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Abstract

Batteries are designed to store electrical energy. The increasing variation in time value of
energy has driven the use of batteries as controllable distributed energy resources (DER).
This is enabled though low-cost power electronic inverters that are able to precisely control
charge and discharge. This paper describes the software implementation of an open-source
battery inverter fleet models in python. The Sandia BatterylnverterFleet class model can
be used by scientists, researchers, and engineers to perform simulations of one or more fleets
of similar battery-inverter systems connected to the grid. The program tracks the state-
of-charge of the simulated batteries and ensures that they stay within their limits while
responding to separately generated service requests to charge or discharge. This can be
used to analyze control and coordination, placement and sizing, and many other problems
associated with the integration of batteries on the power grid. The development of these
models along with their python implementation was funded by the Grid Modernization
Laboratory Consortium (GMLC) project 1.4.2. Definitions, Standards and Test Procedures
for Grid Services from Devices.
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Nomenclature

Ah amp-hours

BESS battery energy storage system

CRM charge reservoir model

DER distributed energy resources

EoL end-of-life

EPS electric power system

ERM energy reservoir model

GMLC grid modernization laboratory consortium

kW kilowatt

kWh kilowatt-hours

p.f. power factor

p.u. per-unit

SoC state-of-charge

SoH state-of-health
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Chapter 1

BatterylnverterFleet Class
Implementation

This report introduces the python-based BatterylnverterFleet Class and describes its use
and interface with other classes. This open-source software is implemented in the larger
context of a transformation of the U.S. electric power system (EPS) which we will briefly
discuss before the details of the model.

1.1 Introduction

The EPS is an interconnected marvel that goes far beyond just generation, load, and associ-
ated infrastructure. The traditional use of centralized power generation-to-load is something
becoming more outdated and our aging infrastructure is being pushed beyond its original
design. The proliferation of non-traditional loads and renewable power sources challenges
grid operators to maintain the reliability and resiliency of the power grid. To help meet the
increasing demands on the EPS, controllable distributed energy resources (DER) are being
deployed to help create a smart, efficient, and reliable utility grid and the DER classes include
responsive loads and appliances in buildings, several types energy storage devices, electric
vehicle storage/chargers, smart photovoltaic inverters, and other DER that can enhance the
reliability and stability of the bulk power system.

1.2 Scope

To address the challenges facing the EPS, the Grid Modernization Laboratory Consortium
(GMLC) project 1.4.2., Definitions, Standards and Test Procedures for Grid Services from
Devices, was scoped to enable and broaden the deployment of various types of DER classes
that are able to ease the burden on the grid. The GMLC project accomplishes this goal
through the development and validation of simulation models that enable a deeper under-
standing of the implementation of DER that provide more reliable and cost-effective means
of producing, conveying, and storing power. To assess the capabilities for each of the DER
to support the EPS, a performance metric must be utilized as a means of comparing the
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effectiveness of each type of DER to meet the needs of the grid. The development of a means
to accurately and efficiently assess the capabilities of the devices is essential for deployment.
By showcasing the performance of DER to supply grid services, utilities and consumers will
gain confidence in the technologies.

A team comprised of national laboratories, each specializing in DER device classes and/or
grid services, have developed modular simulation source code for evaluating the performance
of DER devices to provide a variety of grid services, like ancillary services, peak load man-
agement, voltage regulation, frequency regulation, and wholesale market price response. The
development to quantify the performance for the different device classes was accomplished
by implementing a battery equivalent model for each of the device classes. The battery
equivalent model provides a uniform means of representing the properties of any device class
(and fleet of devices) as a virtual battery and allows a quantifiable means of assessing the
performance of the technology. This provides a level-playing field for the various classes to
be assessed for performance and how they are compared for dispatch purposes and provides
a means to implement model-based performance metrics to assess grid services. The battery
equivalent model implementation for a battery-based DER device class is presented in this
paper. The device class is utilized as a fleet of devices to provide the impact on the associated
grid service.

