
Clacc: Translating OpenACC to OpenMP in Clang
Joel E. Denny, Seyong Lee, Jeffrey S. Vetter

Oak Ridge National Laboratory
Email: {dennyje, lees2, vetter}@ornl.gov

2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC)

Abstract—OpenACC was launched in 2010 as a portable
programming model for heterogeneous accelerators. Although
various implementations already exist, no extensible, open-source,
production-quality compiler support is available to the commu-
nity. This deficiency p oses a s erious r isk f or H PC application
developers targeting GPUs and other accelerators, and it limits
experimentation and progress for the OpenACC specification. To
address this deficiency, Clacc is a recent effort funded by the US
Exascale Computing Project to develop production OpenACC
compiler support for Clang and LLVM. A key feature of the
Clacc design is to translate OpenACC to OpenMP to build on
Clang’s existing OpenMP compiler and runtime support. In this
paper, we describe the Clacc goals and design. We also describe
the challenges that we have encountered so far in our prototyping
efforts, and we present some early performance results.

Index Terms—OpenACC, OpenMP, LLVM, multicore, GPU,
accelerators, source-to-source translation, compiler

I. INTRODUCTION

Heterogeneous and manycore processors (e.g., multicore
CPUs, GPUs, FPGAs) are becoming de facto architectures
for current HPC and future exascale platforms [1]–[3]. These
architectures are drastically diverse in functionality, perfor-
mance, programmability, and scalability, significantly increas-
ing complexity that HPC application developers face as they
attempt to fully utilize available hardware. Moreover, users
plan to run on many platforms during an application’s lifetime,
so this diversity creates an increasingly critical need for
performance portability of applications and related software.

The Exascale Computing Project (ECP) and the broader
community are actively exploring strategies to provide this
portability and performance. These strategies include libraries,
domain-specific languages, OpenCL, and directive-based com-
piler extensions like OpenMP and OpenACC. Over the last
decade, most HPC users at the DOE have used either CUDA or
OpenACC for heterogeneous computing. CUDA has been very
successful for NVIDIA GPUs, but it’s proprietary and avail-
able on limited architectures. OpenMP has only recently pro-
vided limited support for heterogeneous systems as historically
it has focused on shared-memory multi-core programming.
OpenCL has varying levels of support across platforms and
is often verbose, and thus it must be tuned for each platform.

OpenACC was launched in 2010 as a portable, directive-
driven, programming model for heterogeneous accelerators
[4]. Championed by organizations like NVIDIA, PGI, and
ORNL, OpenACC has evolved into one of the most widely
used portable programming models for accelerators on HPC
systems today. Because OpenACC is specified a s a m ore de-
scriptive language [5] while OpenMP is more prescriptive, the

DOI 10.1109/LLVM-HPC.2018.00006

compiler has more freedom in how it implements OpenACC
directives, placing more optimization power in the compiler’s
hands and depending less on the application developer for
performance tuning. The current version of the OpenACC
specification is 2.6, released in November 2017.

A variety of OpenACC implementations exist, from pro-
duction proprietary compilers to research compilers, including
PGI [6], OpenARC [7]–[9], GCC [10], and Sunway OpenACC
from Wuxi [11], [12], providing various support for offloading
to NVIDIA GPU, AMD GCN, multicore CPU, Intel Xeon Phi,
and FPGA. However, in this time of extreme heterogeneity in
HPC architectures, we believe it’s critical to have an open-
source OpenACC implementation to facilitate broad use, to
enable researchers to experiment on a broad range of archi-
tectures, and to provide a smooth transition path from research
implementations into production deployments. Currently, the
only production open-source OpenACC compiler cited by the
OpenACC website is GCC [13]. GCC’s support is relatively
new and so lags behind commercial compilers, such as PGI, to
provide production support for the latest OpenACC specs [14].
Also, GCC has a reputation for being challenging to extend
and, especially within the DOE, is losing favor to Clang and
LLVM for new compiler research and development efforts.

A. Clacc Objectives

Clacc is a recent effort to develop an open-source, produc-
tion OpenACC compiler ecosystem that is easily extensible
and utilizes the latest advances in compiler technology. Such
an ecosystem is critical to successful acceleration of applica-
tions using modern HPC hardware. Clacc’s objectives are:

1) Develop production, standard-conforming OpenACC
compiler/runtime support by extending Clang/LLVM.

2) As part of the compiler design, leverage the Clang
ecosystem to enable research and development of
source-level OpenACC tools, such as pretty printers,
analyzers, lint tools, and debugger and editor extensions.

3) As the work matures, contribute OpenACC support to
upstream Clang and LLVM so that it can be used by the
broader HPC and parallel programming communities.

4) Throughout development, actively contribute upstream
all Clang/LLVM improvements, including OpenMP im-
provements, that are mutually beneficial to OpenACC
support and to the broader Clang/LLVM ecosystem.

5) Throughout development, actively contribute improve-
ments to the OpenACC specification.

A key feature of the Clacc design is to translate OpenACC
to OpenMP to build on Clang’s existing OpenMP compiler and

runtime support. Because OpenACC is more descriptive while
OpenMP is more prescriptive, this translation is effectively
a lowering of the representation and thus fits the traditional
ordering of compiler phases. We primarily intend this design
as a pragmatic choice for implementing traditional compiler
support for OpenACC. Thus, like other intermediate represen-
tations, the generated OpenMP and related diagnostics are not
normally exposed to the compiler user.

Even so, this design also creates the potential for several
interesting non-traditional user-level features. For example,
this design offers a path to reuse existing OpenMP debugging
and development tools, such as ARCHER [15], for the sake of
OpenACC. This design should give rise to semantics and com-
piler support for the combination of OpenACC and OpenMP
in the same application source. As a lower representation,
OpenMP could serve as a debugging and analysis aid as
compiler developers and application authors investigate the
optimization decisions made by the OpenACC compiler.

