 90, 113, 115-117, 142
Pt1CTSet (func) 86, 88, 90, 91, 110, 113, 116
Pt1CTWait (func) 35, 86, 89, 89, 90, 113, 115-117
PtlEndBundle (func) 111, 112, 112, 114, 116
Pt1EQAlloc (func) 35, 37, 74, 81, 82, 113-117
Pt1EQFree (func) 35, 74, 82, 82, 84, 85, 113, 116
Pt1EQGet (func) 74, 83, 83, 84, 113, 116, 117, 141
Pt1EQPo11 (func) .. 35, 74, 83, 84, 85, 85, 113, 115-117,

141, 142
Pt1EQWait (func) . 35, 74, 83, 84, 84, 113, 116, 117, 141
PtlFetchAtomic (func) ... 25, 60, 68, 75, 92, 95, 98, 100,

100, 101, 107, 108, 113-116, 130
PtlFini (func) 40, 41, 41, 116, 117

149

P
PtlGet (func) 92, 94, 94, 96, 105, 114-116, 127, 128
PtlGetId (func) 43, 52, 53, 114-116
PtlGetMap (func) 47, 48, 48, 114-117, 125, 140
PtlGetPhysId (func) 43, 47, 52, 54, 114-116
PtlGetUid (func) 52, 52, 114-116
PtlHandleIsEqual (func) 112, 112, 113, 116, 117
PtlInit (func) 37, 40, 41, 41, 116, 117
PfiLEAppend (func) .. 28, 34, 58, 62, 63, 64, 71, 74-76,

80, 113-117, 140, 141
PfiLESearch (func) 64, 65, 65, 73, 76, 114-116, 140
Pt1LEUnlink (func) 28, 58, 63, 64, 64, 113, 116, 117
Pt1MDBind (func) 39, 54, 57, 57, 114, 116, 117
Pt1MDRelease (func) 39, 54, 58, 58, 114, 116
Pt1MEAppend (func) 28, 34, 66, 71, 71-76, 80, 114-117,

140, 141
Pt1MESearch (func) 73, 73, 76, 114-116, 140
Pt1MEUnlink (func) ... 28, 35, 66, 72, 72, 114, 116, 117
Pt1NIFini (func) . 42, 43, 45, 45, 84, 85, 89, 90, 114, 116
PfiNIHandle (func) 38, 42, 46, 46, 113, 114, 116
PfiNIInit (func) . 32, 33, 42, 43, 44, 45, 47, 95, 114, 116,

117, 137
Pt1NIStatus (func) 40, 42, 46, 46, 114-116
Pt1PTAlloc (func) 49, 49, 82, 113-117, 140, 141
Pt1PTDisable (func) 35, 50, 50, 78, 114-116
Pt1PTEnable (func) 34, 35, 51, 51, 114-116
Pt1PTFree (func) 50, 50, 114-117
Pt1Put (func) 92, 93, 93, 95, 98, 99, 101, 102, 104,

113-116, 126, 127, 129
Pt1SetMap (func) 43, 47, 47, 48, 114-117, 125, 140
PtlStartBundle (func) 111, 111, 114, 116
PtlSwap (func) 60, 68, 75, 92, 95, 98, 101, 101, 108, 109,

113-116, 130, 142
PtlTriggeredAtomic (func) 103, 106, 106, 113-116
PtlTriggeredCTlnc (func) .. 106, 109, 109, 113, 115, 116
Pt1TriggeredCTSet (func) 106, 110, 113, 115, 116
PtlTriggeredFetchAtomic (func) 107, 107, 113-116
PtlTriggeredGet (func) 103, 105, 105, 113-116
PtlTriggeredPut (func) 104, 104, 109, 113-116
PtlTriggeredSwap (func) 108, 108, 113-116
PTL_ACK_REQ (const) 37, 92, 117, 126, 130
PTL_ARG_INVALID (return code) .. 40, 45-54, 57, 58,