The scope of Sandia's work was to develop and validate the source code for modeling a
fleet of battery-inverter devices. Also referred to as battery energy storage systems (BESS),
these devices can act as loads, power sources, and even as transmission or distribution assets
depending on how they are operated. Battery's store electrical energy as chemical and, when
connected to the grid by power electronic based inverters, are extremely flexible in responding
to power commands issued by utilities or markets. However, they are physically limited
in how much energy they can supply or absorb, meaning that an operator must carefully
decide when and how much to charge/discharge to maximize the benefits being supplied.
These energy limits are the primary focus of our modeling efforts. Section 1.3 introduces the
battery-inverter fleet model and its methods, Section 1.4 then covers the framework by which
the model implements the energy limits of battery in simulation, Section 1.5 then explains
how autonomous operation functions are implemented and validated, Section 1.6 outlines
the battery degradation models used to calculate the fleet impact metrics, and lastly Section
1.7 lists all of the model parameters and explains their various effects on fleet simulations.

1.3 Class Methods

In this section, we introduce the BatterylnverterFleet class and explain its methods. The
illustration in Fig. 1.1 shows the full list of available methods and roughly how they connect
to each other. The GridInfo Class can be constructed by passing it the name of a csv file that
contains time, frequency and voltage data in the correct format. The BatterylnverterFleet
then takes two inputs to construct: a GridInfo object, and a string designating which state-
of-charge (SoC) model to use (either ERM, or CRM). The Linit__' method opens the local
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config.ini file to extract the parameters for the appropriate SoC model and all other fleet
parameters. The SoC models are described in Section 1.4. A full list of fleet model parameters
can be found in Section [1.71

FleetRequest

Object List

FleetRequest

FleetConfig

BatterylnverterFleet Class

init

process_request

frequency_watt

volt_var

Grid nfo

run

run_soc_update

voc_update

voc_query

cost

forecast

output_impact_metrics

change_config

FleetResponse

FrequencyDroop

Object List

FleetResponse

impact_metrics.csv

Figure 1.1. BatterylnverterFleet Class Method Diagram

Once a BatterylnverterFleet is constructed, its primary interface is through the 'process
_request' method. This method accepts a 'fleet_request' object, and returns a 'fleet_response'
object by calling the run method internally. Using the ̀ process_request' method in this way
also updates the internal fleet states according to the model used. A secondary interface in
through the 'forecast' method that accepts a list of 'fleet_request' objects that make up a
proposed schedule. This method then returns a list of 'fleet_response' objects, corresponding
to the forecast fleet response, without changing the internal states of the fleet.

The configuration file contains parameters to enable or disable autonomous operation.
When autonomous operation is disabled, the BatterylnverterFleet will only respond to fleet
requests. When enabled, the BatterylnverterFleet will still respond to fleet requests but
these requests may be modified based on grid conditions. The BatterylnverterFleet has the
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option for two kinds of autonomous operation functions: frequency/watt and volt/var. These
functions are described in Section 1.5. Note that the ̀ change_config' method will accept a
FleetConfig object to programmatically change the parameters for autonomous operation.

The BatterylnverterFleet will keep track of how many cycles each device has under-
gone during operation and the corresponding state-of-health (SoH). The SoH, along with
the incremental cost associated with degradation in SoH are saved to a csv file when the
`outputimpact_metrics' method is called. These calculations are described in Section 1.6

The 'cost' method is intended for use in schedule optimization. It accepts an initial SoC,
a final SoC, and a time difference between them. It returns the power required to go from
initial to final SoC in the allotted time and any associated costs. The cost is calculated
the same as in the ̀ outputimpact_metrics' method and is associated with the cycle-life and
end-of-life costs. The 'cost' method also returns a Able variable that is 1 if the fleet is able to
achieve the change in SoC in the allotted time and 0 if is is unable due to encountering one
of its limits. This method can be used with dynamic programming to optimize a SoC/power
schedule over a finite time horizon.

1.4 State-of-Charge Models

The battery-inverter model is implemented in two ways: energy reservoir model (ERM)
and the charge reservoir model (CRM). Energy reservoir model (ERM) is a term for the
class of state-of-charge (SoC) models that define capacity in units of energy (kWh). These
models are highly efficient for simulation but can be inaccurate over large changes in SoC.
ERM are widely used in research on the integration of energy storage with the grid. This
includes studies using ERM that ignore efficiency losses 5, 6, 181, includes both charge and
discharge efficiencies [8, 9, 12, 13, 21, 22, 25, 28  , and those that include some form of self-
discharge power 2, 8 14, 15, 26  . The ERM implementation used in the battery-inverter
model is shown in (1.1)•

(2eap . = ne max(pe, 0) + min(pe, 0) + Psd (1.1a)

Cmin < C < cmax (1.1b)

Pmin < Pe < Pmax (1.1c)

where c is the SoC, pe is the ac power (+ charge, - discharge), Q cap is the energy capacity,
Tie is the energy efficiency, psd is the self-discharge power, and cmin, Smax, Prnin, and Amax are
the SoC and power limits respectively.

