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Abstract

We aim to create a new model for time-dependent data analysis, named dynamical learning,
that integrates data-driven manifold learning techniques with operator-theoretic methods from
dynamical systems theory. This approach has the potential to deliver more efficient methods
for analyzing time-dependent data, such as video streams, by naturally separating out the tem-
poral and spatial features of the data. We aim to apply the newly developed methods to video
surveillance data related to Sandia mission applications, and particularly focus on the problems
of image segmentation and object tracking.

This project ended early due to the departure of the PI from Sandia about 18 months into
the project. Therefore, this document reports on partial progress towards the initial goals of the
project. In addition, this document reports on part of the work conducted during the project;
see the Appendix for a summary of all the work conducted during the 18 months.
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1 Introduction

Modern Big Data analysis must deal with unbounded amounts of samples, each with many de-
grees of freedom (e.g., parameters/features). Processing these datasets is chiefly achieved through
pattern recognition (PR) and prediction/inference (PI). Existing methods implement either PR or
PI, but seldom unify the two; the incompatibility forces ad-hoc decisions to be made during data
analysis and techniques to be patched together with no formal justification.

We aim to develop techniques that unify the PR and PI goals with focus on efficiency, au-
tomatability and robustness to incomplete data. This will be based on a combination of spectral
techniques arising from geometric and dynamic data analysis: namely, we will use the method of
Diffusion Maps (DM) [CLL"05, CL06], which was designed for clustering and dimensionality
reduction of large datasets, along with operator-theoretic methods from dynamical systems theory
based on Koopman spectral techniques [Koo31, KN32]. DM has achieved tremendous success in
reasoning about static (time-independent) features in several application domains [BM12, Isa09,
L.S08, MC13, LTZ" 15]. In parallel development, the rise in numerical methods for an approximate
realization of Koopman spectral techniques has led to many applications in the analysis of high-
dimensional dynamical systems in the model-free setting [AM17, KKS16, LDBK17]. In effect,
Koopman techniques separate the spatial from temporal properties of time-dependent datasets,
allow for an efficient local reconstruction and prediction, and the corresponding objects give an
efficient static perspective to dynamical data. The developments in this project are based on the in-
sight that the appropriately derived features from time-dependent datasets using Koopman methods
can be combined with the geometrizing power of DM to enable efficient low-dimensional repre-
sentations of large time-dependent datasets useful for attacking deeper analysis problems. From
a Sandia mission-application perspective, our project is motivated by problems in video analysis,
whereby these techniques will have impact on the critical needs in surveillance and intelligence,
such as tracking moving objects, change detection, and the prediction of trajectories.

The following chapters mainly report on progress made during the project on applying Koop-
man techniques to video data for motion segmentation. Due to the early termination of the project,
the development of an approach combining Koopman techniques with DM for generating low-
dimensional representations and clustering was incomplete, and hence not reported on here.



2 Background

In this chapter we present some background on Koopman spectral techniques, focusing on the class
of numerical algorithms known as Dynamic Mode Decomposition (DMD).

DMD is an algorithm that was first introduced to decompose numerical or experimental data
coming from fluid flows. It was put on theoretically sound footing by connecting it to the Koopman
operator, which is often used in the analysis of nonlinear dynamical systems. The algorithm has
since been applied to problems outside of the fluids community. Given a sequence of snapshots
of data (e.g. a sequence of video frames), DMD postulates the existence of a fixed linear map
that generates the data. Using the data sequence an approximation of this matrix is computed and
decomposed into the so-called DMD modes. Such a model represents the best linear approximation
of the evolution of the dataset in a least-squares sense. These DMD modes represent (possibly
nonlinear) spatial structures in the data having well-defined temporal behaviors; each DMD mode
has a fixed growth rate and frequency. This nice temporal behavior lends itself well to the problem
of prediction. This contrasts with other popular decompositions, such as the proper orthogonal
decomposition (POD), in which the mode coefficients do not have such nice behavior, necessitating
some type of statistical analysis or curve-fitting of the coefficients to time-series in order to make
predictions.

In the next section, we will elaborate more on this method.