63, 64, 66, 72-74, 82-85, 87-92, 94-96, 99,
101,102,105-112,117,142

PTL_BAND (const) 97, 98, 117, 142
PTL_BOR (const) 97, 98, 117, 142
PTL_BXOR (const) 97, 98, 117, 142
PTL_COHERENT_ATOMICS (const) 43, 95, 102, 117,

140, 142
PTL_CSWAP (const) 95, 97, 98, 101, 102, 118
PTL_CSWAP_GE (const) 97, 98, 118
PTL_CSWAP_GT (const) 97, 98, 118
PTL_CSWAP_LE (const) 97, 98, 118
PTL_CSWAP_LT (const) 97, 98, 118
PTL_CSWAP_NE (const) 97, 98, 118

PTL_CT_ACK_REQ (const) 92, 118, 126, 128, 139
PTL_CT_NONE (const) 39, 56, 60, 68, 118
PTL_CT_NONE_REACHED (return code) 90, 117
PTL_DIFF (const) 96-98, 118, 140, 141
PTL_DOUBLE (const) 98, 118
PTL_DOUBLE_COMPLEX (const) 98, 118
PTL_EQ_DROPPED (return code) 83-85, 117
PTL_EQ_EMPTY (return code) 83, 85, 117
PTL_EQ_NONE (const) 39, 49, 56, 76, 118
PTL_EVENT_ACK (const) ...34, 55, 58-60, 67, 68, 75,

76, 78-81, 92, 93, 96, 99, 118, 139, 140
PTL_EVENT_ATOMIC (const) .. 61, 62, 70, 75, 79-81,

96, 98, 118
PTL_EVENT_ATOMIC_OVERFLOW (const) .. 61, 62,

65, 70, 73, 75, 79, 81, 96, 98, 118
PTL_EVENT_AUTO_FREE (const) . 59, 61, 66, 67, 69,

70, 75, 79, 81, 118, 141, 142
PTL_EVENT_AUTO_UNLINK (const) . 59, 61, 66, 67,

70, 75, 76, 79, 81, 118, 142
PTL_EVENT_ERROR (const) 76, 79, 81, 142
PTL_EVENT_FETCH_ATOMIC (const) 61, 62, 70, 75,

79-81, 100, 118, 141
PTL_EVENT_FETCH_ATOMIC_OVERFLOW (const)

61, 62, 65, 70, 73, 75, 79, 81, 100, 118
PTL_EVENT_GET (const) 61, 62, 70, 74, 75, 79-81, 94,

118
PTL_EVENT_GET_OVERFLOW (const) 61, 62, 65, 70,

73, 74, 79, 81, 94, 118
PTL_EVENT_LINK (const) .. 61, 62, 69, 71, 75, 79, 81,

118, 142
PTL_EVENT_PT_DISABLED (const) 28, 34, 50, 61,

62, 70, 75, 79, 81, 82, 118, 142
PTL_EVENT_PUT (const) 28, 61, 62, 70, 74, 75, 79-81,

93, 98, 118
PTL_EVENT_PUT_OVERFLOW (const) 28, 61, 62, 65,

70, 73, 75, 79, 81, 93, 118
PTL_EVENT_REPLY (const) 34, 55, 58, 75, 78, 79, 81,

94, 96, 100, 101, 118
PTL_EVENT_SEARCH (const) .. 61, 62, 65, 70, 73, 76,

79-81, 118
PTL_EVENT_SEND (const) . 55, 58, 75, 76, 78-81, 93,

96, 99, 100, 118
PTL_FAIL (return code) 41, 117
PTL_FLOAT (const) 98, 118
PTL_FLOAT_COMPLEX (const) 98, 118
PTL_IFACE_DEFAULT (const) 39, 118, 137
PTL_IGNORED (return code) 47, 48, 117, 125, 140
PTL_IN_USE (return code) 63, 64, 72, 73, 117
PTL_INT16_T (const) 97, 119
PTL_INT32_T (const) 97, 119
PTL_INT64_T (const) 97, 119
PTL_INT8_T (const) 97, 119
PTL_INTERRUPTED (return code) . 84, 85, 89, 90, 117
PTL_INVALID_HANDLE (const) 39, 112, 119