Perhaps the most obvious user-level feature that Clacc’s
design enables is source-to-source translation. This feature
is especially important for the following reason. While we
believe that OpenACC’s current momentum as the go-to
directive-based language for accelerators will continue into
the foreseeable future, it has been our experience that some
potential OpenACC adopters hesitate over concerns that Ope-
nACC will soon be supplanted by OpenMP features. As a
tool capable of automatically porting OpenACC applications
to OpenMP, Clacc could neutralize such concerns, encourage
adoption of OpenACC, and thus advance utilization of accel-
eration hardware in HPC applications.

B. Contributions

Clacc is a work in progress, and it remains in active
development. We are currently prototyping OpenACC support
and evolving our design as issues arise. The contributions of
this paper are as follows:

1) We explain the rationale for Clacc’s design as well as
the current state of our prototype.

2) We describe our extension of Clang’s TreeTransform
facility for transforming OpenACC to OpenMP without
breaking Clang’s immutable AST design.

3) We describe a prescriptive mapping from OpenACC to
OpenMP for directives and clauses Clacc so far supports.

4) We discuss how Clacc’s design may evolve in the future
to utilize LLVM IR-level analyses, potentially taking
advantage of LLVM IR parallel extensions that are
currently being discussed in the community.

5) We present early performance results for our prototype.

II. METHODOLOGY

In this section, we present the current design of our Clacc
prototype. As discussed in §I, extending Clang to translate
OpenACC to OpenMP appears to be the most pragmatic
approach for extending the LLVM ecosystem to support Ope-
nACC in C and C++, and this approach also enables a number
of helpful non-traditional user-level features. However, Clang

OpenACC source

OpenMP AST

LLVM IR

LLVM

executable

parser

OpenACC source

OpenACC AST

LLVM IR

LLVM

executable

codegen

parser

OpenACC source

OpenACC AST

OpenMP AST

LLVM IR

LLVM

OpenACC runtime

executable

codegen

parser

codegen

acc2omp

(A) (B) (C)

OpenMP runtime OpenMP runtime OpenMP runtime

OpenACC runtimeOpenACC runtime

Fig. 1. Clacc Design Alternatives

was not originally designed to support AST transformations
or source-to-source translation. Thus, to ensure the success of
the Clacc project, it is important that we carefully weigh the
potential ramifications of each major design decision.

A. High-Level Design

In this section, we evaluate three high-level design alter-
natives we have considered for the Clacc compiler. We have
previously posted this portion of the design and discussed it on
the Clang developer mailing list, but we feel that it is important
to recapture it here to provide context for the rest of the paper.

Fig. 1 depicts our three high-level design alternatives. In
each design alternative, red indicates the compiler phase that
effectively translates OpenACC to OpenMP. The components
of this diagram are as follows:
• OpenACC source is C/C++ application source code

containing OpenACC constructs.
• OpenACC AST is a Clang AST in which OpenACC con-

structs are represented by OpenACC node types, which
don’t already exist in Clang’s upstream implementation.

• OpenMP AST is a Clang AST in which OpenACC
constructs have been lowered to OpenMP constructs
represented by OpenMP node types, which do already
exist in Clang’s upstream implementation.

• LLVM IR is the usual LLVM intermediate representation
generated by Clang.

• Parser is the existing Clang parser and semantic analyzer
extended for OpenACC. Under design A, this component
parses OpenACC directly into an OpenMP AST.

• acc2omp is design C’s new Clang component that trans-
forms OpenACC to OpenMP entirely at the AST level.

• Codegen is the existing Clang backend that lowers a
Clang AST to LLVM IR. Design B extends this com-
ponent to lower OpenACC node types into LLVM IR
with runtime calls.

• executable is the final application executable.
• OpenACC runtime is built on top of LLVM’s existing

OpenMP runtime with extensions for OpenACC’s run-
time environment variables, library API, etc.

There are several design features to consider when choosing
among these design alternatives:

1) OpenACC AST as an artifact: Because they create
OpenACC AST nodes, designs B and C best facilitate
the creation of additional OpenACC source-level tools,
as described for Clacc objective 2 in §I. Some of these
tools, such as pretty printing, are available immediately
or as minor extensions of tools that already exist in
Clang’s ecosystem.

2) OpenMP AST/source as an artifact: Because they
create OpenMP AST nodes, designs A and C best
facilitate the development of the various non-traditional
user-level features discussed in §I, such as automated
porting of OpenACC applications to OpenMP, and reuse
of existing OpenMP tools. With design B instead, the
only OpenMP representation is low-level LLVM IR plus
runtime calls, from which it would be significantly more
difficult or impossible to implement such features.

3) OpenMP AST for mapping implementation: Designs
A and C also make it easier for the compiler developer to
reason about and implement mappings from OpenACC
to OpenMP. That is, because OpenACC and OpenMP
syntax is so similar, implementing the translation at
the level of a syntactic representation is easier than
translating to LLVM IR.

4) OpenMP AST for codegen: Designs A and C sim-
plify the compiler implementation by enabling reuse
of Clang’s existing OpenMP support for codegen. In
contrast, design B requires either significant extensions
to Clang codegen to support OpenACC nodes, or a
signficant refactoring of the OpenMP codegen to make
it reusable for OpenACC.

5) Full OpenACC AST for mapping: Designs B and C
potentially enable the compiler to analyze the entire
source, as opposed to just the OpenACC construct
currently being parsed, while choosing the mapping to
OpenMP. It is not clear if this feature will prove useful,
but it might enable more optimizations and compiler
research opportunities.

6) No OpenACC node classes: Design A simplifies the im-
plementation by eliminating the need to implement many
OpenACC node classes. While we have so far found that
implementing these classes is mostly mechanical, it does
take a non-trivial amount of time as the code for an AST
class is divided among many Clang facilities, such as the
AST printer, dumper, reader, writer, visitor, etc.