2.1 Koopman spectral methods and DMD

In the early 1930s, Bernard Koopman and John von Neumann introduced a new operator theortic
view of dynamical systems [Koo31, KN32]. In the 2000s, it was discovered to be a useful frame-
work for data-driven analysis of high-dimensional nonlinear systems [MB04, Mez05]. Since then,
numerical methods used to approximate Koopman spectral objects have been used as data analysis
tools in the contexts of fluid dynamics [AKM18], neurodynamics [BJOK16], energy efficiency
[GM15], and molecular dynamics [WNP'17]. A particular class of algorithms for approximat-
ing Koopman spectral objects, known as dynamic mode decomposition [Sch10, RMB*09], has
even been used in background/foreground separation in videos taken from a stationary camera
[KFBE15].

In the context of deterministic dynamical systems, state-variables are the variables whose
knowledge at a particular time determines their values for all of time (e.g. angle and angular
velocity for the mathematical pendulum). A standard approach in dynamical systems theory is to
work directly with a model governing the dynamics (e.g., system of PDEs in the spatial and tem-
poral domains, along with boundary conditions) and centered around the state-space viewpoint.
When recording dynamic data from complicated systems such as video sequences, the state vari-
ables which fully describe the observed system are not known and there is no model to describe
their evolution. In these circumstances, a natural view is to consider scalar-valued functions of the
states (called observables) and their evolution by the dynamics. For the case of the pendulum, ob-
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servables include kinetic energy, potential energy, or more general functions of angle and angular
momentum. In this view, we can think of any measurements we take of a system of interest as a
function of some unknown state. Further, measured observables can be used to generate new ones:
e.g., by composing on the left by scalar functions of scalar input or on the right by maps of the state
space into itself. In the context of video sequences, observables then include pixel data, optical
flow field components at each location, and feature point locations. In any case, it is this model-free
perspective of dynamics with observables as the central object that is the Koopman view.

The simplest context in which to introduce the Koopman view is for discrete-time dynamical
systems, which can be described by repeated application of a single map T : M — M on the state-
space M, so that

x =T(x) (2.1)

is the updated state corresponding to x after a unit time-step. The more general cases of continuous-
time systems and time-varying (viz., non-autonomous) dynamical systems have been described in,
respectively, the original introduction of the Koopman framework [Koo31] and the recent exten-
sions [MCZMU]; the extension to the cases of random and stochastic systems has seen recent
treatment in [CZMM17]. Given the assumption of the dynamical system as in Eq. (2.1), the move
to observables takes place through the Koopman operator

U:f+s foT, (2.2)

which is a linear operator due to the bi-linearity of the composition o and thus we can consider its
eigenvalues A and eigenfunctions ¢ following the defining equation,

U(9) = A9

Furthermore, U induces a linear dynamical system on the space of observables due to the identity
/ / s, 8,0 ..
UK = Uk o U¥ and initial condition U® = 1.

The cue for spectral analysis of U comes when it is diagonalizable and in that case, even though
the exact evolution of observables generally entails an infinite expansion, the spectral decompo-
sition of the projection onto an invariant subspace enables a fast evolution of observables lying
there in finitely many terms'. Namely, let (fi,..., f,) denote a finite collection of observables and
assume that they lie in an invariant subspace E of U with dim(E) =: m < co. Let (¢1,..., ;) be the
eigenfunctions of the projection” of U onto E with corresponding eigenvalues (A1, ..., ;). Thus,
there exist linear functionals y1,...,y,, € E* such that we have the eigendecomposition

U(fr) = ) Mwielfr)ox.

k=1

Vectorizing this equation for each observable under consideration, we arrive at a special case of

'Tssues of convergence are explored in [KKS16, KM18b].
ZWe abuse notation a bit and use U to denote its finite-dimensional projection onto

span{®y,...,0m}-



Koopman Mode Decomposition (KMD) for U:

Ui(fr) 511 Morwe(f1)

= : (2.3)
Y
U(fn) kgl MO (fn)
vi(f1)
m
=Y Mo| |- (2.4)
k=1
Yk (f n)
This component-wise eigendecomposition allows us to evolve the observables {f1,..., f,} by any

q € Ny time-steps by simply multiplying each term in the sum above by the gth power of its cor-
responding eigenvalue A;. This gives us the intuitve interpretations of the magnitude and complex
phase of A; as corresponding to rate of growth and rate of oscillation, respectivley. If we are only
interested in the evolution of the observables along a single trajectory of (2.1) with initial state x,
then we can absorb each ¢ (x) into the coordinate functional and write W := 0y (x) Wy, which gives
the simpler form for KMD,

