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Abstract—Heterogeneous computing with accelerators is
growing in importance in high performance computing (HPC).
Recently, application datasets have expanded beyond the memory
capacity of these accelerators, and often beyond the capacity of
their hosts. Meanwhile, nonvolatile memory (NVM) storage has
emerged as a pervasive component in HPC systems because NVM
provides massive amounts of memory capacity at affordable cost.
Currently, for accelerator applications to use NVM, they must
manually orchestrate data movement across multiple memories
and this approach only performs well for applications with simple
access behaviors. To address this issue, we developed DRAGON,
a solution that enables all classes of GP-GPU applications to
transparently compute on terabyte datasets residing in NVM.
DRAGON leverages the page-faulting mechanism on the recent
NVIDIA GPUs by extending capabilities of CUDA Unified
Memory (UM). Our experimental results show that DRAGON
transparently expands memory capacity and obtain additional
speedups via automated I/O and data transfer overlapping.

Index Terms—gpu, out-of-core, memory, driver, large data

I. INTRODUCTION

Three important trends are emerging in high performance
computing (HPC). First, heterogeneous computing with accel-
erators, such as GPUs and FPGAs, is growing in importance
in HPC, machine learning, and other areas. Typically, these
accelerators have their own high performance memory, which
is discrete from and smaller than the host memory. Second,
application datasets have grown much larger than the capacity
of accelerator memory and even beyond that provided by host
memory. The local data processed in scientific computations can
easily exceed the host memory capacity [1], [2]; therefore, even
with the use of NVIDIA’s state-of-the-art Unified Memory, such
applications would still need to rely on techniques like manual
buffer management for large memory support (i.e., data larger
than the system memory). Third, nonvolatile memory (NVM)
storage, such as 3D-NAND flash, has emerged as a technology
to provide massive amounts of memory capacity to a node
with good power efficiency and rapidly increasing bandwidths
at affordable costs [3]-[5]. With the recent introduction of
3D-Xpoint technology from Intel [6], NVM technologies are
progressively competitive with expensive and density-limited
DDR-based host memory.

These trends are evident in upcoming supercomputers, like
ORNL’s Summit and LLNL’s Sierra, which will employ both
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NVM devices and several GPUs per node. Ideally, in these
systems, the accelerators should be able to access massive NVM
storage with both reasonable performance and minor impact
on the programmability of their applications. The community
has explored multiple software and hardware approaches for
accelerator kernels to better exploit host memory, but not for
NVM storage [7].

A traditional approach is to decompose the data into smaller
chunks and employ two-way transfers between corresponding
kernel executions [2]. While this approach fits well for
streaming types of applications, it may require extensive
application-specific programming effort and may not be appli-
cable if the data access pattern is irregular or unsuitable
for the computation to be partitioned into multiple kernel
launches. Alternatively, hardware, OS-level, and application-
based solutions have been proposed to process data larger
than the GPU memory by utilizing the host-side DRAM as
well (see § VI). However, they fall short of being practical
for several reasons, such as requiring hardware modifications,
having considerable overhead, or being limited to a specific
class of applications.

More recently, the revised Unified Memory (UM) for the
NVIDIA Pascal architecture [8], which we will refer to as
UM-P, offers a native solution for accessing host memory from
within GPU kernels. UM-P relies on native device-initiated
page-faulting and driver-managed swapping mechanisms to
present a unified virtual memory address range for accesses
from both CPU and GPU. Although UM-P may provide faster
performance than its predecessor [9], the amount of virtual
memory that can be allocated by UM-P is still limited by the
available physical host memory [10], [11].

I-A. Contributions

To address this challenge, we have developed DRAGON:
a solution that enables all classes of General purpose GPU
(GP-GPU) applications to transparently operate on very large
datasets residing in NVM while also ensuring the integrity of
data buffers, which is important for persistent data stored in
NVM. DRAGON leverages the page-faulting mechanism on
the recent NVIDIA GPUs and extends capabilities of CUDA
UM-P to provide transparent data access to terabytes of NVM.



More specifically, we make the following contributions in this
paper:

o We design and implement a novel approach that transpar-
ently maps the memory space addressable by the GPU
device code directly to NVM devices, with effectively no
limits on capacity.

e We uniquely eliminate the need for manual buffer
management for GPU kernels running on data larger than
the GPU or host memory. We also present NVM-optimized
access pattern types for read-only, write-only, and temporary
data to decrease I/O overheads.

o We evaluate DRAGON on a set of scientific kernels on a
NVIDIA P100 GPU and a 2.4 TB Micron 9100 NVMe card,
demonstrate that the I/O overhead is hidden in most cases,
and show that extra speedup is obtained against the original
UM-P by utilizing Linux’s page-caching mechanism for
streamlined I/O operations.

o We also evaluate DRAGON with two popular deep learning
(DL) workloads in Caffe [12] to demonstrate the feasibility
of real-life scenarios where access to large datasets is a
critical requirement.

II. BACKGROUND AND MOTIVATION

Nonvolatile memory (NVM) technology is rapidly evolving.
As their characteristics improve, NVMs are migrating up
the memory hierarchy and becoming a viable alternative for
system memory [3], where application data structures with
sizes larger than the host’s DRAM can reside. Early devices
were straightforward replacements for magnetic hard disks,
but upcoming options include NVMs [4], [6] that may be
inserted directly into DIMM slots (i.e., NVDIMMs), providing
considerably higher performance.

GP-GPU computing, on the other hand, has become the
primary choice for a wide range of domains which vary
from HPC to DL. Most GP-GPU programming models were
originally developed around the assumption that the size of the
data footprint of the problem is smaller than the GPU memory
[11], [13]. GP-GPU problem sizes have grown to the point
where we cannot simultaneously store all application data on
the GPU or host memory. As GPUs get faster, programming
models have evolved to embed mechanisms that support off-
chip memory accesses. Meanwhile, application developers and
researchers have developed algorithm-specific techniques [1],
[2], [14]-[19] to enable the processing of large data on GPUs.