7) No OpenMP mapping: Design B does not require

OpenACC to be mapped to OpenMP. That is, it is
conceivable that, for some OpenACC constructs, there
will prove to be no OpenMP syntax to capture the
semantics we wish to implement. It is also conceivable
that we might one day want to represent some OpenACC
constructs directly as extensions to LLVM IR, where
some OpenACC analyses or optimizations might be
more feasible to implement. This possibility dovetails
with recent discussions in the LLVM community about
developing LLVM IR extensions for various parallel
programming models.

Due to features 4 and 6, design A is likely the fastest design
to implement, at least at first while implementing simple
OpenACC features and simple mappings to OpenMP. Even
so, we have so far found no advantage that design A has but
that design C doesn’t have except feature 6, which we see as
the least important of the above features in the long term.

The only advantage we have found that design B has but
that design C does not have is feature 7. It should be possible
to choose design C as the default but, for certain OpenACC
constructs or scenarios where feature 7 proves important,
if any, incorporate design B. In other words, if we decide
not to map a particular OpenACC construct to any OpenMP
construct, acc2omp would leave it alone, and we would extend
codegen to handle it directly.

For the above reasons, and because design C offers the
cleanest separation of concerns, we have chosen design C
with the possibility of incorporating design B where it proves
useful. So far in our prototype, we have not needed to
incorporate design B.

B. acc2omp Background

As described in the previous section, our Clacc design
introduces a new acc2omp component within Clang. A key
issue in designing acc2omp is that Clang ASTs are designed
to be immutable once constructed. This issue might at first
seem to make acc2omp impossible to implement, but it does
not. Here are a few AST transformation techniques that are
already in use in upstream Clang:

1) Clang has a Rewrite facility for annotating an AST
with textual modifications and printing the resulting
source code, which can then be reparsed as new source
code into a new AST.

2) The initial construction of a Clang AST involves attach-
ing new nodes to existing nodes, so modifying an AST
by extending it is permitted by design.

3) The TreeTransform facility in Clang is currently used
to transform C++ templates for the sake of instan-
tiating them. It is a special case of technique 2 as
follows. When the parser reaches a template instantia-
tion, TreeTransform builds a transformed copy of the
AST subtree that represents the template, and it inserts
that copy into the syntactic context of the template
instantiation, thus extending the AST.

One nice property of TreeTransform is that it is designed
to be extensible: it is a class template employing the curiously

FunctionDecl

CompoundStmt

ACCParallelDirective

ACCGangClause

ACCLoopDirective

OMPTargetTeamsDirective

OMPDistributeDirective

ForStmt

TranslationUnit
void foo() {
 #pragma acc parallel
 #pragma acc loop gang
 // omp target teams
 // omp distribute
 for (int i=0; i<2; ++i)
 // loop body
}

Fig. 2. AST with Hidden OpenMP Parent

recurring template pattern (CRTP) for static polymorphism.
However, there are also a few caveats, which we now consider.

1) TreeTransform Caveat 1: Transitory semantic data:
To build new nodes, TreeTransform runs many of the same
semantic actions that the parser normally runs. Those semantic
actions require the transitory semantic data that has been stored
in Clang’s Sema object by the time the parser reaches the
syntactic context where new nodes are to be inserted, but
the parser gradually discards some of that semantic metadata
as the parser progresses to other syntactic contexts. Thus,
TreeTransform cannot be run on arbitrary nodes in the
AST at arbitrary times. For example, to run TreeTransform

on arbitrary nodes in a translation unit after the parsing of
that translation unit has completed, it might be necessary to
transform the translation unit’s entire AST in order to rebuild
all of the necessary transitory semantic metadata.

2) TreeTransform Caveat 2: Permanent semantic data:
Currently, parsing a C++ template permanently associates
semantic data with that template’s AST subtree in a way
that’s compatible with later runs of TreeTransform for
instantiations of that template. However, there’s no guaran-
tee that semantic data that is reasonable for C++ template
instantiation will be compatible with any arbitrary extension
of TreeTransform. For example, we have noticed that, if
we write a simple TreeTransform extension that merely
duplicates an OpenMP region immediately after that region’s
node is constructed, the default TreeTransform implemen-
tation does not update the declaration contexts for variable
declarations that are local to the duplicate region, so those
duplicate variables appear to be declared in the original region,
resulting in spurious compiler diagnostics.

3) TreeTransform Caveat 3: Unknown limitations: Be-
cause TreeTransform is designed primarily for C++ template
instantiation, it is not clear at this point what other limitations
an attempt to extend it for Clacc might expose.

C. acc2omp Design

We consider the following design alternatives for acc2omp:

1) Alternatives for how transformations are performed:

FunctionDecl

CompoundStmt

ACCParallelDirective

ACCGangClause

ACCLoopDirective
OMPTargetTeamsDirective

OMPDistributeDirective
ForStmt

ForStmt

TranslationUnit void foo() {
 #pragma acc parallel
 #pragma acc loop gang
 // omp target teams
 // omp distribute
 for (int i=0; i<2; ++i)
 // loop body
}

Fig. 3. AST with Hidden OpenMP Subtree

a) Annotate each OpenACC node with OpenMP as
text using Clang’s Rewrite facility, print the entire
AST, and parse that to construct an OpenMP AST.

b) Replace each OpenACC node with an OpenMP
node.

c) Add a second hidden parent, an OpenMP node,
for the children of each OpenACC node. For ex-
ample, Fig. 2 depicts how the OpenACC node for
an acc loop directive remains in the main AST
but holds a pointer to a hidden omp distribute

directive node that shares a child. The OpenACC
node delegates codegen to the OpenMP node as
necessary, but the OpenMP node is skipped by any
traversals related to analysis of the original source.

d) Add a hidden subtree, rooted at an OpenMP
node, for each OpenACC node. This alternative
is the same as the previous alternative except
that the OpenACC node and OpenMP node do
not share children. Instead, the entire subtree is
transformed using TreeTransform. For example,
Fig. 3 depicts how an acc loop directive node
holds a pointer to the hidden subtree for its omp

distribute directive.
e) Add a new translation unit with OpenMP nodes

instead of OpenACC nodes. This approach could
also use TreeTransform.