150

P
PTL JOVEC (const) 54, 56, 59, 61, 66, 69, 96, 119
PTL_LAND (const) 97, 98, 119, 142
PTL_LE_ACK_DISABLE (const) 61, 119
PTL_LE_EVENT_COMM_DISABLE (const) . 61, 119,

141
PTL_LE_EVENT_CT_BYTES (const) 62, 119
PTL_LE_EVENT_CT_COMM (const) 62, 119, 141
PTL_LE_EVENT_CT_OVERFLOW (const) ... 62, 119,

141
PTL_LE_EVENT_FLOWCTRL_DISABLE (const) . 61,

62, 119
PTL_LE_EVENT_LINK_DISABLE (const) 61, 119
PTL_LE_EVENT_OVER_DISABLE (const) 61, 119
PTL_LE_EVENT_SUCCESS_DISABLE (const) ... 61,

119, 141
PTL_LE_EVENT_UNLINK_DISABLE (const) . 61, 62,

119
PTL_LE _IS_ACCESSIBLE (const) 59, 61, 119
PTL_LE_OP_GET (const) 60, 119, 130, 143
PTL_LE_OP_PUT (const) 60, 119, 130, 143
PTL_LE_UNEXPECTED_HDR_DISABLE (const) . 61,

119
PTL_LE_USE_ONCE (const)49, 59, 61, 62, 65, 75,

119, 122
PTL_LIST_TOO_LONG (return code) 63, 72, 117
PTL_LONG_DOUBLE (const) 96, 98, 119
PTL_LONG_DOUBLE_COMPLEX (const) 96, 98, 119
PTL_LOR (const) 97, 98, 119, 142
PTL_LXOR (const) 97, 98, 120, 142
PTL_MAJOR_VERSION (const) 38
PTL_MAX (const) 97, 98, 120, 142
PTL_MD_EVENT_CT_ACK (const) 55, 120
PTL_MD_EVENT_CT_BYTES (const) 56, 92, 120
PTL_MD_EVENT_CT_REPLY (const) 55, 120
PTL_MD_EVENT_CT_SEND (const) 55, 120
PTL_MD_EVENT_SEND_DISABLE (const) 55, 120
PTL_MD_EVENT_SUCCESS_DISABLE (const) 55,

120
PTL_MD_UNORDERED (const) 32, 33, 56, 120
PTL_MD_VOLATILE (const) 43, 56, 120, 142
PTL_ME_ACK_DISABLE (const) 69, 120
PTL_ME_EVENT_COMM_DISABLE (const) . 70, 76,

120, 141
PTL_ME_EVENT_CT_BYTES (const) 70, 120
PTL_ME_EVENT_CT_COMM (const) ... 70, 120, 141
PTL_ME_EVENT_CT_OVERFLOW (const) 70, 120
PTL_ME_EVENT_FLOWCTRL_DISABLE (const) 70,

120
PTL_ME_EVENT_LINK_DISABLE (const) 69, 120
PTL_ME_EVENT_OVER_DISABLE (const) 70, 120
PTL_ME_EVENT_SUCCESS_DISABLE (const) ...70,

120
PTL_ME_EVENT_UNLINK_DISABLE (const) 70, 76,

120

PTL_ME _IS_ACCESSIBLE (const) 66, 69, 120
PTL_ME_MANAGE_LOCAL (const) 68, 69, 94, 95, 99,

101, 102, 120, 126
PTL_ME_MAY_ALIGN (const) 69, 96, 121
PTL_ME_NO_TRUNCATE (const) 30, 49, 69, 121, 122,

129, 139
PTL_ME_OP_GET (const) 68, 96, 121, 129, 130
PTL_ME_OP_PUT (const) 68, 96, 121, 129, 130
PTL_ME_UNEXPECTED_HDR_DISABLE (const) 69,