For HPC applications using GPUs, the large and high-
throughput memory space provided by NVMs can provide
an efficient solution to alleviate memory space restrictions and
reduce data-staging overhead. Possible use cases include but
are not limited to the following.

o Multi-GPU-based systems: Increased number of GPUs in
the newest top-supercomputers (e.g., ORNL’s Summit and
LLNL’s Sierra) requires a larger amount of data to be
read from/into storage and also longer data-transfer times
to/from local GPUs [20]. Direct and efficient access to local
or shared (i.e., Lustre) NVM storage directly from GPUs
will allow developers to effortlessly port their applications
to fat-node-based systems.

o Workflow schemes: Multiple data-staging steps are needed
where the output of one computational stage is serialized
into the storage first, so that the next step can read the
data [21]. In such cases (e.g., in situ visualization), using
node-local NVMs as the primary memory location will
minimize the data movement and also allow full access to
the processed data on the later steps of the workflow.

o Deep learning: Model-parallelism [22] attempts to
distribute network layers across multiple GPUs to fit
models that require very large in-memory representation.
However, even model-parallelism will fail when the input
or output size of a single layer exceeds the GPU memory.
For example, a CT-scan image’s size can easily reach
terabytes [23] and the only existing solution is to scale the
image down until it fits into the GPU or host memory [24].
GPU-accessible NVMs will provide much larger capacity
at lower costs.

Utilizing NVMs as large-memory addressable devices in
GPU applications presents three major challenges.

Direct and transparent addressing: To integrate NVMs
without increasing the complexity of kernels, GPUs should
be able to directly address the very large space provided by
NVMs with no or insignificant performance penalties. Tseng
et al. [25] and Zhang et al. [26] proposed utilizing a custom
NVMe driver to directly transfer data between GPU memory
and NVM using NVIDIA’s GPUDirect RDMA [27]. While
these studies provide efficient means for direct NVM access for
GPUs, GPUDirect RDMA technically limits the addressable
space to the GPU’s global memory size [27].

Low-latency access: NVIDIA’s Unified Memory for the
Pascal architecture (UM-P), introduced with CUDA 8, opens up
a new opportunity for mapping larger addressable ranges with
less overhead. UM-P relies on a hardware-based page-faulting
mechanism to transparently address out-of-core memory
requests. However, the addressable range is limited by the
amount of physically available host memory [10], [11]. To
support large data, applications still need to manually manage
data movement between NVMs and the host memory. Also,
without dynamic techniques to overlap data staging and PCle
transfers with computation, the application throughput can be
even lower than expected.

Going beyond system memory capacity limits: Active-
Pointers [28] is the only study that considered expanding GPU
addressable memory range by mapping it to a file-system.
ActivePointers is based on GPUfs [29] and relies on in-kernel
software address translation (i.e., SW-based page faulting). It
requires existing CUDA kernels to be modified to use custom
pointers and APIs. Memory references are captured on the fly
via operator overloading, and a page-fault handling kernel-code
is executed for every access. This approach incurs significant
overhead in addition to the extensive cost of modifying existing
GPU kernels; therefore, it is relatively inefficient as it does
not exploit the new hardware paging support in GPUs, as
demonstrated in § IV.

To the best of our knowledge, there are no general-purpose
solutions that can address all of the above challenges efficiently.
As a solution, we introduce DRAGON, a framework that allows
NVMs to be directly mapped to GPUs to take full advantage
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of the large capacity and high bandwidth of NVM devices.

I1I. DRAGON

DRAGON, Direct Resource Access for GPUs Over NVM,
is a host-based framework that transparently extends the GPU
addressable global memory space beyond the host memory
using NVM-backed data pointers. DRAGON allows storing the
binary memory dump of application data in a file on NVM
and mapping it to the global memory space of the GPU. This
enables GPU kernels to access the data via regular load/store
instructions, similar to how mmap() operates in CPUs.

DRAGON introduces a novel driver design that incorporates
NVM-specific optimizations into modern GPUs to exploit
the unique benefits of the underlying heterogeneous memory
hierarchy. For the proof-of-concept implementation, DRAGON
is developed as an extension to Unified Memory for Pascal [8],
and it is made accessible to users via a separate user-level
host API. Our extension and modifications to the NVIDIA
driver are limited to the MIT-licensed open-source nvidia-uvm
submodule. DRAGON preserves all existing CUDA features
without any interface change or performance penalty.

Changes required for CUDA applications to work with
the DRAGON framework are minimal. Applications can take
advantage of DRAGON by using the dragon_map() API
function with a file path and other optimization parameters
(explained later) to map previously dumped binary data into
a unified memory space. This function internally finds an
unmapped virtual address space, registers this space along with
the file path to the internal tracking mechanism of our driver

extension, and returns the virtual address to the application.

Once mapped, the memory range is accessible by both GPUs
and CPUs, and DRAGON transparently allows direct access
down to NVM devices during GPU kernel execution.

11I-A. Driver Operation

In DRAGON, there are three locations where data can reside
in: GPU memory (GM), host memory (HM), and nonvolatile
memory (NVM). The content of the file that is mapped via
dragon_map() is visible to both CPUs and GPUs under the
same unified virtual address space. NVIDIA driver for Pascal
and Volta architectures captures page faults from both GPUs
and CPUs, and DRAGON relies on this hardware-based page-
faulting mechanism to handle the accesses from GPU kernels
to the mapped files. The memory consistency between GM and
HM is handled by the original UM-P module, whereas data
swapping and consistency between HM and NVM are handled
by our driver extension (as explained in detail in § III-B).

For file operations, DRAGON utilizes Linux’s page-cache
mechanism and read-ahead operations [30] to efficiently handle
NVM I/O. Read-ahead is automatically triggered after every
NVM file read operation, and as soon as the kernel thread
finishes serving a GPU page fault, consecutive blocks from the
NVM file are retrieved in the background as the GPU execution
continues. Read-ahead allows DRAGON to implicitly overlap
data-staging operations with CPU-to-GPU transfers and GPU
computation, hence exploiting better performance than the
default case where all operations are serially performed.

In this section, we focus on the extended driver operation
proposed as part of the DRAGON framework. Figure 1 shows
the high-level operation of DRAGON driver extension and
explains a scenario where a page fault originated from the
GPU is served by the driver. The following steps describe how
DRAGON handles load and store operations to provide access
to the corresponding data in NVM.

e« Map and Load: (1) When the driver receives the GPU
page-fault signal, DRAGON maps the virtual address
that comes along with the signal to the corresponding page-
cache page (PCP). If the PCP is not physically found in
host memory (HM) or is not up to date, (3) DRAGON
invokes page-cache to fill in the data from the storage,
similarly to how mmap () works internally [30], [31]. Then,
DRAGON temporarily pins this PCP in HM and rejects
further modification to the page by setting the lock bit in
the Linux page structure.

o Locate and Evict: Next, DRAGON tries to locate a free
memory chunk on the GPU. If there is no such chunk,
DRAGON will evict not-recently-used GPU chunks to free
up the necessary space. The evicted GPU data is written into
the corresponding PCPs on the HM but not immediately
written back to NVM. (6) The page-cache mechanism,
which is running in the background, is responsible for
writing them to the storage (write-back), as needed.

o Transfer and Notify: (7) Finally, DRAGON initiates the
transfer from the pinned PCP to the recently freed GM
chunk via DMA. The original GPU driver is responsible
for the internals of this data transfer. Under specific
circumstances, DRAGON sends data on multiple PCPs
to the GPU in the same transaction, depending on the size
of the found GPU chunk. Details of this operation are
discussed in § III-B.