2) Alternatives for when transformations are performed:
a) Immediately after each OpenACC node is con-

structed. This approach is nonsensical for 1e above.
b) At the end of each translation unit or all trans-

lation units. For 1d above, this approach is likely
infeasible due to the TreeTransform caveat men-
tioned in §II-B1. If using TreeTransform, 1e
seems necessary to overcome that caveat.

We reject the first two alternatives under 1 for the fol-
lowing reasons. Alternative 1a is surely bad for compilation
performance as it requires serializing and reparsing the source
AST. While alternative 1b seems to directly contradict the
Clang AST design, we have spoken to developers who have
successfully employed this strategy in forks of older versions

of Clang. Regardless, because it blatantly contradicts the Clang
design, it might easily break as Clang evolves.

In our initial Clacc prototype, we attempted 1c plus 2a
as that alternative seemed sufficient for simple mappings
from OpenACC to OpenMP, it seemed to avoid the need
for something more complex like TreeTransform, and it
seemed easiest to extend to 2b in case we later determine
that full translation-unit visibility is sometimes required for a
transformation. However, we encountered several issues with
this alternative. The most obvious problem is that, because of
the shared children, it doesn’t permit changes to an OpenACC
directive’s associated code block when translating to OpenMP,
but we have found that such changes are necessary, as we
describe in §II-G. Nested OpenACC directives pose a related
problem: the outermost OpenACC node logically has different
children than its hidden OpenMP node because the nested
directive is OpenACC in the former case and OpenMP in
the latter case. It’s possible to maintain the same children
and attach a hidden OpenMP node to each of the outer and
inner OpenACC nodes, but then AST traversals for OpenMP,
most notably OpenMP codegen, must be modified to handle
OpenACC nodes within OpenMP subtrees. For example, in
Fig. 2, the child of the omp target teams directive node is
an acc loop directive node.

A more subtle issue we encountered with alternative 1c
is that it means that an OpenACC node’s children must
be compatible with the OpenMP node type. For example,
when trying to translate an acc parallel construct to an
omp target teams construct using this alternative, Clang’s
OpenMP implementation required us to insert child nodes
representing two captured regions, one for each of omp

target and omp teams, as parents of the associated code
block. Because Clang’s AST is immutable, the subtree for
the associated code block cannot be modified later, and thus
the choice of how to map a particular OpenACC directive to
OpenMP must be made immediately in order to construct the
subtree correctly. The choice cannot be deferred for the sake
of, for example, alternative 2b. This example also points out a
more general problem with alternative 1c: understanding how
to construct child nodes requires understanding and sometimes
replicating portions of the OpenMP semantic analysis. In con-
trast, TreeTransform offers a nice encapsulation for reusing
semantic analysis implementations during transformation.

Our current Clacc prototype employs alternative 1d plus 2a.
This design seems:
• Most compatible: Unlike 1b, 1d doesn’t attempt to

violate Clang AST immutability.
• Most efficient: Unlike 1a or 1e, 1d doesn’t require

rebuilding the entire AST.
• Most flexible: 1d avoids the many issues cited above for

1c. 1d plus 2a is like 1e plus 2b but on a smaller scale, so
the former ought to be extensible to the latter if we later
determine that full translation-unit visibility is sometimes
required for a transformation.

We avoid the TreeTransform caveat from §II-B1 by
combining 1d only with 2a. We have overcome the

TreeTransform caveat from §II-B2 by overriding specific
TreeTransform functionality in order to transform semantic
data that TreeTransform normally leaves unmodified. We
anticipate that the extensible design of TreeTransform will
enable us to overcome TreeTransform issues we encounter
in the future, as discussed in §II-B3. For extensions that seem
general to rewriting directives rather than specific to translating
OpenACC to OpenMP, we are constructing a separate class
that we hope will prove reusable in projects other than Clacc.

D. OpenMP Implementation Reuse

In our Clacc prototype, we have found that the design
discussed so far maximizes Clacc’s reuse of the existing
OpenMP implementation in Clang and LLVM. First, as dis-
cussed in §II-A, full reuse of OpenMP codegen is enabled by
constructing an OpenMP AST. Second, because of our choice
of alternative 1d from §II-C for acc2omp, TreeTransform
enables reuse of the OpenMP semantic analysis implementa-
tion without breaking encapsulation. Finally, as discussed in
§II-A, our OpenACC runtime will be built on the OpenMP
runtime plus extensions for OpenACC’s run-time environment
variables, library API, etc. However, our prototype currently
uses the OpenMP runtime directly and doesn’t yet provide
support for runtime-related OpenACC features, so we don’t
discuss runtime design further in this paper.

E. Traversing OpenACC vs. OpenMP AST

As described in §II-C, the manner in which we use Tree-
Transform maintains both the OpenACC nodes and their cor-
responding OpenMP nodes in the AST at the same time. For
this reason, Clang tools and built-in source-level functionality
need some way to choose which set of nodes to examine. In
this section, we describe our solutions for two existing Clang
facilities, AST printing and dumping, and we consider possible
mechanisms for other AST traversals.

1) Printing: -ast-print is an existing Clang command-
line option for printing the original pre-processed source
code from the Clang AST. While this feature was designed
for debugging and not for faithful printing of the AST, we
have successfully contributed upstream a number of fixes to
improve the fidelity of its output. In all of our Clacc tests so
far, we can successfully compile and run the printed source
without behavioral changes.

As we discussed in §I, source-to-source translation is an
important user-level feature that Clacc’s design enables. As a
first prototype of this feature, we are extending -ast-print.
However, the output of -ast-print always corresponds to
the original source and never a lowered version of it. Clacc
maintains that behavior, so -ast-print prints the OpenACC
source not the OpenMP source. Thus, in Clacc, our extended
-ast-print functionality is accessed via a new option,
-fopenacc-print, which takes any of the following values:

1) acc: OpenACC subtrees are printed, and OpenMP
subtrees to which they were translated are ignored.
In this case, the only difference from -ast-print

is that -ast-print typically must be combined

with several other command-line options to, for
example, enable OpenACC compilation. That is,
-fopenacc-print=acc is more convenient.