[U(f1)](x) Vi (f1)
(2.5)

I
s
o

>~
I
—_

V) )|

The last column vector appearing in (2.4) and (2.5) is known as the Koopman mode corresponding
to the pair (A, 0x) and the vector of observables [fi,..., f,]” relative to the discrete-time system
described by (2.1). From (2.5) we see that the magnitude of y(f j) tells us how much the growth
and oscillations rates (as a pair) given by A; play a role in the evolution of f; along the single
trajectory starting at x and locally in time. Similarly, the complex phase of W (f;) gives a relative
phase correspsonding to the oscillations given by A;.

Example 2.1. Consider the special case that M = C" and the dynamics on M is given by a di-
agonalizable linear operator T : M — M. In addition, let {f,...,f,} be the dual basis of the
standard ordered basis for C". Given any basis {vi,...,v,} of eigenvectors for T with eigenval-
ues {A1,...,A;}, we have that its dual basis {01,...,0,} is a set of eigenfunctions for U with
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eigenvalues {A,...,A,}. We see that for any x € M = C", we have

[U(f1)](x) Si(T4(x))
= (2.6)
W) | [ A7)
= T9x) (2.7)
=Y Moe(x)w. (2.8)
k=1
By comparing with equation (2.4) we see that {vy,...,v,} are the Koopman modes correspond-

ing to the pairs {(A1,91),...,(As,0,)} and the vector of observables [f1,..., fu]7, relative to the
discrete-time system described by (2.1). With this example we see that eigendecomposition can be
viewed as a special case of KMD; the extension that KMD provides is flexibilty in both { f1,..., fu}

and 7', in particular, these can be nonlinear.

The DMD algorithm

Consider the case where we have a discrete-time dynamical system as in (2.1) and we have evalu-
ated a set of observables {fi,...,f,} along the first m 4 1 time points of a trajectory starting at x.
We can put this into a matrix D such that each row corresponds to a different observable and the

columns are ordered by time:

[i(T™(x))

Ju(T™(x))

U™ (f1)](x)

[U™"(fa)l(x)

2.9

(2.10)



We can split D into the matrix X of the first m columns and Y of the last m columns, i.e.

fix) ATE) .. AT (x))
X= : : : , (2.11)

ful) fu(T() o fu(T" ()

ATE) AT ) .. AT"()
Y = : : ; . (2.12)

M) fu(T@) oo fuT™(x))

The main idea in dynamic mode decomposition (DMD) is to find a matrix A such that AX is close
to Y in some sense. In this way A would be mapping the vector of measurements taken at the point
T9(x) close to those taken at the point 79! (x), for all ¢ € {0,...,m — 1}. With this, it may seem
intuitive that as our number of time points goes to infinity or as we add more observables (which
could just be functions of the original ones), we should better and better approximate the Koopman
operator U (and its spectral objects) by the linear operator we are representing by the matrix A. In
fact, in some cases this has been proven to be the case [WKR15, KKS16, KM18b, AM17, MA].
Typically, A = YXT, which solves the optimization problem (see [BV04])

|AX ~¥[p = inf [IBX Y], 2.13)
BGCnXVl

where ||-|| » denotes the Frobenius norm.

Now, A : C" — C" defines a linear dynamical system, so as in Example 2.1, it has corresponding
Koopman modes and spectrum. However, A is given a special structure since it is a system that,
itself, forms a numerical approximation to a Koopman operator. In particular, A satisfies for y(x) =
(fiy---sfn)(x) € C", Ay(x) = y(Tx). Hence, we call its modes and spectrum, the DMD modes and
DMD spectrum, and A itself is called a DMD operator.
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3 Motion Segmentation in Video Data

Autonomous cars, video surveillance, multirobot collaboration, and medical imaging are all appli-
cations which involve analysis and classification of large amounts of dynamic image sequences in
real time. Better approaches to these problems have largely been obtained by addressing smaller
ones of computer vision, e.g. object detection, identification, tracking, motion estimation in 3D,
and forecasting of future dynamics, or integrating their advancements. The idea of motion segmen-
tation, the partitioning of images, or trajectories of tracked feature points, in a video into regions of
similar dynamics so that each element of the partition has a corresponding element in the partition
of the previous or following image, plays a key role in this area of research.