There are two mechanisms that can trigger the propagation of
dirty data from GM to NVM: eviction (&) ) and dragon_sync().



Eviction is the main mechanism and works implicitly as
explained above. dragon_sync(), on the other hand, explicitly
triggers the eviction for all used GPU chunks, or as specified
by the virtual address and size, to HM. dragon_sync() relies
on vfs_fsync() to flush dirty data from PCPs to NVM. Both
eviction and dragon_sync() invalidate the corresponding GM
copies to ensure data consistency (see § III-B). This allows
applications to ensure that all changes on both GM and HM
are committed to NVM.

For a load/store operation originating from the CPU, (1
DRAGON captures the page-fault signal and attempts to
resolve the corresponding virtual GM address. The original
GPU driver keeps a lookup table that indicates where each
memory page is located: in GM, in HM, or not allocated. If
the page is in GM, DRAGON evicts the GPU chunk to the
corresponding PCPs and invalidates the GM copy. Otherwise,
it just locates the corresponding PCP and ensures that the PCP
is up to date by reading it from the NVM, if needed. Finally,
the PCP is inserted back into the process page table. Since the
GM data is evicted, GPU may issue a future page-fault signal
if it needs to access the evicted data again.

III-B. Data Consistency and Access Granularity

DRAGON preserves the consistency model provided by
NVIDIA’s original UM-P implementation [11] as long as all
accesses to the mapped data on NVM are performed via the
memory space returned by dragon_map (). Internally, DRAGON
relies on Linux’s page caching mechanism to keep NVM and
HM copies in sync. All PCPs are flushed back to NVM prior
to application termination or when dragon_unmap() is called.

DRAGON also ensures eventual consistency [32] via
dragon_sync(). After calling this function, all dirty data is
flushed to the NVM-backed files, and all future accesses to both
dirty and non-dirty data are freshly fetched from the files. This
allows multiple GPU applications to use the same NVM file
as source for dragon_map(), along with proper combination
of inter-process synchronization (e.g., message tunnels) and
communication primitives (e.g., MPI_Barrier()).

The finest data granularity that DRAGON uses is one page —
4 KiB on most x64 Linux kernels. For GM, NVIDIA uses three
different sizes of data chunks (or pages), 4 KiB, 64 KiB, and
2MiB, in the driver. DRAGON properly manages one-to-many
mapping (one GPU chunk to multiple PCPs) using pointers
and arrays inside the driver, and the storage overhead for this
mapping is four bytes for every 2MiB.

1II-C. Optimization for Input/Output Data

The operation of DRAGON explained so far takes only the
default dragon_map() behavior into consideration, where an
NVM-based data structure is mapped as R_W, forcing both read
and write operations to travel all the way between GM and
NVM. However, we can apply further optimizations on the
data movement for some specific data access patterns.

Read-only: The input data is usually read-only, where the
application uses the data but does not modify the files. If
a specific file is mapped as read-only, DRAGON marks the
evicted GPU chunks immediately as free and does not actually
transfer the data back from GM to HM. This optimization
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Fig. 2: DRAGON operation for handling intermediate data.

saves redundant GPU-to-host transfers, which would otherwise
be inevitable in the default UM-P based implementation.

Write-only: For some applications, output data are write-
only, and the contents of the mapped files need not be read
into HM or GM on the first access. In such cases, DRAGON
only needs to locate a free GPU chunk on a GPU-originated
page fault without triggering the read-ahead mechanisms for
NVM file read. Once the data is written back to the NVM and
corresponding pages are swapped out, consecutive accesses to
write-only data are treated as read&write. This is necessary to
maintain consistency because DRAGON operates at single-page
granularity, whereas the actual GPU and CPU instructions can
modify the data in smaller granularities.

III-D. Intermediate Data Handling

Intermediate data is the memory space allocated and used by
applications to pass temporary information between different
phases of the computation. Even though such data are not
required to directly hold input or output values of the compu-
tation, they might occupy a considerable amount of space that
may be significantly larger than HM. For example, in deep
neural networks (DNN), the data passed between the internal
layers of the network are considered as intermediate since such
data are needed only during the lifetime of a program, unlike
the input or output data.

Applications may utilize DRAGON to handle large inter-
mediate data by creating a temporary file and mapping it
to the unified memory space using dragon_map(). While the
basic DRAGON operation explained earlier in this section
will accurately handle the intermediate data, applications that
use an excessive amount of intermediate data may not show
optimal performance with DRAGON. The page-cache write-
back mechanism, which is controlled by the Linux kernel,
periodically flushes dirty PCPs back to storage, and this
behavior may unnecessarily increase I/O traffic in the existence
of intermediate data. Similarly, redundantly reading such data
back from the NVM may reduce total bandwidth.



dError_t dragon_map(const char *filename, size_t size,

off_t offset, unsigned short flags, void *xaddr);
dError_t dragon_sync(void xaddr, size_t size);
dError_t dragon_unmap(void *addr);

Listing 1: DRAGON user-level APIs

To address this performance problem, DRAGON utilizes an
additional location on HM to store intermediate data, so that
load and store requests from GPUs can quickly be served
from this cache without invoking page-cache’s write-back
mechanism at all. Figure 2 explains how DRAGON achieves
this behavior. The optimization relies on the memory usage
monitoring module, MUMM, (@ ), which monitors the sum of
the number of free memory pages and PCPs. When this sum
falls under a specific threshold, the module writes back a pre-
determined amount of pages to NVM using vfs_write() and
then frees those pages. In addition to MUMM, we add another
submodule to all memory allocations occurring inside the driver
(@) ,(5). This submodule sends a no-memory signal to the
MUMM when the memory allocation fails. The signal forces
MUMM to free some pages before attempting the memory
allocation again. Doing so prevents the driver from failing due
to running out of free memory. DRAGON uses vfs_read()
to read the pages requested by GPUs or CPUs back from
NVM (@)). The reads are not performed if DRAGON finds
the requested pages in HM ((2)). To prevent freeing pages
that are being copied to the GPU, each module sets and waits
for the lock bit of the page that it is working on. DRAGON
also ignores dragon_sync() for intermediate data, since they
are volatile (not to be stored) and internally used within the
mapped regions (i.e., not shared with other processes).