2) omp: OpenMP subtrees are printed, and the OpenACC
subtrees from which they were translated are ignored.

3) acc-omp: OpenACC subtrees are printed, and the
OpenMP subtrees to which they were translated are
printed in neighboring comments.

4) omp-acc: OpenMP subtrees are printed, and the Ope-
nACC subtrees from which they were translated are
printed in neighboring comments.

In the last two cases, Clacc will avoid duplicating the code
block associated with a directive if that code block prints
identically in both the OpenACC and OpenMP versions. The
output then looks similar to the code passage in Fig. 3.

In the future, we plan to investigate other alterna-
tives on which to base -fopenacc-print, such as the
clang-format tool, which offers more faithful printing,
better formatting, and an unpreprocessed version of the source.

2) Dumping: -ast-dump is an existing Clang command-
line option for printing a textual representation of the AST
structure, including parent-child relationships, source location
information, and computed types. This feature is clearly
designed for debugging ASTs and is not for normal Clang
users. Nevertheless, it is very useful for Clang developers
and must be supported by Clacc. For each OpenACC AST
node, we have extended this feature to always produce a full
representation of that node’s subtree including, as a specially
marked child node, the OpenMP subtree to which it translates.

3) Other Traversals: AST traversals are typically based
on Clang’s RecursiveASTVisitor facility. Like most
-ast-print users, most AST traversal developers and users
likely expect for traversals to visit an AST representing the
original source code only. Because the OpenMP node to which
an OpenACC node is translated is not recorded as a normal
child of the OpenACC node, RecursiveASTVisitor visits
the OpenACC node but skips its OpenMP node. However,
while visiting an OpenACC node, a visitor can be written
to call the node’s getOMPNode member function to access
the OpenMP node, possibly for a recursive visitation. For
example, we use that member function for implementing
-fopenacc-print and -ast-dump.

If a developer wishes to use an existing Clang-based tool to
operate on only the OpenMP AST to which Clacc translates
an OpenACC AST, but if he doesn’t wish to rewrite the
tool to call getOMPNode on all OpenACC nodes, he can use
-fopenacc-print=omp and then run Clang again to parse
the output. However, it might be more efficient and convenient
to have a mechanism that adjusts all AST traversals to skip
OpenACC nodes and visit only their OpenMP nodes instead.
In that way, the AST would appear to a tool as if it were
constructed from parsing the generated OpenMP source. This
mechanism might be activated by a new command-line option,
such as -fopenacc-ast=omp. Some AST traversals, most
notably codegen, would ignore such a mechanism. That is,
under our chosen design C from §II-A, the implementation

of codegen for an OpenACC node would delegate to the
corresponding OpenMP node regardless of this mechanism.
If we find cases where we need to incorporate design B,
codegen would always operate directly on the OpenACC node
regardless of this mechanism. More investigation is necessary
to determine if such a mechanism is worthwhile in practice.

F. Development Strategy

Like any software development project, Clacc cannot offer
support for all desired functionality at its inception. Instead,
we are carefully studying each OpenACC feature, determining
a correct mapping to OpenMP, implementing it in Clang,
extending Clang’s test suite with thorough coverage, and con-
tributing relevant improvements to the OpenACC specification
as well as to the Clang and LLVM upstream infrastructure. In
order to set realistic milestones, we have started with the most
fundamental and commonly used features, as indicated by their
prevalence in existing OpenACC applications and benchmarks,
and we are working our way to more complex and more rarely
used features. We now discuss a few high-level limitations that
we have imposed initially to facilitate this process. We will of
course eliminate those limitations as Clacc matures.

1) C vs. C++: Clacc currently supports OpenACC direc-
tives in C but not yet C++. C++ is a vastly more complex
language than C, so initially limiting our work to C facilitates
faster progress toward full OpenACC support. Nevertheless,
C++ support is an important objective for Clacc. Not only is
C++ a critical base language supported by Clang, but C++
continues to see growing usage within HPC applications.

2) Shared-Memory Multicore vs. GPU: Clacc currently
supports OpenACC offloading to shared-memory multicore
CPUs but not yet GPUs. The primary reason is that our
Clacc work has so far focused on compute constructs, loop
constructs, and data-sharing features but does not yet support
host-device data-transfer features. When the offloading target
is shared-memory multicore CPUs, OpenACC compilers can
mostly ignore the use of such data-transfer features [16].
Indeed, we take this approach for Clacc when compiling the
benchmarks we evaluate in §III. Nevertheless, we expect to
eliminate this limitation in the immediate future as we broaden
the set of OpenACC features Clacc supports.

3) Prescriptive vs. Descriptive: A common and usually
wise strategy when implementing support for an existing
language feature set is to focus first on behavioral correctness
and then on performance. We are following this strategy for
Clacc. For this reason, Clacc currently offers a prescriptive
interpretation of OpenACC. That is, Clacc currently avoids any
complex compiler analyses and thus employs a mostly one-to-
one mapping of OpenACC directives to OpenMP directives.
We present some of those mappings in §II-G.

No production-quality language support can endure this
strategy indefinitely, and that is particularly true in the case of
OpenACC. As we discussed in §I, OpenACC is specified as a
descriptive language. That is, for many features, such as Ope-
nACC’s kernels directive, a production-quality OpenACC
compiler is expected to perform complex analyses in order

to understand data flow, loop nests, and other control flow
in the application source and to determine efficient strategies
for scheduling work on the offloading device. Clacc will
thus need to perform those analyses to lower OpenACC to
the more prescriptive language of OpenMP. In section §III,
we investigate several OpenACC benchmarks as we begin to
evaluate the performance gap between hardened commercial
OpenACC compilers, in particular PGI, and Clacc’s initially
prescriptive OpenACC interpretation.