Object tracking has mostly been approached through unsupervised methods [QHO7, SK04,
SS16]. One might think that the problem would be greatly simplified by using object detection.
However, using purely bottom up approaches in combination with detection seems to be opti-
mal [ARSO8, DB16, KMM12]. Unsupervised approaches are surely justified in contexts where
tracking undetectable objects is necessary. In addition, they can be used to make object detection
more robust, computationally efficient and streamline the training of object detectors by finding
undetectable moving objects in large amounts of video sequences.

In the following, we approach these problems using numerical counterparts of tools from the
operator-theoretic approach to dynamical systems; namely, we will rely on the variants of Dynamic
Mode Decomposition (DMD) as described in [Sch10, RMB™09]. The prior use of these techniques
in this context has been focused mainly on background/foreground separation in videos taken from
a stationary camera [KFBE15]. Herein, we consider videos taken from a moving camera and
perform DMD on a different set of observables - measurements we take of a dynamical system
(defined more precisely in the next section). Standard observables used in the context of motion
segmentation include feature point coordinates [RTVM10] and optical flow [HS81] components.
In combintation with DMD, Kutz et al. [KFBEI15] used grayscale pixel data. In contrast to the
prior DMD approaches and more close to geometric methods, we will use pairwise distances of
feature points, tracked by an optical-flow based algorithm such as the Kanade-Lucas-Tomasi (KLT
feature tracker, for our observables.

In the following two sections we demonstrate the use of Koopman spectral analysis on pairwise
distance observables of feature points for several movies through the use of DMD and give some
outward-looking remarks.

Acknowledgements

This section is a reproduction of original work done in collaboration with Igor Mezi¢, Ryan Mohr,
and Cory Brown at the Department of Mechanical Engineering, University of California at Santa
Barbara under contract from Sandia National Laboratories.
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3.1 Koopman Mode Decomposition of Pairwise Distance Observables

In this section we apply Koopman spectral analysis to three real-life videos (with a moving camera)
via the use of DMD. The first image of each sequence can be found in the first row of figure 1. From
left to right the image sequences increase in their number of motions from two to four where the
background is treated as a motion since the camera is moving. Note that feature points belonging
to the same motion have the same color and feature point trajectories for the length of the video
are plotted in the second row. The first video was taken from the data set used in [SK03, SKO04].
The second video was shared by the authors of [QHO7]. Finally, the last video is from the data set
used in [RTVM10]. With each of these movies we have a set of feature points {p1,..., p,}, where
we make the identification

pi:(xila"'7xim7yi17"'ayim) 3.1

with x;; and y;; denoting the x and y coordinates of feature point i in frame j. Thus, we are letting
r and m denote the number of feature points and the number of frames, respectively. In the four
motion sequence, some of the feature points are outliers - added feature points with randomized
trajectories [RTVM10].

The main assumption here is that there is some underlying dynamical system which describes
the real-world motions which were captured by a video camera, with a constant frame rate, and
that we can represent the restriction of this dynamical system to a discrete time set (with differ-
ence between time points corresponding to the frame rate) as in (2.1). We can then use DMD by
choosing a set of observables. For a single movie, we view each color or grayscale component
of each pixel as providing us with an observable along a single trajectory; even though we do not
know the state-space of the underlying system we are observing,i.e. the domain of 7', we assume
that the processes of capturing an image is a sampling of a set of observables at a single point in
state space and at a single point in time. The coordinates of a feature point can then be thought
of as real-valued functions composed with a vector of our pixel level observables. In this way, the
coordinates of each feature point are again observables. Finally, pairwise Euclidean distances of
feature points are the observables which will be subject to our Koopman spectral analysis.