Charge reservoir model (CRM) is a term for the class of BESS models that define capacity
in units of charge (Ah). These models are less computationally efficient than ERM but have a
higher potential for accuracy based on the increase number of represented battery dynamics.
CRM are also widely used in scientific literature. This includes studies using CRM that
ignore coulombic efficiency [4, „ 27 , and those that include some form of self-discharge10 16
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current
in (1.2).

41,23,24. The CRM implementation used in the battery-inverter model is shown

Pdc = 02P2e + 01P e + 00

Pdc — ibatVbat

V oc = f(c)
—1 1

7)1 =  Rici. V1 + —i bat
C 1

—1 1
7)2 V2 + —ibatR

2 i
c_12 

C2

Vbat = V oc + ROjbat + v1 + V2

C cop . = 71c Illax(ibot , 0) + min(ibat, 0) + i sd

Smin

Prnin

imin

V min

< C < Cmax

< Pe < Prnax

< ibat < imax

< Vbat < V max

(1.2a)

(1.2b)

(1.2c)

(1.2d)

(1.2e)

(1.2f)

(1.2g)

(1.2h)

(1.2i)

(1.2j)

(1.2k)

(1.21)

where c is the SoC, Pe is the ac power, pdc is the dc power, i bat is the current provided to
battery system (+ charge, - discharge), Vbat is the battery terminal voltage, v0, is the battery
open-circuit-voltage, v1 is the first battery dynamic voltage, v2 is the second battery dynamic
voltage, and c is the battery SoC. The parameters in (1.2) are as follows: cbo, cbi, and 02
are the coefficients of a quadratic ac/dc conversion efficiency curve fit, f(S) can be defined
to be a 'Linear', 'Quadratic', 'Cubic', or ̀ CubicSpline' function (along with the associated
coefficients), Ro, R1, C1, R2, and C2 are the equivalent circuit parameters, Ccap is the charge
capacity, n, is the coulombic efficiency, and isd is the self-discharge current. The constraints,
cnin 1 Smax ) Prnin, Pmax 1 i min ) i max 1 V min ) and Vmax are the SoC, power, current, and voltage
limits respectively.

Both models have additional constraints to handle limits on power factor (p.f.), apparent
power, and ramp rate. In the order, ramp-rate, absolute P or Q limits, apparent power limit,
then p.f. limits, the algorithm first checks if any of these limits are violated and the, if they
are, it changes the power requested of a given device to the closest value that satisfies the
constraint. For the apparent power limit, the fleet model can be configured to either favor
real power (P priority) or reactive power (not P priority, or Q priority). For P priority, if the
apparent power limit is exceeded, the device will reduce its reactive power until the apparent
power limit is satisfied. For Q priority, if the apparent power limit is exceeded, the device
will reduce its real power until the apparent power limit is satisfied.
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1.4.1 Fleet Response Implementation

When real and reactive power requests are sent to a fleet of two or more devices, the power
request must be split between the devices such that the request is met without exceeding
any of the device's limits. To accomplish this task, the battery-inverter fleet model divides
the total request by the number of devices in the fleet and sends the scaled request to all
available devices. Under certain conditions, some of the devices in a fleet may not be able
to supply the full amount of power requested of them. When this happens, the algorithm
designates these devices as 'not available,' and then divides the total power shortfall equally
among the remaining 'available' devices. This process continues until either or the power
request is met to within a threshold or all of the devices are 'not available.' This process
works the same for both active and reactive power. Fig. 1.2 shows a flow chart for this
algorithm.

Requested
Fleet Power +

Power request
Divided Equally

Currently Available Devices

Device 1

Device 2

Device 3

Device 4

Requested
Power

Device n

Achieved
Power

If any device encounters its limits (meaning that their
Achieved Power * Requested Power) then that device is

removed from the available device set.