The latest OpenMP 5.0 draft, TR7, proposes a descriptive
loop directive [17], which corresponds to OpenACC’s loop

directive with imp|exp independent. Once Clang supports
TR7’s loop, Clacc can utilize it to facilitate a descriptive
interpretation of OpenACC. However, we are not aware of
TR7 features to which the following OpenACC features can
be directly mapped: (1) the loop directive’s auto clause,
which requires the compiler to determine whether loop iter-
ations are data-independent, and (2) the kernels directive,
which requires the compiler to automatically split a region
into kernels. Thus, even with TR7’s loop directive, a fully
featured production-quality OpenACC implementation would
still require the kinds of compiler analyses described above.

G. Mapping OpenACC to OpenMP

In this section, we describe a mapping from OpenACC
directives and clauses to OpenMP directives and clauses.
This mapping represents a conservative choice intended to
always achieve correct OpenACC behavior. As Clacc evolves
to support a descriptive interpretation of OpenACC and the
requisite compiler analyses, this mapping will represent the
base choice from which Clacc will look for deviations to
improve performance of the application, and this mapping
will represent the fall back choice if Clacc fails to find better
mappings. Under Clacc’s current prescriptive interpretation of
OpenACC, Clacc supports no such analyses and so effectively
always falls back to this mapping.

1) Mapping Notation: For conciseness, we use the follow-
ing notation when describing clauses and data attributes:

• pre labels a data attribute that is predetermined by the
compiler (that is, cannot be overridden by an explicit
clause) and is not specified by an explicit clause.

• imp labels a data attribute that is implicitly determined
by the compiler (that is, can be overridden by an explicit
clause) and is not specified by an explicit clause.

• exp labels a clause, possibly specifying a data attribute,
that is explicitly specified in the source.

• not labels a clause that isn’t explicitly specified.
• L C → L′ C ′ specifies that clause or data attribute C

under the condition identified by label L maps to clause
or data attribute C ′ under the condition identified by label
L′, where a label is pre, imp, exp, or not.

• L|L′ C → L′′ C ′ specifies both of the following
mappings:

– L C → L′′ C ′

– L ′C → L′′ C ′

• Mappings for per-variable data attributes and clauses are
per variable and per directive.

• Mappings for other clauses are per directive.
• Where arguments to clauses are not specified on either

end of the mapping, the mapping maintains the arguments
as they are even if the clause name or location changes.

One theme throughout Clacc’s mapping is that Clacc does
not rely on implicit or predetermined attributes of OpenMP
except for cases where an explicit clause is not permitted.
That is, Clacc tries to make the exact behavior it intends to
produce as explicit as possible in the generated OpenMP for
the sake of debugging. Thus, → exp appears frequently below.

Any directive or clause not mentioned in this mapping is
not yet supported by Clacc.

2) Semantic Clarifications: While developing this mapping,
we found we had to make assumptions about a number of
aspects of OpenACC semantics in C that are not clear in
the OpenACC 2.6 specification. In many cases, it was the
related behavior of the Clang OpenMP implementation that
brought the need for those assumptions to our attention. We
describe some of those assumptions here. We are in the process
of communicating clarifications to the OpenACC technical
committee, and we will evolve this mapping if necessary based
on those discussions.

• It is an error if a variable has more than one of exp
firstprivate, exp private, or exp reduction on
an OpenACC directive. These have contradictory specifi-
cations for initialization of the local copy of the variable
and for storing data back to the original variable.

• While OpenACC does not define a shared clause, Clacc
assigns the OpenMP imp shared semantics to any vari-
able that is referenced within an OpenACC construct and
declared outside it and for which OpenACC semantics do
not specify firstprivate, private, or reduction.

• exp firstprivate, exp private, or exp reduction

for a variable of incomplete type is an error. A local copy
must be allocated in each of these case, but allocation is
impossible for incomplete types.

• exp private or exp reduction for a const variable
is an error. The local copy of a const private variable
would remain uninitialized throughout its lifetime. A
reduction assigns to both the original variable and a local
copy after its initialization, but const prevents that.

• Given some variable v, rules to assign imp shared(v)

or imp firstprivate(v) on an acc parallel direc-
tive are ignored if the following rule would then produce
an imp reduction for v on that acc parallel.

• Given some variable v that is declared outside an
acc parallel, if (1) neither exp firstprivate(v)

nor exp private(v) on that acc parallel, and
(2) exp reduction(o:v) on any contained gang-
partitioned acc loop, then this acc parallel has imp
reduction(o:v). If the first condition doesn’t hold but
the second does, then the reduction refers to the gang-
private copy of v, so no gang-reduction is implied.

• It is an error if, on a particular OpenACC directive,
there exist multiple imp|exp reduction with different
reduction operators for a single variable v.

• The arguments to num_gangs, num_workers, and
vector_length must be positive integer expressions.
The vector_length argument must also be a constant
expression. These restrictions are inherited from the
OpenMP clauses to which Clacc maps these clauses.

• For a sequential acc loop directive (see §II-G4), if
the loop control variable is just assigned instead of
declared in the init of the attached for loop, the loop
control variable is imp shared instead of pre private.
Otherwise, there’s no way to tell an aggressive OpenACC
compiler to leave such a loop as a normal sequential loop
in C, where the variable would normally have shared

semantics in that its final value is visible after the loop.
• For any acc loop directive, exp reduction is not

permitted on a loop control variable regardless of its
data sharing. However, if the loop control variable is
declared instead of just assigned in the init of the attached
for loop, any reference to the variable’s name in the
directive’s clauses refers to a different variable, so this
rule does not apply.

3) Parallel Directive: Clacc’s current mapping of an acc

parallel directive and its clauses to OpenMP is as follows:

• acc parallel → omp target teams

• imp shared → exp shared

• imp|exp firstprivate → exp firstprivate

• exp private → exp private

• imp|exp reduction → exp reduction

• exp num_gangs → exp num_teams

• If exp num_workers with a constant-expression argu-
ment, and if there is a contained worker-partitioned
acc loop, then exp num_workers → wrap the acc

parallel in a compound statement and declare a local
const variable with the same type and value as the exp
num_workers argument.