We denote the value of the Euclidean distance between feature point i and j in frame k by

dijk = || (xik, yix) — (Xjk, Y ji) | |2- (3.2)

This gives the matrix dj for each frame k and by vectorizing the lower-triangular piece, we have
for each k the vector

Dy =[dyok - dy dosi - doric dir— 1)) (3.3)

of length 1 +---+(n—1) = ”(”2_1) —=: M. Since Dy,Dy.1 € RM are related by we can use the
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Figure 1: Koopman spectral quantities of the DMD matrix obtained from pairwise distance ob-
servables on three real-world video sequences. Each movie and its computed Koopman quantities
correspond to a single column. The first row contains a picture from each video sequence with fea-
ture points labeled by different motions or outliers. In the second row, the paths the feature points
trace are plotted, for the full video sequence, and colored to match the pictures above them. The
third row contains eigenvalues of the DMD matrix colored by their percent power. The last three
rows contain the three highest power eigenvectors of the DMD matrix represented as symmetric
matrices; the i, j-th entry corresponds to the pairwise distance observable between the ith and jth
feature points. The rows (and columns) of these matrices are ordered by motion with outliers first
(if any). In terms of colors, the order of the motions is as follows: magenta, blue, green, red, and,
finally yellow. Note that in the 4 motion movie, the last 15 frames were not used due to obvious
mistracked feature points in those frames.

matrices

X=1\Dp, D, --- D) , and (3.4)

Y=1|D, Dy --- D,|- (3.3)

in a DMD algorithm. In particular we used the DMD algorithm in [BJOK16], which includes a way
to assign a “power” that each DMD mode represents in the data matrix X. The resulting power is
higher if the mode is more parallel to left singular vectors with large corresponding singular values
and low otherwise. We can use this to order modes based on the level of importance they play in
our data matrix as opposed to using the coefficients from the projection of a column of the data
matrix onto the DMD modes. Finally, since the algorithm involves inverses of the diagonal matrix
of singular values of X, we treat any singular value less than 1% as zero, where © is the largest
singular value.

Using the DMD algorithm mentioned, we obtain DMD eigenvalues and modes. The DMD
eigenvalues are plotted in row three of figure 1 and are colored according to their associated per-
cent total power. The DMD modes corresponding to the the eigenvalues with the top three highest
powers (identifying complex conjugate pairs), are represented in the remaining three rows of fig-
ure 1. We represent the modes by symmetric matrices such that the i, j—th element corresponds
to the pairwise distance between feature points i and j. Since these modes are in general complex,
we only plot the magnitude of the components. Our feature points are already labeled according
to different motions, thus we order the rows and columns of these matrices by color of the corre-
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sponding feature point: magenta (outiers), blue, green, red, and, finally, yellow. This leads to some
block structure which is evident from the figure.

The first thing to notice is that the highest power DMD mode and eigenvalue pair has the
eigenvalue closest to one in all three examples. We call this the stationary mode since it evolves
in time by repeatedly multiplying it by one. For the two motion video (first column), this mode
(fourth row) has a 19 by 19 principal submatrix in the upper left corner which is almost zero.
We also see this in the lower power modes. This block appears in the stationary mode because
the feature points are close together and in the remaining (dynamic) modes because these feature
points do not move much relative to each other. On the other hand, the remaining motion of the two
motion video is the background; the background points are fairly spreadout and so we do not see
a similar block of zeros in the stationary mode as we did for the localized object (car). However,
we do see such blocks in the dynamic modes. As one might expect, the dynamic modes have large
components outside of the zero blocks on the diagonal; this is due to the relative motion of the
car and the background. These symmetric matrix representations of the dynamic modes are static
pictures which capture dynamic information.

Looking to the second column of figure 1, we notice similar structure in the DMD modes as
mentioned for the two motion video. All three plotted modes have two fairly homogeneous blue
blocks on the diagonal, in the bottom right corners, which correspond to the green hand (smaller
block) and red hand (bottom right). A similar block for the backgound points only appears in the
dynamic modes. As with the two motion case, the dynamic modes have larger components outside
of these zero blocks on the diagonal. Similar structures are again seen in modes for the remaining
four motion video (third column of figure 1).