121
PTL_ME_USE_ONCE (const) .. 49, 69-71, 73, 75, 121,

122
PTL_MIN (const) 96, 98, 121, 142
PTL_MINOR_VERSION (const) 38, 140
PTL_MSWAP (const) 95, 97, 98, 101, 102, 121
PTL_NI_DROPPED (const) 78, 121
PTL_NI_LOGICAL (const) 39, 44, 121
PTL_NI_MATCHING (const) 44, 121
PTL_NI_NO_MATCH (const) 65, 73, 76, 78, 121, 142
PTL_NI_NO_MATCHING (const) 44, 59, 121, 126-128
PTL_NI_OK (const) 65, 73, 76, 77, 81, 121
PTL_NI_OP_VIOLATION (const) 60, 68, 78, 121
PTL_NI_PERM_VIOLATION (const) 60, 68, 78, 121
PTL_NI_PHYSICAL (const) 39, 44, 121
PTL_NI_PT_DISABLED (const) 34, 78, 121
PTL_NI_SEGV (const)54, 59, 66, 78, 121, 139, 142
PTL_NI_UNDELIVERABLE (const) 77, 78, 122
PTL_NID_ANY (const) 39, 70, 122
PTL_NO_ACK_REQ (const) 92, 122, 126, 128
PTL_NO_INIT (return code) . 44-54, 57, 58, 63, 64, 66,

72-74, 82-85, 87-92, 94, 95, 99, 101-103,
105, 107-112, 117

PTL_NO_SPACE (return code) ...45, 47, 57, 63, 72, 82,
87, 117, 140

PTL_OC_ACK_REQ (const) .92, 93, 122, 126, 128, 139
PTL_OK (return code) 37, 41, 44-55, 57, 58, 61, 63, 64,

66, 70, 72-74, 82-85, 87-92, 94, 95, 99,
101-103, 105, 107-112, 117

PTL_OVERFLOW_LIST (const) 62, 71, 122
PTL_PID_ANY (const) 39, 44, 70, 122
PTL_PID_IN_USE (return code) 45, 117
PTL_PID_MAX (const) 44, 122
PTL_PRIORITY_LIST (const) 62, 71, 122
PTL_PROD (const) 97, 98, 122, 142
PTL_PT_ANY (const) 49, 122
PTL_PT_EQ_NEEDED (return code) 49, 117
PTL_PT_FLOWCTRL (const) 34, 49, 122
PTL_PT_FULL (return code) 49, 117
PTL_PT_IN_USE (return code) 49, 50, 117
PTL_PT_ONLY_TRUNCATE (const) 49, 50, 122
PTL_PT_ONLY_USE_ONCE (const) 49, 50, 122
PTL_RANK_ANY (const) 39, 70, 122
PTL_SEARCH_DELETE (const) 64, 65, 73, 122
PTL_SEARCH_ONLY (const) 64, 65, 73, 122

151

P
PTL_SIZE_MAX (const) 38, 54, 59, 66, 122
PTL_SR_DROP_COUNT (const) ..28, 34, 40, 122, 137
PTL_SR_OPERATION_VIOLATIONS (const) .. 40, 60,

68, 123, 137
PTL_SR_PERMISSION_VIOLATIONS (const) .40, 60,

68, 123, 137
PTL_SUM (const) 97, 98, 123, 141, 142
PTL_SWAP (const) 97, 98, 101, 102, 123
PTL_TARGET_BIND_INACCESSIBLE (const) 43, 58,

59, 66, 123
PTL_TIME_FOREVER (const) 85, 90, 123
PTL_TOTAL_DATA_ORDERING (const) ...32, 33, 43,

123, 141
PTL_UID_ANY (const) 39, 60, 68, 123
PTL_UINT16_T (const) 97, 123
PTL_UINT32_T (const) 97, 123
PTL_UINT64_T (const) 97, 123
PTL_UINT8_T (const) 97, 123
ptl_ack_req_t (type) ... 92, 113, 117, 118, 122, 126, 128
ptl_ct_event_t (type) 66, 86, 88-90, 113, 115
ptl_datatype_t (type) 96-98, 100, 101, 113
ptl_event_kind_t (type) 74, 113, 118
ptl_event_t (type) ..74, 78, 79, 81, 83-85, 113-115, 126,