• Else, translation discards exp num_workers.
• Translation discards exp vector_length.

4) Loop Directive: Clacc does not yet support the acc

kernels directive or an orphaned acc loop directive, so an
acc loop must appear in an acc parallel directive.

Clacc treats an acc loop directive as sequential if either
(1) exp seq, (2) exp auto, or (3) not gang, not worker, and
not vector. The latter two cases depend on the OpenACC
compiler to determine the best way to parallelize the loop.
However, as described in §II-F3, Clacc does not yet support
the necessary analyses and so depends on the application
developer to prescribe the parallelization, so Clacc makes the
conservative choice of a sequential loop instead. The third
case would certainly be the more straightforward case to
improve because OpenACC specifies that the loop iterations
are then required to be data-independent. This is a case where
a simple AST-level analysis could go a long way for existing
OpenACC applications that expect a descriptive interpretation:

Clacc could add whichever of gang, worker, or vector

doesn’t interfere with any explicit occurrences of these clauses
on other enclosing or nested loops.

Clacc’s current mapping of a sequential acc loop directive
and its clauses to OpenMP is as follows:
• The acc loop directive and the following clauses or

attributes are discarded during translation:
– exp seq, exp independent, exp auto

– exp gang, exp worker, exp vector

– exp collapse

– pre private, imp shared, exp reduction

• exp private → wrap loop in a compound statement and
declare an uninitialized local copy of the variable.

If Clacc does not treat an acc loop directive as sequential
based on the above conditions, then it treats it as parallelized.
In that case, Clacc’s current mapping of the acc loop direc-
tive and its clauses to OpenMP is as follows:
• acc loop → omp

• exp gang → distribute

• exp worker → parallel for

• If neither this nor any ancestor acc loop is gang-
partitioned or worker-partitioned, then → parallel

for and → exp num_threads(1). We add parallel

for for this case because OpenMP does not permit omp
simd directly inside omp target teams.

• exp vector → simd

• The output distribute, parallel for, and simd

OpenMP directive components are sorted in the
above order before all clauses, including the above
num_threads(1), regardless of the input clause order.

• If exp worker, then exp num_workers from ances-
tor acc parallel → exp num_threads where the
argument is either (1) the original exp num_workers

argument if it is a constant expression or (2) otherwise
an expression containing only a reference to the local
const variable generated for that exp num_workers.
On the ancestor acc parallel and on all OpenACC
directives nested between it and this acc loop, Clacc
leaves the OpenMP data sharing attribute for the local
const variable for num_workers as implicit. Making
explicit the data sharing for a generated const scalar
doesn’t seem worth the implementation effort.

• If exp vector, then exp vector_length from ancestor
acc parallel → exp simdlen.

• collapse → collapse

• If exp worker or if this and every ancestor acc loop

until the ancestor acc parallel is not gang-partitioned
and not worker-partitioned, then imp shared → exp
shared.

• Else, imp shared → imp shared. This case must be
implicit because omp distribute or omp simd with-
out parallel for (which we add for worker or to
be able to nest omp simd directly within omp target

teams) does not support a shared clause, so we must
rely on OpenMP implicit data sharing rules then.

• pre private for a loop control variable that is declared
in the init of the attached for loop → pre private.
Mapping to exp private would be erroneous because it
would refer to a variable from the enclosing scope.

• If exp vector, then pre|exp private for a loop control
variable that is just assigned instead of declared in the
init of the attached for loop. For that variable, pre|exp
private → pre linear, as required by OpenMP for
omp simd. Then, wrap the acc loop in a compound
statement, and declare an uninitialized local copy of the
loop control variable.

• In all other cases, pre|exp private → exp private.
• If exp worker or exp vector, then exp reduction →

exp reduction.
• Else, exp reduction is discarded here during trans-

lation. A gang reduction for a gang-private variable is
useless and so is discarded during translation. Gang
reductions for other variables are discarded here but
addressed by the data sharing semantics we assumed for
acc parallel in §II-G2.

H. Combined Directive

The only combined OpenACC directive Clacc supports so
far is acc parallel loop, which is translated in two stages:

1) Translate from combined directive to effective sep-
arate directives. Clacc performs this stage during the
parse while constructing the acc parallel loop di-
rective’s AST node. Clacc builds the effective AST
subtree containing the acc parallel and acc loop

directives, and then it records the AST subtree for
the outermost of those directives, acc parallel, as
a hidden subtree of the acc parallel loop node.
The associated code block for the acc parallel loop

node is recorded like a normal AST child for each of the
acc parallel loop node and the acc loop node.

2) Translate from effective separate directives to
OpenMP directives. This stage is performed using the
TreeTransform facility just as it normally would be
for the separate directives. That is, the acc parallel

loop node delegates to the acc parallel node.
The relationship between the acc parallel loop node

and the acc parallel node is similar to the relationship
between any non-combined OpenACC directive’s node and its
OpenMP node. Moreover, it effectively replaces that relation-
ship. That is, most AST traversals, including -ast-print,
visit the acc parallel loop node and skip over the hidden
subtree for its effective acc parallel directive because
the acc parallel loop node without the acc parallel

subtree represents the original source. The -ast-dump facility
prints the acc parallel node as a specially marked child
node, which prints its OpenMP node as a specially marked
child node. For codegen to LLVM IR, the acc parallel

loop node delegates to its effective acc parallel node,
which delegates to its OpenMP node.

Because the second stage of translation above is delegated to
the effective acc parallel directive, acc parallel loop

does not require a mapping to OpenMP. However, it and its
clauses do require a mapping to its effective directives for the
sake of the first stage, as follows:
• acc parallel loop → acc parallel, whose asso-

ciated code block is an acc loop, whose associated
code block is the associated code block from the acc

parallel loop.
• exp private → exp private on the effective acc

loop.
• exp reduction → exp reduction on each of the

effective acc parallel and acc loop.
• Each remaining explicit clause is permitted on only one

of the separate OpenACC directives, and so it is mapped
to that directive.