3.2 Conclusion and Outlook

The main contribution of this work, distinguishing it from that in [KFBE15], is the consideration of
Koopman spectral techniques on pairwise distance observables of tracked feature points as opposed
to grayscale intensity observables. The coordinates of these feature points, derived from optical
flow based video processing methods such as the Kanade-Lucas-Tomasi feature tracking algorithm,
yield a sparser spatial dataset for processing than the full pixel-space. Moreover, using pairwise
distance observables derived from these coordinates not only gives us many more meaningful
observables, it also leads to the intuitive block structures seen in figure 1. In addition, the intensity-
based algorithm of [KFBE15] relies on separation of slow versus fast time-scales for separating
motions in different spatial regions with similar time-scales; in contrast, the pairwise distance
observables separate local motions at varying speeds and directions in a single instance of the
algorithm and are independent of the color/intensity space. Finally, while the results in [KFBE15]
were impressive and multi-resolution DMD has many applications other than object tracking, the
approach does not seem to easily extend to videos with a dynamic background. Figure 1 above
shows that Koopman modes of pairwise distance observables can segment motion even with a
moving background.

We have represented the absolute value of DMD modes obtained from pairwise distance ob-
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servables as non-negative symmetric matrices which can be interpreted as a distance matrix for a
graph whose nodes are the tracked feature points. An amazing feature of this approach is that ob-
ject separation can be obtained from a single dynamic mode; this is very clearly seen, for example,
in the bottom left plot of the figure. In [QHO07], image segmentation is achieved by clustering data
by eigenvectors of a certain distance (commute time) matrix and suggest this could also be done
with feature point data from videos. Thus another possible route to automatically separating the
motions based on DMD modes would be to cluster based on the eigenvectors of their non-negative
symmetric matrix representations.

From the above discussion it is clear that choice of observables is key to the success of applying
Koopman methods to data. We merely note that observables can be choosen using a neural network
approach [YKH17, LDBK17].

In applications involving non-rigid motions, such as tracking people, there may be significant
relative motion of feature points on a single object to be tracked. In the case of tracking a few
people walking, this may result in several dynamic modes, represented as in figure 1, with a sin-
gle nonzero block on the diagonal and zeros elsewhere; we would expect such modes to have
corresponding eigenvalues with oscillation rates given by the different cadences of the walkers.

In applications such as autonomous cars, estimating and forecasting motions of tracked objects
is also relevant. We note that Koopman techniques can be used for prediction of future dynamics
[Gial7, KM18a] and coordinates of estimated motions of tracked objects would be the natural
observables to use.
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4.1

4 Appendix: Summary of Project

Project activities and highlights

FY17 activities

1.

Developed general methods for identifying distinct motions in time-dependent datasets, mo-
tivated by motion segmentation problem in video analysis.

Compared various forms of DMD and DM on feature point tracks in video data.

. Identified applications in quantum dynamics based on prior model reduction work and new

ideas in thermalization.

Mentored PhD intern: develop fast-paced course to teach fundamentals of ergodic theory
and functional analysis.

. Summer intern project: used ergodic theory and ergodic quotients [BM12] work to develop

DM kernels for directly embedding time-dependent datasets into geometrically meaningful
low-dimensional representation, spatially organized by trajectories and attractors.

Developed motion segmentation technique and algorithm (PWD-DMD): constructs objects
that enable clustering of dataset by distinct motions (DMD modes) and capable of classifying
datasets by the types of motions present (DMD spectra).

FY18 activities

1.

2.

Applied motion segmentation algorithm to new datasets with increasing number of distinct
motions and identify signatures in spectra for classifying datasets by motion properties.

This leads to the idea of “spectral characterization”: namely, that multiple time-dependent
datasets can be organized by their dynamical properties through manifold learning applied
over Koopman spectra. An outline of the approach is:

* Run DMD with fixed good observables on datasets within the same class (e.g., partition
large dataset into smaller local pieces) and use spectra as feature vectors for DM.

» Use diffusion distance in embedding to identify datasets with similar dynamical prop-
erties: each DMD mode captures spatial aspects of dynamics linking the full class of
datasets and can be used for classification, prediction, and data reduction purposes.

* In the context of a single large dataset, this corresponds to extracting dynamical features
locally and stitching them together via manifold learning to organize the dataset based
on spatial and dynamical features.

* Much of the ongoing theory work is concerned with the analysis of these ideas in the
dynamical systems framework.
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3. Studied challenges and state-of-the-art in analysis of Wide Area Motion Imagery and specif-
ically, the WPAFB 2009 dataset.