The threshold for MUMM to start evicting some pages to
NVM is set as the sum of the total PCP and free memory
sizes. DRAGON guarantees that the sum of those memories
always reaches or exceeds the specified threshold. Thus, the
amount of HM for keeping intermediate data can grow or
shrink based on the amount of HM occupied by PCPs. When
there is no space left for keeping intermediate data (e.g., when
the user space uses up all memory), DRAGON changes the
handling back to the original operation (fig. 1), which require
no extra space. How to adjust this threshold is application and
system specific. Setting this value too high (biased towards
having more free memory and PCPs) reduces the space for
keeping intermediate data in HM. This results in more data
movement between HM and storage, which lowers DRAGON’s
performance. On the other hand, setting the threshold too low
reduces the number of PCPs, which lowers the efficiency of
the page-cache mechanism. We further discuss the effect of
this threshold in § IV-E.

III-E. Integrating DRAGON

DRAGON, from a user’s perspective, works like Linux’s
mmap () and allows the NVM to be accessible by both the host
and the GPU via the same virtual address space. DRAGON
host API provides dragon_map(), as shown in listing 1. This
function takes the path string to the file, its size, file start
offset to be mapped, and a set of flags as its input and
assigns the starting address of the corresponding unified virtual

memory to the last parameter. dragon_map() replaces manual
buffer allocations (e.g., malloc() and cudaMalloc()) and
user-managed data movement (e.g., fread()/fwrite() and
cudaMemcpy ()). For legacy applications, developers can replace
these operations with dragon_map() for the data buffers they
want to manage via DRAGON. On the other hand, DRAGON
does not have a device API; therefore, no modification to GPU
kernels is required. Further steps on how to integrate DRAGON
into legacy GPU applications are given in § IV-B.

dragon_map() accepts an additional parameter, named
flags, to indicate the data access type. D_READ and D_WRITE
correspond to the read-only and write-only optimizations,
respectively (§ III-C). Combining them (the default value)
tells DRAGON that the mapped data are for both reading and
writing and thus do not apply those optimizations. The presence
of D_VOLATILE tells DRAGON to apply the intermediate
data optimization (§ III-D). The other two API functions,
dragon_sync() and dragon_unmap(), allow applications to
manually flush GM and HM contents and release all memory
space occupied by the driver, respectively.

DRAGON also allows programmers to implement more
advanced prefetching behavior by using cudaMemAdvise() and
cudaMemPrefetchAsync(), which are provided by the original
UM-P [10]. The advice parameter will hint the UM-P driver
(and hence DRAGON) about the data access behavior. When
cudaMemPrefetchAsync() is called, DRAGON will replicate
the intended effects of advice for the addresses residing on
NVM. This behavior can be utilized to minimize NVM read
overhead for scattered data, where Linux’s read-ahead will not
help due to nonconsecutive access patterns.

IV. EVALUATION

To experiment with our proposed driver extension and
analyze its performance, we applied DRAGON to several appli-
cations and compared them with other alternative execution
schemes. In addition, in § V, we provide a further detailed
analysis of DRAGON with the Caffe DL framework. We tested
DRAGON on a system containing dual 12-core Intel Xeon ES
processors, 64 GiB of DDR4 memory, an NVIDIA P100 GPU
with 12 GiB of HBM connected via PCle gen.3 x16, and a
2.4TB Micron 9100 HHHL U.2 PCle NVMe card connected
via PClIe gen.3 x4. Our experiments were run with CentOS 7
Linux 3.10.0-693.5.2.e17.x86_64 kernel and CUDA 9.0 toolkit
with NVIDIA driver version 384.81.

IV-A. Compared Execution Schemes

We compared DRAGON-driver-based execution with four
different CUDA-based schemes and reported three of them in
our evaluation.

Default: This is the standard CUDA implementation where
the applications are originally designed to run with data
sizes that fit in the GM. A common implementation for
such applications is to copy all input data from the files to
the HM using fread(), then transfer the data to the GM
using cudaMemcpy (), and copy the output data back using
cudaMemcpy () and fwrite() to the files.

Hostreg: This approach uses cudaHostRegister() with
mmap () as an alternative method to enable GPUs to access



TABLE I: Evaluated applications

Application Category Vol:NonVol
backprop Unstructured Grid 1:1
binomialOptions | Linear Algebra 0:1
BlackScholes Linear Algebra 0:1
hotspot Structured Grid 0:1
lavaMD N-Body 0:1
pathfinder Dynamic Programming 0:1
srad_v2 Structured Grid 5:1
vectorAdd Dense Linear Algebra 0:1

the mapped file directly. While this technique uses a different
internal mechanism from UM-P, the total size is still limited
by the HM, as discussed in Appendix A.

UM-P: As our baseline, we used unmodified CUDA UM-P
via cudaMallocaManaged() combined with POSIX I/O opera-
tions (e.g., fread()/fwrite()) to stage data to/from NVMs.
Although this technique cannot handle data larger than the
host memory (HM), it is one of the popular choices among
programmers to make their applications process larger data
without reimplementing the GPU kernels [9].

ActivePointers: We have integrated ActivePointers [28]
into two of our benchmarks: BlackScholes and vectorAdd.
The integration involved changing each kernel to first map
the files via gvmmap() and then replacing the corresponding
pointers with ActivePtr. Due to extensive porting effort and
poor performance, we limit the evaluation of this approach to
two benchmarks only and report the results separately.

IV-B. Applications

We selected eight applications from the Rodinia benchmark
suite [33] and the CUDA SDK as shown in table I. We followed
the steps below to integrate DRAGON into these applications:
1) Identify the data staging code used to read the contents of
in-memory data buffers (variables) from an input file. Then,
serialize (i.e., memory dump) such variables into separate
files created on NVM. Once dumped, data-staging file I/O
calls are no longer needed and they are removed from the
code.

2) Identify device data allocations (cudaMalloc()) and replace
them with dragon_map().

a) Input/Output data: Set the filename parameter for
dragon_map() to point to the NVM file that was used
to serialize the original variables, and set D_READ and
D_WRITE flags properly.

b) Intermediate data: Create a temporary file for each
GPU-allocated data region, which was identified as
intermediate data buffers in the previous step. Set the
D_VOLATILE flag.

3) Replace the type of all indexing variables (i.e., ints) with
longs in order to support addressing for very large memory
spaces. Also, remove all instances of cudaMemcpy (), since
they are no longer needed.