Total
Achieved

Fleet Power

Loop proceed iteratively until either Total Achieved Fleet Power = Requested Fleet Power or the available device set is empty

Figure 1.2. Fleet Response Recursive Implementation Di-
agram

1.4.2 Model Validation

The ERM and CRM discussed above were validated by simulating 30 devices with real test
data, shown in Fig. 1.3(a) for ERM and Fig. 1.3(b) for CRM, and comparing their SoC
trajectories to the SoC trajectory reported by the battery management system of the device
under test. a standard normal distribution is used in this example to randomly initialize the
SoC of each device in the simulated fleets. This simulation test performs three tasks. First,
it demonstrates that both models produce results that closely follow the actual achieved
performance of a real battery-inverter system. Second, it demonstrates what happens when
some of the devices in the fleet expounder their low SoC limits. In this case the burden
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of supplying the requested power falls on the remaining available units as described above.
Third it demonstrates the difference between the models in that the CRM fleet ends up
curtailing power near the end of the test whereas the ERM based fleet does not. While
potentially more accurate, the CRM takes considerably longer to simulate the test and
hence may not be computationally efficient enough for very large power system simulations
with hundreds or thousands of batteries.

15 0

SO

Time Mom)

(a) 30 ERM based battery-inverter devices (b) 30 CRM based battery-inverter devices

Figure 1.3. Battery-Inverter Fleet Model Validation Sim-
ulation Test

1.5 Autonomous Operation

Autonomous responses to local grid conditions is configured to match the 2018 IEEE 1547
Standard for Interconnection and Interoperability of Distributed Energy Resources with As-
sociated Electric Power Systems Interfaces 3]. The frequency/power function is implemented
using the following two equations.

Operation for low-frequency conditions

(60 — dbUF) - f p = 
f <60 — 

i mn 
dbuF 

{Ppre 
60 kuF 

; Pavl

Operation for high-frequency conditions

(60 — dboF) 
p = min 

f >60-FdboF 
{Ppre f 

60 koF 
; Pmin

where:

(1.3)

(1.4)

• p is the active power output,104 in p.u. of the DER nameplate active power rating

• f is the disturbed system frequency in Hz

13



• pavl is the available active power, in p.u. of the DER rating

• ppre is the pre-disturbance active power output, defined by the active power output at
the point of time the frequency exceeds the deadband, in p.u. of the DER rating

• Pmin is the minimum active power output due to DER prime mover constraints, in p.u.
of the

• dboF is a single-sided deadband value for high-frequency and low-frequency, respec-
tively, in Hz

• dbuF is a single-sided deadband value for high-frequency and low-frequency, respec-
tively, in Hz

• koF is the per-unit frequency change corresponding to 1 per-unit
(frequency droop), unitless

• kuF is the per-unit frequency change corresponding to 1 per-unit
(frequency droop), unitless

power output change

power output change

The volt/var function is implemented through a linear interpolation between (V, 0 ).et set

points supplied in the fleet configuration. While there are many ways to specify a volt/var
function curve, (V,Q) points are compatible and consistent with he methods used in IEC61850-
90-7 1 and IEEE 1547 3]. The plot in Fig. 1.4 shows an example of how to use (V,Q)
points to define a volt/var curve.

Re
ac

ti
ve

 P
o
w
e
r
 

(v2,Q2)

•

(V,,Q3) Voltage
 ►

(vzi,c14)

Figure 1.4. Autonomous volt/var function example curve

Whenever the a fleet is configured for autonomous operation, each device in a fleet will
use the Gridlnfo class to look up the frequency and voltage of the location assigned to it and
use these functions to modify their real and reactive power.
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1.5.1 Autonomous Operation Model Validation

The Autonomous Operation Model discussed above was validated by running it on a fre-
quency and voltage profile. The same frequency was used for all devices, whereas two loca-
tions with different voltage profiles were used. The default parameters had to be changed to
be more sensitive as the voltage and frequency were otherwise close enough to nominal to
stay within the deadbands for each respective function. The frequency and fleet real power
response are shown in Fig. 1.5(a), and the voltages and fleet reactive power response are
shown in Fig.
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1.6 Fleet Impact Metrics

This section describes how battery aging metrics are calculated. The simplest approach to
calculating the rate of degradation in batteries (0 is to assume that it is a linear function
of cycle-throughput. Under this assumption, degradation can be modeled as proportional to
the absolute value of the battery power as shown in (
the absolute value of the battery current as shown in (