* Optical flow is not directly available and feature trackers fail quickly on this dataset, so
previous algorithm is not applicable as-is.

* Direct application of DM or DMD is computationally intractable due to the various
features of this dataset.

 This leads to studying local methods in manifold learning: e.g., patch-based DM and
local diffusion folders.

* Another approach: partition the view space into patches, treated as separate time-
dependent datasets and apply spectral characterization. Using just intensity initially,
this reveals segmentation of the view space by similar dynamics and sparsifies the
dataset to identify large-scale regions of motion, such as highways (compare to [Leal3]).

4. Connected with Dept. 6300 to identify prior projects attempting motion segmentation in
datasets related to the WPAFB 20009.

* Closest match is Kyle Merry’s project on SDMS Minor Area Motion Imagery (MAMI)
dataset that could achieve optical flow and feature tracking, but not motion segmenta-
tion.

* Acquire simulations with feature tracks from this project and determine path to doing
motion segmentation on their results: FY17 techniques can be directly applied with
some coding modifications (restrict tracked features to those that remain on screen
through all frames).

4.2 Programmatic summary

What worked well?

* Motion segmentation in the usual setting of large-scale structures with multiple types of
motions with a priori feature-tracking.

* Generally, the methods are useful in applications with explicit time-dependence in data
(meaning, trajectories can be directly sampled) where clustering based on distinct motions
1S necessary

What posed challenges?

» Applications with implicit time-dependence in data: the accessible observables have no in-
formation about trajectories, but rather a passive view of pieces of all trajectories that flow
through a fixed spatial region; e.g., operating on intensity data without pre-processing to
produce feature tracks/optical flow.
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Massive scale data with large number of relatively small scale of distinct motions/targets;
spatial under-sampling becomes challenging.

“Background” contains multiple types of distinct motions, coupled with low/sparse temporal
resolution, very small target size and mix of sparse and densely packed objects; e.g., in video
data: parallax with large displacement over small number of frames and wide-area motion
imagery.

These are all features of the WPAFB 2009 dataset that, in accumulation, make it especially
challenging.

How have you deviated from your original plan?

Original planning was to spend FY17 — 18 doing more theory work, specifically develop-
ing more fundamental ideas at the intersection of manifold learning and dynamical systems
theory, both in the numerical/approximative and asymptotic/theoretical settings.

Upon seeing the positive FY'17 results in motion segmentation, committee requested further
focus on video applications to mission-specific datasets such as WPAFB 2009 efc. and to
identify “limitations” of DMD/DM based approaches.

This resulted in less focus on theory work and more focus on understanding the challenging
WPAFB 2009 dataset and developing methods to affect it using new techniques.

In this direction, the first half of FY 18 was focused on ideas around spectral characterization:
local-to-global methods for motion classification in time-dependent datasets.

Summary of next steps

Develop algorithm or heuristics for DMD mode selection for motion segmentation from
feature tracks algorithm;

1. How many DMD modes are necessary to identify all distinct motions?
2. Identify “good” DMD modes for motion segmentation.

3. Construct block-diagonalization of good DMD modes
Spectral characterization of time-dependent datasets

1. Automate search criteria for identifying relevant piece of spectrum (domain-specific
problem).

2. Explore coupling with Multi-Resolution DMD (mrDMD) [KFBE15].
Tackle WPAFB 2009 dataset (assuming no a priori optical flow/feature track information)

1. Pre-process by solving scene alignment problem (this enables dynamical methods to
be localized and state-space to be sparsified).
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— Most techniques in literature on WAMI datasets rely on training from ground-
truths or pulling external data like mapping road networks onto the scene.

— For an approach agnostic to context-specific external information and ground-
truth training, consider warping with respect to homography computed from a
RANSAC-based algorithm through matching SIFT-like features across two frames.
This dataset poses challenges in addition to strong parallax: the temporal resolu-
tion is very low and there is a large variation in geometry and intensity profiles
[LZS17]. An approach might be to use this in conjunction with exact DMD on ‘fat’
data matrices over large number of observables and few time-steps, with frames
chosen for best scene alignment results.

2. Spectral characterization approach with stronger observables: e.g., local binary pat-
terns, or derivatives of intensity profile (i.e., (I, px(I), py(I)), with p.(I) = 9,1 /0.(I) or
just p.(I) = d.(I) as suggested by [WSI07, GK13].