The first step above is for data preparation, and it is necessary
because dragon_map() expects the file to be a byte-to-offset
memory dump of the variable in question, similar to mmap ().
Because some of the applications in our experiment create

random input data on the fly, we also serialized such data
into files and supplied them as inputs. For a fair comparison,
we made all the techniques use memory-dumped input/output
files. It is essential to note that DRAGON did not require any
changes to the existing GPU kernels or the application logic.
Table I also includes a column for volatile vs. nonvolatile
(Vol:NonVol) buffer ratios. These numbers correspond to the
least common multiples for the sizes of the variables declared
as intermediate (via D_VOLATILE flag) and input/output data
(i.e., no D_VOLATILE flag) — see § III-C and III-D for more
details. If an application has no intermediate data, it is marked
with a zero. We refer to these ratios later in the analysis.

IV-C. Overall Performance

We ran each application listed in table I using Default
(original implementation), Hostreg, UM-P (baseline), and
DRAGON (this work) techniques described in § IV-A. We
varied the total memory footprint (i.e., size of intermediate
+ input/output data) of each application between 4 GiB and
256 GiB in doubling increments. As the GM and the HM
were 12 GiB and 64 GiB, respectively, our experiment covered
all three memory execution cases: incore-GPU (4 - 8 GiB),
incore-host (16 - 64 GiB), and out-of-core (128 - 256 GiB). The
Default technique was able to cover only the incore-GPU case,
whereas Hostreg- and UM-P-based executions successfully
completed with data sizes falling in the incore-host range.
Only DRAGON was able to operate on data in all three ranges,
including out-of-core. For each run, we reset the page caches
prior to application launch and measured the total execution
time. We normalized these times to the total execution time
measured while running with the baseline UM-P technique.

Figure 3 shows the results of this experiment. Each execution
technique is represented with numbered bars, #1 to #4 (Default,
Hostreg, UM-P, and DRAGON, respectively). The x-axis
corresponds to the total memory footprint in log scale. The
left-hand y-axis corresponds to the execution time normalized
with respect to the UM-P technique. The right-hand y-axis,
which is also in log scale, corresponds to the total execution
time (i.e., wall-clock) of the DRAGON technique (Bar #4) and
is represented by a solid line. For the out-of-core case, since
only DRAGON can handle this range, we projected values of
bar #3 (UM-P technique) using linear extrapolation so that
we were able to present a comparison. Each bar is shaded to
show the breakdown across GPU-CPU data transfers (device-
to-host and host-to-device combined), kernel execution time,
NVM accesses (read/write) and map/free operations. For bar
#2 (Hostreg), the breakdown is limited to mmap() and free()
operations since we did not have access to internals to measure
data transfers and file accesses. For bar #3 (UM-P), kernel
execution time also includes CPU-GPU transfers — we used
the original NVIDIA GPU driver and thus could not measure
CPU-GPU transfer time separately.

Overall, our experiment shows that DRAGON is able to
exclusively provide direct access to out-of-core memory from
GPUs. Additionally, the application execution time reduced by
31.74% on average and 56.27% at maximum (pathfinder),
which corresponds to 2.3x speedup. DRAGON uniquely exploits
the benefits of read-ahead behavior of the Linux page-cache
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Fig. 3: Application performance comparison: the graphs show the normalized execution time of each technique with respect to
the UM-P implementation. Bar #1-df, #2-hr, #3-um, and #4-dg represent Default, Hostreg, UM-P, and DRAGON techniques,
respectively. GPU memory is 12 GiB, while host memory is 64 GiB. Right y-axis (log scale) is for the solid line and shows the
total execution time of DRAGON in minutes.

mechanism in the context of NVMs and GPUs so that data-
staging is stream-lined with the ongoing GPU execution. Read-
ahead pro-actively starts reading blocks from NVM to the HM
as soon as the kernel thread goes idle after finishing the driver
operation (§ III). For this reason, the hit rate on the GM and
the HM (i.e., PCP) is usually high for applications that have
consecutive data access patterns. In addition to the streaming
effect, DRAGON was able to further hide the NVM latencies
by transparently overlapping CPU-GPU transfers with NVM
read/write operations. For non-data-intensive applications, like

binomialOptions, DRAGON performed as well as the other
techniques, due to its low overhead operation. Unlike DRAGON,
other techniques did not have the streaming advantage. This is
because all input data were loaded once from the files at the
beginning and all output data were dumped out to the files at
the end of the applications.

For the out-of-core case, where there is no GPU alternative
to DRAGON, the performance of DRAGON was better for most
applications, when compared with the linearly extrapolated UM-
P values. This is one of the most significant observations of our
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experiments, and it demonstrates the feasibility of DRAGON
as the only efficient out-of-core GPU computing solution with
user-oblivious addressing. In two specific cases, backprop and
srad_v2, DRAGON was slower than the extrapolated UM-
P values. These applications commonly employ a significant
amount of out-of-core intermediate data buffers, as shown by
the ratios reported in table I. Because intermediate data in
the UM-P technique are always kept on the HM, the linearly
extrapolated values also inherit this property. On the other
hand, the DRAGON technique swaps out those intermediate
data to the NVM due to data being larger then HM.

The performance comparison with ActivePointers (AP) is
shown separately in fig. 4 for BlackScholes and vectorAdd.
The executions with AP terminated only with 1GiB and
2 GiB memory footprints, although we followed the suggested
guidelines to adapt our benchmarks. The results showed up
to 35x slowdown when compared with the baseline UM-
P execution. In AP, unlike regular memory accesses, warp
scheduler cannot switch to another warp on a memory reference.
The page fault handling code needs to be run to perform SW
TLB operations, and the execution is blocked until the proper
data is brought to the GPU. The overhead of this approach is
significant.

1IV-D. Importance of Read-ahead

To further demonstrate the performance benefits of
DRAGON, we selected two applications (hotspot and
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Fig. 5: The importance of read-ahead: the graphs show
the normalized execution time with respect to the UM-P
implementation. Bars #1, #2, and #3 represent UM-P, DRAGON,
and DRAGON with read-ahead disabled, respectively.

—e— 128 GiB
+ -e- 256 GiB

backprop

10 20 30 40 50 60
Reserved memory threshold (GiB)

1.4{ —— 128 GiB srad_v2

£

'~ —e— -
1.3] ~*- 256GiB

1]

N

10 20 30 40 50 60
Reserved memory threshold (GiB)
Fig. 6: The effect of intermediate data optimization and
threshold for (a) backprop and (b) srad_v2.

vectorAdd) and showed the importance of the read-ahead
mechanism by running with the streaming (i.e., Read-ahead)
optimization enabled and disabled. For this experiment, we
disabled read-ahead for the mapped areas using the same
technique as posix_fadvise() with POSIX_FADV_RANDOM flag
[34] and showed the results in Figure 5. Bars #1, #2, and
#3 correspond to the execution time when using the UM-
P (baseline) technique, DRAGON (default), and DRAGON
with read-ahead disabled, respectively. Similar to fig. 3, we
normalized the results with respect to bar #1 and showed the
linearly extrapolated value of the baseline for out-of-core.