129, 141
ptl_handle_any_t (type) 38, 113, 119
ptl_handle_ct_t (type) 39, 85, 86, 113, 118
ptl_handle_eq_t (type) 39, 74, 113, 118
ptl_handle_le_t (type) 113
ptl_handle_md_t (type) 114, 126-128
ptl_handle_me_t (type) 114
ptl_handle_ni_t (type) 38, 114
ptl_hdr_data_t (type) 114, 126
ptl_interface_t (type) 39, 114, 118
ptl_iovec_t (type) 54, 56, 59, 61, 66, 69, 114, 115
ptl_le_t (type) 59, 113-115
ptl_list (field) 62, 63, 71, 80
ptl_list_t (type) 62, 71, 114, 127, 128
ptl_match_bits_t (type) 37, 39, 114, 126-128
ptl_md_t (type) 32, 33, 55, 113-115
ptl_me_t (type) 67, 113-115
ptl_ni_fail_t (type) 77, 114, 121, 122, 142
ptl_ni_limits_t (type) 33, 42, 114, 115
ptl_nid_t (type) 39, 114, 122
ptl_op_t (type) 96, 98, 114, 117-123
ptl_pid_t (type) 39, 114, 122
ptl_process_t (type) 47, 48, 52, 53, 70, 114, 115,

126-128
ptl_pt_index_t (type) 39, 115, 122, 126-128
ptl_rank_t (type) 39, 115, 122
ptl_search_op (field) 64, 65, 73, 74
ptl_search_op_t (type) 65, 115
ptl_size_t (type) 38, 115, 122, 126-128
ptl_sr_index_t (type) 40, 115, 122, 123, 137
ptl_sr_value_t (type) 40, 115

ptl_time_t (type) 115, 123
ptl_uid_t (type) 39, 115, 123, 126-128
Puma 18
purpose 17
put see operations
put_md_handle (field) . 96, 100-102, 107, 108, 127, 128

Q
quality implementation 45
quality of implementation 19

R
rank 22, 30, 39, 47, 48, 52-54
rank (field) 39, 48, 53
README 37, 137
receiver-managed 18
reliable communication 22
remote offset see offset
remote_offset (field) . 80, 94, 95, 99, 101, 102, 104-107,

109, 126-128
reply see operations
return codes 40, 116

PTL_ARG_INVALID 40, 45-54, 57, 58, 63, 64, 66,
72-74, 82-85, 87-92, 94-96, 99, 101, 102,
105-112, 117, 142

PTL CT NONE REACHED 90, 117
PTL EQ_DROPPED 83-85, 117
PTL_EQ_EMPTY 83, 85, 117
PTL_FAIL 41, 117
PTL IGNORED
PTL IN USE
PTL INTERRUPTED
PTL_LIST_TOO_LONG

 47,48,117,125,140
 63,64,72,73,117

84,85,89,90,117
 63,72,117

PTL_NO_INIT .. 44-54, 57, 58, 63, 64, 66, 72-74,
82-85, 87-92, 94, 95, 99, 101-103, 105,
107-112, 117

PTL_NO_SPACE .. 45, 47, 57, 63, 72, 82, 87, 117,
140

PTL_OK . 37, 41, 44-55, 57, 58, 61, 63, 64, 66, 70,
72-74, 82-85, 87-92, 94, 95, 99, 101-103,
105, 107-112, 117

PTL PID IN USE 45, 117
PTL PT_EQ_NEEDED 49, 117
PTL_PT_FULL 49, 117
PTL_PT_IN_USE 49, 50, 117
summary 116

rlength (field) 28, 76, 80
RMPP [14]

s
scalability 19, 133

guarantee 19
MPI 18

152

network
scatter/gather
Search

event generation
status registers

send
send event
Set Map
SHMEM

shmem_fence()
size (field)
sizes
space

17
55,56,60,61,68,69, 114, 119

65, 73
65, 73

21
93,96,100, 118

47
17
33

85, 90
38

application 23
protected 23

split event sequence see event start/end
start (field) 54-56, 58-60, 66, 68, 76, 80, 142
state 19
status (field) 46
status registers 40, 137
status_register (field) 46
structure fields and argument names