3. Patch-based DM amd DM for optical flow [WB10]: localized DM over patches, cor-
relating diffusion distance across frames to give global optical flow. Image completion
results as in [GK13] show DM eigenfunctions from texture descriptors can capture
non-smooth structures/geometry profiles.

4. Possible work-flow: subsample frames, optimizing for scene alignment; do spectral
characterization with iterative refinement such as mrDMD to identify regions of simi-
lar activity (highways vs parking lots vs background etc.); build optical flow over re-
gions of interest and acquire feature tracks; apply PWD-DMD for object-based motion
segmentation.

* Motion segmentation on Dept. 6300 (Kyle Merry) results on SDMS MAMI dataset.

1. This dataset along with results of prior LDRD’s efforts has several features making the
PWD-DMD algorithm a good match. Background motion is rotational; most objects
stay within view space for long time-spans; high temporal resolution; strong separation
of dynamical characteristics between background and foreground. Sparsified optical
flow and feature tracks exist; prior efforts have resolved some scene alignment issues.

2. Apply PWD-DMD on temporal windows where feature points are contiguously present
in the view space. DMD modes may be linked across temporal windows using their
structure and observable properties. Along with modes, the spectra can also be tracked,

Application partners

1. Dept. 6300 (Kyle Merry)

* kmerry@sandia.gov

» Use case: Motion segmentation based on feature tracks acquired from results in pre-
vious project to push what is possible for dataset impacting surveillance mission area
needs.
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* Provided initial exemplary dataset produced through simulations for motion segmenta-
tion.

* Techniques and algorithms from project can be applied with some programming mod-
ifications (not needing any theory advances).

2. Timothy Draelos / Sapan Agarwal / Deep Neural Net team

* tidrael@sandia.gov, sagarwa@sandia.gov
* Use case: Need to do analysis on time-varying datasets.

* Deep Learning has many issues when applied directly to changing datasets, but can
provide good observables from training that can be used with the techniques in this
project to enable time-dependent analysis (c.f. [YKHI17]).

* Based on the setup of techniques in this project, specifically the separation of application-
specific observables and the processing step done on them, there is a clear point of in-
teraction with DNN-based methods that can enable a wider mission application space.

3. Dept. 5346 (SAR Group)

 Salvador Sanchez worked on the project to produce video data and gained some under-
standing of the types of capabilities we can produce.

* SAR team has analysis and data reduction needs on satellite imagery: close match for
applications of this project.

 Salvador can help to identify more specific applications in the SAR domain.
4. Dept. 1463 (Kiran Lakkaraju)

* klakkar@sandia.gov

* Brief discussions with Kiran indicated strong interest in doing manifold learning for
clustering and data reduction on data produced from Cognitive Systems Models.

Team/Collaborators/Consultant

1. Mohan Sarovar

* mnsarov@sandia.gov

* Role and future collaboration: physics applications, especially intersection with quan-
tum information.

2. Salvador Sanchez

* sgsanch@sandia.gov
* Role: video processing, acquiring test data and preprocessing target data.

* Future collaboration: SAR applications, coding for application to MAMI dataset.
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3. Tian Ma

* tma@sandia.gov

* Role: consultant on tracking applications; helped to identify certain directions for fu-
ture applications and connections to acquire potentially relevant video data.

 Several discussions on the state of video analysis and tracking capabilities at Sandia.

* Discussions indicated the cutting-edge nature of this LDRD, the lack of similar capabil-
ities, further confirmed the difficulty of the WPAFB 2009 dataset, and identified several
issues with the current/existing approaches outside of this project that the techniques in
this LDRD can overcome (especially regarding ineffectiveness of deep learning meth-
ods, PCA and other SVD-based techniques).

4. Fredrick Rothganger

¢ frothga@sandia.gov

* Role: consultant/advice on tracking and motion segmentation methods in video.
5. Richard Lehoucq

* rblehou@sandia.gov

* Role: consultant/advice on optical flow methods.
6. Dept. Mechanical Eng., UCSB (Igor Mezic)

* mezic@ucsb.edu
* Role: collaborator on DMD applications.

* Future collaboration: video analysis and DMD applications
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