The results show how DRAGON effectively integrates host-
based page-caching benefits into NVMs and GPUs. When
read-ahead is disabled, the applications experienced significant
slowdown in comparison to the baseline. This was because all
data accesses had to go to the NVM on every single page-fault.
The latency for initiating a read command also contributes
to the slowdown in the non-optimized case. fread() that we
used in the UM-P technique was faster because we read large
data at once (in GBs as opposed to 4KiB at a time), which
amortized the latency overhead.

IV-E. Effect of the Intermediate Data Optimization

As discussed in § III-D, DRAGON treats intermediate
data specially. This optimization is controlled by a threshold
parameter to adjust the size of the HM-based cache dedicated
to intermediate data before swapping them out to NVM.
We evaluated this optimization on backprop and srad_v2,
since these are the only two applications that employ large
intermediate data. In this experiment, we varied the reserved
memory threshold, the amount of HM reserved for Linux kernel
and other processes (§ III-D). We measured the total execution
time of these two applications when running out-of-core on
thresholds varying between 4 and 64 GiB. The 64 GiB threshold
means that DRAGON does not keep intermediate data on the
HM and falls back to use direct PCP access (§ III-A).

Figure 6 shows the results of this experiment. The y-axis
represents the execution time normalized with respect to the
corresponding 4 GiB threshold, the smallest value in this



experiment. The results show that without this optimization
(64 GiB threshold), applications would suffer up to 43.5%
more overhead, due to more data movement to/from the NVM
device. The sweet spot depends on the application and the
system characteristics. We will leave thorough investigation
regarding the interference to future work. In this paper, other
than this experiment we report all results when using the 4 GiB
threshold.

V. CASE STUDY: DEEP LEARNING WITH CAFFE

In recent years, machine learning, and notably deep learning
(DL), has gained significant attention in HPC. Most DL
frameworks rely on GPUs to accelerate the computation.
However, the problem sizes and complexity of the underlying
networks on which those frameworks can operate are limited by
the GPU memory. In this case study, we show how DRAGON
addresses the out-of-core processing problem for large DL
inputs while still keeping the GPU performance faster than
multicore execution with inputs larger than the total available
system memory.

V-A. Caffe Framework

Caffe [12] is a popular neural network framework for training
and classifying data from various domains. It supports a large
variety of common operations (e.g., conv-2D, ReLU, and
pooling) to be executed on GPUs and/or CPUs. In Caffe,
each operation is represented by a layer. Solvers for a specific
classification problem are implemented by forming DAGs of
layers, which are called nets.

Caffe encapsulates internal data and its corresponding
parameters in multidimensional objects called blobs, which act
as inputs and outputs to the layers of a given net. Blob objects
provide interfaces for users to access CPU or GPU copies of
the data being stored. Corresponding data allocation, transfer,
and bookkeeping operations required by the access requests
are transparently handled by the SyncedMemory class.

Adapting Caffe to use DRAGON requires minimal changes
to data-handling interfaces, mainly in the SyncedMemory
and DatalLayer classes. We replaced malloc, cudaMalloc,
cudaHostAlloc, cudaMemcpy calls, and IO operations with
dragon_map().

V-B. Tested Neural Networks and Datasets

We tested the DRAGON-integrated version of Caffe using
two different neural networks: ResNet! [35] for images and
Facebook’s Convolution3D (C3D) [36] for videos.

ResNet [35] is an award-winning network for deep residual
learning for image recognition with a very high detection and
localization rate. ResNet provides a set of Caffe nets with
varying number of layers for increased accuracy. However, as
the layer counts increase, the amount of intermediate data
required for neural network cycles increases significantly;
therefore, memory requirements quickly exceed GPU and host
memory. We trained ResNet with the ILSVRC12 [17] dataset.

C3D is built on top of Caffe to support 3D convolutions for
visual classification of video inputs [36]. Memory footprint
limitation constitutes a serious obstacle in 3D convolutions

'Network models from https:/github.com/yihui-he/resnet-imagenet-caffe
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Fig. 7: Comparison of the execution times of various Caffe
versions with ResNet and C3D models: all bars are normalized
w.r.t. the DRAGON-integrated version. Right y-axis (log scale)
is for the solid line and shows the total execution time of
DRAGON in minutes.

since it is not practically possible to break the input video into
smaller chunks for classification. For this experiment, we used
the UCF101 video dataset [37] as the training data.

V-C. Experiments

In our experiment with Caffe, we used the same platform
as specified in Section IV. We performed two separate sets
of training, one for each dataset. For ResNet, we used four
different networks: ResNet-32 for incore-GPU, ResNet-50 and
ResNet-101 for incore-host, and ResNet-152 for out-of-core.
We fixed the batch size to 40. For C3D, we modified the
network script to increase the video dimension of one batch
to 240 x 240 x length and reduce the batch size to one. We
varied the length (i.e., number of frames) variable to change
the total GPU memory footprint. For both experiments, we
limited the total amount of available host memory to 24 GiB,
so that the maximum memory footprints obtained by the largest
input in the datasets fall into the out-of-core range. We set the
number of iterations to 30 so that all experiments (explained
later) finished in reasonable time.

We compared the following techniques of execution.

1) Default [incore-GPU]: This method is the original CUDA
implementation that comes with Caffe, and the memory
footprint is limited by the GPU memory size.

2) CUDA UM-P [incore-host]: To integrate UM-P, we
modified SyncedMemory and DatalLayer and used cudaMal-
locManaged for memory allocation.

3) C++ ATLAS [out-of-core]: Because there is no alternative
GPU implementation of Caffe for out-of-core processing,
we compare DRAGON against multi-core execution. For the
CPU cores to process data larger than the system memory,
we used mmap () to directly use the NVM device. ATLAS
is the default BLAS library and is limited to four threads.



4) C++ OPENBLAS [out-of-core]: To utilize all the cores in
CPU execution, we replaced the BLAS := ATLAS parameter
with OPENBLAS, which relies on OpenMP to launch as
many threads as needed for the computation.

5) DRAGON [out-of-core]: This is the DRAGON-integrated
version of Caffe, as explained earlier in this section.