ack_req 93, 99, 104, 106, 126, 128
actual 32, 33, 43-45, 58, 66, 140
actual_map_size 48
atomic_operation 81
atomic_type 81
count 81, 82
ct_handle 56, 58, 60, 68, 86-93, 109, 110
ct_handles 89, 90
datatype 98-102, 106, 108, 109
desired 32, 44, 45
eq_handle 49, 56, 58, 82-84, 125
eq_handles 84, 85
event 83-85, 88-90
failure
features 32,
get_md_handle 96, 100-102, 107, 108, 128
handle 46
handlel 112
handle2 112
hdr_data ... 76, 80, 94, 99, 101, 102, 104, 106, 107,

86,87,89,91
43,58,66,95

109, 126, 142
id
iface
ignore_bits

53, 54
44, 45

70
increment 91, 109
initiator 80
iov_base 57
iov_len 57
le 63, 65
le_handle 63, 64
length 43, 54-56, 58-60, 66,68,93,95, 96,99, 100,

102, 104-108, 126-128, 142

153

local_get_offset 100-102, 107, 108
local_offset 93, 95, 99, 104-106, 127, 128
local_put_offset 100-102, 107, 108
map_size 47, 48
mapping 47, 48
match_bits .. 70, 80, 94, 95, 99, 100, 102, 104-107,

109, 126-128
match_id 67, 70, 72
max_atomic_size 32, 43, 95, 98-100, 102
max_cts 42
max_entries 42
max_eqs 42
max_fetch_atomic_size 43, 95, 100, 101
max_iovecs 43
max_list_size 43
max_mds 42
max_msg_size 43
max_pt_index 43
max_triggered_ops 43
max_unexpected_headers 35, 42, 45
max_volatile_size 43, 56, 142
max_war_ordered_size 32, 33, 43
max_waw_ordered_size 32, 33, 43, 141
md 57
md_handle .. 57, 58, 93, 95, 99, 104-106, 125-128
me 71, 74
me_handle 71, 72
min_free 30, 68
mlength 28, 56, 62, 70, 76, 80, 92, 96, 140, 141
new_ct 91, 110
ni_fail_type .. 34, 54, 55, 59-61, 65, 66, 68, 70, 73,

76, 77, 81, 142
ni_handle 43-54, 57, 62-65, 71, 73, 82, 87, 95, 111,

112
nid 53
operand 95, 101, 102, 109
operation 99, 101, 102, 106, 107, 109
options 44, 49, 55, 60, 68, 126-128
pid 43-45, 53
pt_index .49-51, 62-65, 71, 73, 80, 93, 95, 99, 100,

102, 104-108, 126-128
pt_index_req 49
ptl_list 62, 63, 71, 80
ptl_search_op 64, 65, 73, 74
put_md_handle ... 96, 100-102, 107, 108, 127, 128
rank 39, 48, 53
remote_offset ... 80, 94, 95, 99, 101, 102, 104-107,

109, 126-128
rlength 28, 76, 80
size 85, 90
start 54-56, 58-60, 66, 68, 76, 80, 142
status 46
status_register 46
success 86, 87, 89, 91

S
target_id .. 93,
test

95,99,100, 102,104-108, 126-128
89, 90

tests 90
threshold 103-106, 108-110
timeout 84, 85, 89, 90
trig_ct_handle 103-106, 108-110
type 80
uid 52, 60, 68, 80
user_ptr .. 63,66,71,72, 74,76,80, 81, 94, 95, 99,