1.5) when using the ERM
1.6

Ipel 
= 

(1 + gcne yc cap

1401 
)

= \ T r
Ife 1-icyc‘-l

y

eap

7
) when using the CRM

13 22
17

or to
19 20

(1.5)

(1.6)

where Pe is ac real power, ibat is the battery current, 77, is the coulombic efficiency, Luc is the
rated cycle-life to end-of-life EoL, Q cap is the energy capacity, and Gap is the charge capacity.
Note that, when adding this up over a discrete simulation time, this form of degradation
is equivalent to calculating the fi norm power as shown in (1.7) or the fi norm current as
shown in (1.8). The regularization weight ILyc has units of $ kW or VA depending on which
equation it is in because of the units of the relevant decision variable.

fb(pe) = ficyc IPC111
At CEO',

where IL =y, 
(1 + rfe )-LcycQcap

fb(ibat) — ficyc ibat 11 1

At CEOL 
where IL =Y 

(1 + )LcycGap

(1.7a)

(1.7b)

(1.8a)

(1.8b)

where fb is the fleet impact metric based on battery degradation, At is the length of the
simulation time step, and CEOL is the anticipated EoL cost (although the capital cost of the
BESS can also be used).

1.7 Parameters

Model parameters are implemented in the ̀ config.ini' file. Changing parameter values in this
file will implement the changes when the BatterylnverterFleet is constructed. The general
fleet parameters are listed in Table 1.1, the fleet configuration parameters including those
for autonomous operation are listed in Table 1.2, the ERM specific parameters are listed in
Table 1.3, the CRM specific parameters are listed in Tables 1.4 and 1.5, and the fleet impact
metric parameters are listed in Table 1.6
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Table 1.1. General Parameters

Name Default
Value

Description

Name
ModelType

MaxPowerCharge
MaxPowerDischarge
MaxApparentPower
MinPF
MaxSoC
MinSoC
MaxRampUp

MaxRampDown

NumberOfDevices
Locations

FleetModelType

SOC_STD

t
soc

TestBat
ERM

7
-7
7
1
95
19
7.0

-7.0

30
0,0,1

Standard
Normal SoC
Distribution

10

0.0
95

Fleet Name
Can be specified as ERM or CRM, defines which
model is used to simulate the fleet.
Maximum charge power limit (kW)
Maximum discharge power limit (kW)
Maximum apparent power limit (kVA)
Minimum power factor [0,1]
Maximum state-of-charge limit
Minimum state-of-charge limit
Maximum ramp-rate for decreasing discharge or in-
creasing charge power (kW/time-step)
Maximum ramp-rate for increasing discharge or de-
creasing charge power (kW/time-step)
The number of battery-inverter devices in the fleet
location designations for each device (positive inte-
gers), 0 if not specified
Defines the starting SoC for each device in the fleet,
Options: Uniform, Standard Normal SoC Distribu-
tion. If Uniform is specified, all devices will start
with the same SoC equal to the initial state ̀ soc' de-
fined below. If Standard Normal SoC Distribution
is specified then each starting device's SoC will be
randomly assigned from a standard normal proba-
bility density function defined by a mean, defined by
the initial state ̀ soc' defined below, and a standard
deviation, specified by ̀ SOC_STD' defined below.
Optional parameter for standard deviation in start-
ing state of charge.
Initial time
Initial state-of-charge, or the mean value of the dis-
tribution for initial states-of-charge for devices
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Table 1.2. Fleet Configuration Parameters

Name Default Description
Value

is_P_priority True When the apparent power limit is exceeded, this
Boolean variable indicates if the real power is priori-
tized (True) or if reactive power is prioritized (False)

is_autonomous True This Boolean variable either enables (True) or dis-
ables (False) all autonomous operation functions

FW21 _Enabled True Frequency/watt operation function enable (True) or
disable (False)

db_UF 0.0036 single-sided deadband value for low-frequency, in Hz
db_OF 0.0036 single-sided deadband value for high-frequency, in Hz
k_UF 0.005 per-unit frequency change corresponding to 1 per-unit

power output change (frequency droop), unitless
k_OF 0.005 per-unit frequency change corresponding to 1 per-unit

power output change (frequency droop), unitless
P _avl 1.0 available active power, in p.u. of the DER rating
P _min -1.0 minimum active power output due to DER prime

mover constraints, in p.u. of the DER rating
P _pre 0.0
VV11 _Enabled True Volt/var operation function enable (True) or disable

(False)
Vset 232.8, This parameter is a list of voltages corresponding to

237.6, the list of vars in Qset. When enabled these points
242.4, define the volt/var curve that the devices will follow
247.2 when not supplied a reactive power request by a ser-

vice (q=none).
Qset 3.5, 0, 0, - This parameter is a list of vars corresponding to the

3.5 list of voltages in Vset.