Figure 7 shows the normalized execution times on the
left y-axis with respect to the DRAGON-integrated version.
The values on the right y-axis (log scale) correspond to the
absolute execution time of the DRAGON-integrated version,
which is represented with a solid line. The x-axis represents
the maximum application memory consumption. For the
incore-GPU case (up to 12 GiB), DRAGON showed the same
performance as the Default and UM-P versions. For the incore-
host case (12 - 24 GiB), DRAGON performed significantly
faster than the multi-core versions and stayed within 7%
overhead range when compared to the UM-P version. The
overhead was caused by excessive GPU evictions due to
repetitive iteration of intermediate data accesses across network
layers. Additionally, because most of the data were intermediate
data, DRAGON could not exploit the benefits of read-only and
write-only related optimizations (§ III-C).

For the out-of-core case (rightmost bar for ResNet and two
rightmost bars for C3D), both Default and UM-P versions
failed to execute. On the other hand, ATLAS-based multi-core
execution utilized only four threads, whereas OpenMP-based
OpenBLAS C++ execution launched more than 50 threads on
our 48 HW-threaded system. The results show that DRAGON
successfully performs up to 3.8x faster than the OpenBLAS-
based execution, which employs a higher number of threads.
Overall, multi-core techniques become significantly slower as
the footprints increase.

In summary, our experiments demonstrate that GPUs can be
used to accelerate real-world problems where the device and
host memories are not large enough to carry the computation.

VI. ADDITIONAL RELATED WORK

Out-of-core data processing has been an important problem
in scalable scientific computing on GPUs. Many studies [19],
[38], [39] have proposed application-specific algorithms to
break down the computation and data into smaller chunks that
fit into GPU memory. While these approaches are optimized for
the applications they target, they rely on manual data staging,
orchestration, and transfers that are developed exclusively for
the algorithm in question and fail to provide any generic
solutions.

A few studies developed more generic software approaches to
enable efficient data management between CPUs and GPUs for
out-of-core data processing. Several compiler-based techniques
[1], [2], [14] analyze the data flow, inject code to automatically
partition parallel loops and tasks into smaller regions, and
then map them into GPU(s) and CPU(s). Other software-
based approaches [15], [16] provide user-level APIs along
with runtimes to dynamically manage the data movement
and consistency across different regions of large data. These
approaches either require complex compiler analysis that is
limited to certain code structures or significant programming
effort to integrate their APIs.

There have also been several OS- and hardware-based
studies to address the problem in a lower-level way, with
minimal software involvement. Papers in [40], [41] proposed
driver-based memory management solutions accompanied with
architectural modifications. Most notably, a few studies [42],
[43] built hardware-based page-faulting mechanisms similar to
UM-P. Overall, these studies commonly suggested impractical
hardware modifications, and most of them became obsolete
when NVIDIA introduced unique UM capabilities of the Pascal
architecture [44]. More importantly, none of the studies above
considered data beyond host memory.

VII. CONCLUSION

In this study, we propose the DRAGON framework to address
the out-of-core data access problem for GPU applications that
operates on data larger than the host memory. DRAGON allows
NVM storage to be directly mapped to GPUs as their primary
addressable space to enable large memory support for existing
GPU-accelerated applications. DRAGON uniquely alters the
conventional GP-GPU programming paradigm for large-data
workloads by transparently extending the addressable global
memory space to the limits of NVM storage. Our evaluation
of various scientific benchmarks and real-life deep learning
workloads shows that DRAGON efficiently enables out-of-
core GPU computing for a wide range of application classes.
Moreover, DRAGON improves incore-GPU and incore-host
executions up to 2.3x compared with using UM-P + POSIX
IO.

In a broader sense, DRAGON demonstrates that large-scale
application developers can design and partition their algorithms
"free” from the limitation of smaller GPU or host memories,
without any additional performance cost or programming effort.
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APPENDIX
ALTERNATIVE IMPLEMENTATION OPTIONS

This appendix discusses other possible approaches that may
be alternatives to DRAGON.

GPUDirect over RDMA is a popular means to directly
transfer data between a DMA-capable device and GPUs without
requiring a copy in the host memory. The NVM device
driver can obtain the target GPU page via the kernel-level
nvidia_p2p_get_pages() method and initiate a direct transfer.
For in-core processing, this approach is shown to be feasible
[25], [26] and provides considerable speedup against host-
memory-based approaches. However, for out-of-core processing
via UM-P, the CUDA manual [27] states that using RDMA on
the UM-P’s managed memory can result in possible data loss
or corruption due to incoherency across address ranges. For
this reason, implementation of an RDMA version of DRAGON
while ensuring the memory consistency is not possible.

cudaHostRegister with mmap is an alternative method to
extend the addressable range of GPUs to the storage devices via
standard mmap (). cudaHostRegister exposes the specified host
memory region to the GPU, allowing GPU to directly load/store
data on that region [10]. By combining it with mmap (), kernels
can directly address the NVM file, in a manner similar to UM-P.
However, internally, this approach relies on the CUDA mapped
memory concept, and each page in the non-locked memory
region needs to be first copied into a pinned buffer in host
memory before GPU can directly access it [10]. Therefore, the
total data size we can map is still limited by the host memory.
This approach is compared against DRAGON in our evaluation.

Heterogeneous Memory Management (HMM) [45] is a recent
effort by the Linux community to get rid of the decoupled
memory management that has historically existed between host
and device memories. HMM provides a helper layer for the
device driver to shadow the page table of a CPU process so
that both the device and the CPU can use the same memory
space allocated via malloc(). Enabling HMM requires device-
specific drivers, and it will allow CPU memory to be DMA’d
without being pinned [46]. For NVIDIA GPUs, HMM support
will handle page movement only between CPUs and GPUs
(i.e., HM-to-GM) [47], similar to what UM-P does, and will
not provide any help while accessing the storage (i.e., NVM-
to-HM transfers) [48]. Hence, benefits provided by DRAGON
and HMM are orthogonal. Once the driver support is released
by NVIDIA, HMM will further help DRAGON to operate
faster via improved HM-to-GM transfers. To use HMM with
DRAGON, programmers would still need to replace malloc()
calls with dragon_map. However, DRAGON will inherit internal
driver-level benefits of HMM.

Linux direct access (DAX) [49] is another kernel feature
added recently, and it enables skipping page caches entirely for
memory-like block-access devices, such as NVDIMMs. When
such modules become available, DRAGON will be able to
utilize them through Linux file interfaces. Because the existence
of page-caches is totally transparent to DRAGON driver, no
changes will be required. The performance that is lost due to a
missing read-ahead mechanism will be compensated by much
lower access latencies provided by NVDIMMs.

ARTIFACT DESCRIPTION

A. Abstract

Artifact described in this section includes the source code
of DRAGON and applications used in over evaluation. For
DRAGON, the source code is separated into two parts: 1)
modified nvidia-uvm driver, and 2) DRAGON library to be
used by applications. For applications, the artifact includes
three versions: 1) the original version, 2) the UM version that
we modified the original version to use Unified Memory (UM),
and 3) the DRAGON version that we integrated DRAGON to
the original version.