101, 102, 104-107, 109,125-128, 142
which 84, 85, 89, 90

success (field) 86, 87, 89, 91
summary 113
SUNMOS [15], 18
swap operation 116

T
target . . see also initiator, 14, [15],19,21-24, 26, 27, 52,

74-79, 92-96, 99, 100,102,126-130
target_id (field) .93, 95, 99, 100,102,104-108, 126-128
TCP/IP 18, 134
test (field) 89, 90
tests (field) 90
thread [15], 35
thread ID 52
threshold (field) 103-106, 108-110
timeout 84, 89
timeout (field) 84, 85, 89, 90
trig_ct_handle (field) 103-106, 108-110
triggered operations 33, 103

atomic 106
canceling 88
counting event increment 109
counting event set 110
fetch and atomic 107
get 105
put 104
swap 108
threshold 103

truncate 69, 121, 129
trusted header 52
two-sided operation 19, 30
type (field) 80
types see data types

ptl_ack_req_t 92,113, 117, 118, 122, 126,128
ptl_ct_event_t 66, 86, 88-90, 113,115
ptl_datatype_t 96-98, 100, 101,113
ptl_event_kind_t 74, 113, 118
ptl_event_t ... 74,78,79, 81, 83-85, 113-115,126,

129, 141
ptl_handle_any_t 38, 113,119
ptl_handle_ct_t 39, 85, 86, 113,118
ptl_handle_eq_t 39, 74, 113, 118
ptl_handle_le_t 113

ptl_handle_md_t
ptl_handle_me_t
ptl_handle_ni_t
ptl_hdr_data_t

114,126-128
114

38, 114
114, 126

ptl_interface_t 39,114, 118
ptl_iovec_t 54, 56, 59, 61, 66,69,114, 115
ptl_le_t 59,113-115
ptl_list_t 62,71,114,127,128
ptl_match_bits_t 37, 39, 114,126-128
ptl_md_t 32, 33,55,113-115
ptl_me_t 67,113-115
ptl_ni_fail_t 77, 114, 121,122, 142
ptl_ni_limits_t 33,42,114, 115
ptl_nid_t 39,114, 122
ptl_op_t 96, 98,114,117-123
ptl_pid_t 39,114, 122
ptl_process_t 47,48, 52, 53, 70, 114,115,126-128
ptl_pt_index_t 39, 115,122,126-128
ptl_rank_t 39,115, 122
ptl_search_op_t 65, 115
ptl_size_t 38, 115,122,126-128
ptl_sr_index_t 40, 115,122,123, 137
ptl_sr_value_t 40, 115
ptl_time_t 115, 123
ptl_uid_t 39, 115,123,126-128

U
uid (field)
undefined behavior
unexpected list
unexpected message event
unexpected messages
unlink

ME
UPC
usage
usage ID
user data
user memory
user space
user-level bypass see application bypass
user_ptr (field) .63, 66, 71, 72, 74, 76, 80, 81, 94, 95, 99,

101, 102, 104-107, 109, 125-128, 142

v

27,59,

52, 60, 68, 80
40, 41, 45

62, 64, 71, 73
74, 75

18
68

see ME
17
25

39,52,80,115, 116, 123
63,66, 71, 74, 94

32
19

VIA [15]

w
which (field) 84, 85, 89, 90
wire protocol 21, 22, 125

Z
zero copy 19

154

zero-length buffer 58, 66

[n] page n is in the glossary.
n page of a definition or a main entiy.

n other pages where an entry is mentioned.

155

DISTRIBUTION:

1 Trammell Hudson
c/o OS Research
1527 16th NW #5
Washington, DC 20036

1 Arthur B. Maccabe
Oak Ridge National Laboratory
PO Box 2008
Oak Ridge, TN 37831-6164

1 Neil Pundit
1354 Plumosa Way
Weston, FL 33327

1 Keith Underwood
Oak Ridge National Laboratory
PO Box 2008
Oak Ridge, TN 37831-6164

1 MS 0806

1 MS 1319

1 MS 1319

1 MS 1319

1 MS 1319

1 MS 1319

1 MS 1319

1 MS 1319

1 MS 1319

1 MS 0899

Jim Schutt, 9336

Ron Brightwell, 1423

Ryan Grant, 1423

Robert Hoekstra, 1422

K. Scott Hemmert, 1422

Mike Levenhagen, 1422

Ron Oldfield, 1461

Kevin Pedretti, 1423

Lee Ward, 1423

Technical Library, 9536 (electronic copy)

156

v1.40

157

Sandia National Laboratories

158