Table 1.3. ERM Specific Parameters

Name Default
Value

Description

EnergyCapacity 5.9441 Energy capacity (kWh)
EnergyEfficiency 0.6788 Round trip energy efficiency (%)
SelfDischargePower 0 Self-discharge power (kW)
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Table 1.4. CRM Specific Parameters

Name Default Description
Value

InvName TestInv Inverter name
InvType TestType Inverter type (descriptive)
CoeffO -0.0721 Quadratic coefficient for dc power to ac power con-

version function
Coeffl 0.99107 Linear coefficient for dc power to ac power conversion

function
Coeff2 -0.0151 Offset coefficient for dc power to ac power conversion

function
BatName TestBat Battery name
BatType LiIon Battery type (descriptive)
NCells 14 Number of cells in the battery string (for multiple

parallel strings, multiply charge capacity 'ChargeCa-
pacity' and divide ohmic resistance ̀ RO' by number
of strings)

VOCModelType Cubic Open-circuit-voltage function type. Options: 'Lin-
ear', 'Quadratic', 'Cubic', or 'CubicSpline'.

If 'Linear' is specified, will use VOC_Model_M and VOC_Model_b parameters
to specify slope and intercept.

If 'Quadratic' is specified, will use VOC_Model_A, VOC_Model_B and
VOC_Model_C parameters for the quadratic, linear, and offset coefficients re-
spectively.

If 'Cubic' is specified, will use VOC_Model_A, VOC_Model_B, VOC_Model_C,
and VOC_ModeLD parameters for the cubic, quadratic, linear, and offset coef-
ficients respectively.

If 'CubicSpline' is specified, will read in comma separated parameter lists in
VOC_Model_A, VOC_Model_B, VOC_Model_C, and VOC_ModeLD to specify
the cubic, quadratic, linear, and offset coefficients within each SoC range spec-
ified in the comma separated list in VOC_Model_SOC_LIST. The 'CubicSpline'
function is configured to work with the MATLAB 'spline' function meaning that
the beginning of each SoC range is subtracted from the SoC value before the
cubic function is applied.

VOC_ModeLA
VOC_Model_B
VOC_Model_C
VOC_Model_D

0.962857
-0.717143
0.41
3.445

Cubic coefficient for open circuit voltage
Quadratic coefficient for open circuit voltage
Linear coefficient for open circuit voltage
Offset coefficient for open circuit voltage
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Table 1.5. CRM Specific Parameters (continued)

Name Default
Value

Description

MaxCurrent Charge
MaxCurrentDischarge
MaxVoltage
MinVoltage
ChargeCapacity
CoulombicEfficiency
SelfDischargeCurrent
RO
R1*
R2*
C1*

C2*

150.0
-150.0
4.2
3.3
135.2366
0.9462
0
0.001096

Maximum charge current limit (A)
Maximum discharge current limit (A)
Maximum battery cell voltage limit (V)
Minimum battery cell voltage limit (V)
Charge capacity (Ah)
Coulombic efficiency (%)
Self-discharge current (A)
Per-cell ohmic (dc) resistance (Q)

999999999.0 Per-cell resistance from diffusion time-constant (Q)
999999999.0 Per-cell capacitance from diffusion time-constant (F)
999999999.0 Per-cell resistance from cell capacitance time-

constant (Q)
999999999.0 Per-cell capacitance from cell capacitance time-

constant (F)

* setting these values to be very large effectively ignores the dynamic components in the
simulation model.

Table 1.6. Fleet Impact Metric Parameters

Name Default
Value

Description

eol_cost

cycle_life

soh

6000 Anticipated cost to be incurred at end-of-life. Should
include both battery replaceent/refurbishment costs
as well as any revenue from second-life use resale ($)

10000 Cycle-life, number of cycles from SoH = 100% to
SoH = 0% (#)

100 Initial state-of-health (SoH) (%)
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