The scripts to compile the source code, generate or download
inputs, execute binaries, validate results, and parse the outputs
also included in the artifact and explained below in detail.

B. Description

B1. Check-list (artifact meta information):
e Program: Python2.7 or above
o Compilation:
— NVIDIA nvcc version 9.0 or above
— gcc version 4.8.5 or above
glibc-2.0 header
libatlas header
libopenblas header
— cuDNN version 7.0 or above
opencv-3.4.0 or above
— Linux kernel header of the running OS
o Data set:

— To evaluate Caffe, ILSVRC12 and UCF101 datasets
are needed. Please visit http://www.image-net.org/
challenges/LSVRC/2012/ and http://crcv.uct.edu/data/
UCF101.php to obtain the data sets, respectively.

— For the other applications, scripts for generating data
are provided with the artifact.

o Run-time environment:
Linux OS (tested on CentOS 7)
Linux kernel version 3.10 or above but below 4.0.
NVIDIA GPU Diriver v384.81
NVIDIA CUDA version 9.0 or above
glibc-2.0 library
libatlas
libopenblas
— cuDNN version 7.0 or above
opencv-3.4.0 or above

o Hardware:

— One NVIDIA Pascal P100 GPU or above (the GPU
needs to support HW page-fault)
— One NVMe storage formated with ext-4 file system
o Output: Verification results and detailed timings such as
execution times and runtime overhead

o Experiment workflow: Linux bash or python scripts

o Publicly available?: Yes

B2. How software can be obtained: The source code of
DRAGON and all experimented applications, including the
baseline versions, can be obtained from https://github.com/
pakmarkthub/dragon. Up-to-date documents and instructions
can also be found in the repository.
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B3. Hardware dependencies: We performed our experiments
on an NVIDIA P100 GPU and a 2.4 TB Micron 9100 HHHL
U.2 PCle NVMe drive formatted with ext-4 file system.
DRAGON is compatible with any NVIDIA GPUs that support
hardware page-fault mechanism (Pascal P100 or above), and
any NVMe drive that formatted with ext-4 file system. However,
we recommend an NVMe drive that has capacity more than
1.5TB as the largest dataset for an application can take up to
almost 800 GB and some additional NVMe space is needed for
holding intermediate data. We also recommend one to employ
an additional storage that has at least 5 TB. This additional
storage is for holding datasets of all experiments. Beside what
have been stated, the host machine must also have main memory
(DRAM) capacity more than that of GPU memory.

B4. Software dependencies: We implemented DRAGON as
an extension of NVIDIA GPU driver. The artifact contains the
driver patch for NVIDIA GPU driver version 384.81, which
comes with CUDA 9.0 installation (obtainable from NVIDIA’s
website). Other required software packages/applications are as
stated in appendix B1.

B5. Datasets: The artifact provides scripts for generating
datasets for almost all of the applications. However, the datasets
for evaluating Caffe need to be obtained separately. See
appendix B1 for more details.

C. Installation

See appendix B2 on how to obtain the source code. Then
go to the main folder, and run the install.sh script. Root
privilege is needed to install DRAGON.

git clone https://github.com/pakmarkthub/dragon.git
cd <dragon-main-directory>
sudo ./install.sh

The steps above will compile DRAGON driver and library,
and set up necessary environment variables. To compile the
evaluated applications:

cd <dragon-main-directory>/benchmarks
make -j

D. Experiment workflow

All of the applications we discussed in § IV come with
this artifact, including the baseline versions and dataset
generator scripts. The applications can be found in <dragon-
main-directory>/benchmarks. In that folder, we also provide
a script for generating data (data-generator.sh) and a
script for repeating all of the experiments (run.sh). Before
running data-generator.sh, one needs to obtain ILSVRC12
and UCF101 datasets. The data-generator.sh script will
generate and convert all necessary data on the specified folder.
We recommend that the folder is on the additional storage, not
on the NVMe device for doing experiments, since the total
data size is about 4 TB. The data-generator.sh script can
take several hours to a day depending on the CPUs.

After successfully generating datasets, one can run
run.sh, which can also be found in <dragon-main-
directory>/benchmarks, to repeat all of the experiments. The
script needs root privilege to execute because it needs to

insert and remove DRAGON driver multiple times to compare
between the baseline and DRAGON-integrated versions. The
script will also copy only necessary data of each experiment
to the specified NVMe. The largest capacity needs for an
experiment on NVMe should be less than 1.5 TB. The run.sh
script can also take several hours to a day to complete all of
the experiments.

cd <dragon-main-directory>/benchmarks

./data-generator.sh <path-to-folder-to-store-data> <path-to-
ILSVRC12-dataset> <path-to-UCF1l0l-dataset>

sudo ./run.sh <path-to-folder-on-nvme> <path-to-the-main-folder-
that-store-generated-data>

E. Evaluation and expected result

After successfully executing run.sh, the
of each experiment will be recoded to files
<dragon-main-directory>/benchmarks/<application-
directory>/<results>. We provide multiple scripts in
<dragon-main-directory>/benchmarks/analyzers for
converting raw result data into csv format and for plotting
graphs we showed in § IV and V.

To convert raw result data into human-readable csv
format, use the following command. The converted
files will be stored in each application folder
(<dragon-main-directory>/benchmarks/<application-
directory>/<results>). This step needs to be run before
generating a graph from the result.

result
under

cd <dragon-main-directory>/benchmarks/analyzers
python convert_result.py

Following python scripts can be draw to generate respective
figures:

cd <dragon-main-directory>/benchmarks/analyzers
python ptc.py # Figure 3

python plot_compare_readahead.py # Figure 5
python plot_opt_result.py # Figure 6

python plot_resnet_normalized.py # Figure 7
python plot_c3d_normalized.py # Figure 7

F. Experiment customization

We used different host DRAM capacity to run the experi-
ments shown in § IV and V. Add mem=24000m line to the end

of the line starting with linux /boot/vmlinuz-... in GRUB
bootloader.
linux /boot/vmlinuz... mem=24000m

To run each experiment separately, go
to each application folder (<dragon-main-

directory>/benchmarks/<application-directory>) and
run run.sh inside the folder.

To disable the read-ahead of DRAGON, include DRAGON_ -
READAHEAD_TYPE=disable to the environment variables.

To change DRAGON’s reserved memory threshold (§ IV-E),
include DRAGON_NR_RESERVED_PAGES=<number-of-reserved-
pages> to the environment variables. One reserved page has

4 KiB size in default Linux configuration.
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