• Predetermined and implicit attributes do not require a
mapping to the effective directives because there are none
because semantic analysis computes them only on the
effective directives.

The choice to map reduction to the effective acc

parallel in addition to the effective acc loop doesn’t fol-
low the OpenACC 2.6 specification. However, strictly speak-
ing, OpenACC 2.6 specifies reductions are only for scalars,
which are imp firstprivate, so by default the reduced
value from an acc parallel loop is not visible after the
acc parallel loop. The OpenACC technical committee
is working to address this and other confusing points in
the specification of reductions, and Clacc’s current mapping
represents our attempt to match the intended behavior.

I. LLVM IR Analysis

As we described in §II-C, Clacc currently implements trans-
lation from OpenACC to OpenMP within the Clang frontend in
order maximize reuse of the existing OpenMP implementation.
As we described in §II-F3, as Clacc’s OpenACC support
evolves to production-quality, it will require sophisticated
compiler analyses to perform this translation. However, the
LLVM ecosystem is designed so that such analyses are best
performed at the level of LLVM IR. While many source-level
analysis tools have been built at the Clang AST level, the
LLVM IR infrastructure for compiler analyses is designed for
reuse across source languages and across target architectures,
thus invites more attention from the developer community, and
has become far more robust. One of the major research goals as
Clacc matures is to investigate what elements of the translation
from OpenACC to OpenMP under a descriptive interpretation
of OpenACC can be effectively performed at the Clang AST
level and what elements are best implemented at the LLVM IR
level. For the sake of these latter elements, we are following
ongoing efforts within the LLVM community to extend LLVM
IR with better support for parallelism, which might eventually
be integrated into Clang’s OpenMP support as well.

Moving OpenACC-to-OpenMP translation to the LLVM IR
level creates a challenge for some of the user-level features,
such as source-to-source translation, that we described in §I.
That is, this move implies design B from §II-A, which does
not provide feature 2, an OpenMP AST/source artifact. First, it

is important to clarify that the primary objective of the Clacc
project, as described in §I, is to provide production-quality
OpenACC support for Clang and LLVM. All other features
we have described are lesser objectives. Nevertheless, in case
such features prove important to the community and our
sponsors but conflict with a technical need to move translation
to the LLVM IR level, we will investigate the following
potential solution. We imagine extending Clang codegen to
encode specific compiler analysis queries into the LLVM IR
it generates. After LLVM passes complete, the Clang compiler
driver could pass the results of those queries back to the Clang
frontend for the sake of AST-level translation to OpenMP. We
anticipate that such queries could be encoded as a special
instance of a general LLVM IR-level representation for source-
level directives, such as the representation being developed for
LLVM IR parallelism efforts.

III. EVALUATION

We now evaluate our current Clacc prototype using several
OpenACC benchmarks from the SPEC ACCEL 1.21 suite:
303.ostencil, 304.olbm, and 314.omriq, which are all written
in C. Workloads we used in this evaluation are those included
with the SPEC ACCEL distribution. Our results are not
compliant SPEC results in part because, as we describe in this
section, we modified the benchmark source code to experiment
with various characteristics of the OpenACC implementations.

We compare our Clacc results for these benchmarks against
results we obtained for the same benchmarks when compiling
with the PGI Community Edition 18.4 [6], identified in the
remainder of this section as pgcc. The stark contrast of Clacc’s
currently prescriptive interpretation of OpenACC against the
powerful optimization capability of one the oldest and most
advanced OpenACC compilers commercially available should
provide insight into the challenges that lie ahead in evolving
Clacc into a production-quality OpenACC compiler.

Our test platform runs Ubuntu 18.04 with an Intel Core i7-
7700HQ 2.80GHz CPU (8 threads), 32 GB DRAM, and an
NVIDIA GeForce GTX 1050. As discussed in §II-F2, Clacc’s
offloading support is currently limited to multicore, so we were
able to compile for the GPU only with pgcc.

A. Testing Methodology

We compiled and ran all our selected benchmarks under
a series of test configurations, which vary in terms of com-
piler, compiler options, offloading device, and modifications
to benchmark sources. We now describe those configurations.

host clacc: We compiled each benchmark using clacc

-Ofast without -fopenacc, so OpenACC compilation was
disabled. Thus, this configuration provides a baseline for
detecting when Clacc’s offloading support does not im-
prove performance relative to sequential execution. When
compiling benchmark 314.omriq with this configuration, we
found we had to also specify the command-line option

1SPEC® and SPEC ACCEL® are registered trademarks of the Standard
Performance Evaluation Corporation. For more information about SPEC
ACCEL, see https://www.spec.org/accel/.

-DSPEC_NO_INLINE, or compilation failed with a linking
error for an inlined function.

host pgcc: We compiled each benchmark using pgcc

-fast -acc -ta=host. Thus, this configuration provides a
baseline for detecting when pgcc’s offloading support does not
improve performance relative to sequential execution.

multicore pgcc: This configuration is for side-by-side
comparison with Clacc’s multicore offloading performance.
We compiled each benchmark using pgcc -fast -acc

-ta=multicore.
multicore clacc: This configuration is the focus of this

evaluation. We modified all benchmarks to remove all occur-
rences of acc data, acc update, pcopyin, pcopyout, and
pcopy, which Clacc does not yet support and which are not
actually useful because the target is shared-memory multicore,
as discussed in §II-F2. We compiled each benchmark using
clacc -Ofast -fopenacc.

multicore clacc+pgcc: This configuration is the same
as “multicore clacc” except that we generated OpenMP
source from Clacc and compiled it using pgcc -fast -mp

-ta=multicore instead of using Clang’s OpenMP support.
Thus, this configuration helps us to isolate the effects of
Clacc’s prescriptive interpretation of OpenACC from the ef-
fects of Clang’s OpenMP support.

multicore clacc gwv: This configuration tries to manually
overcome negative effects of Clacc’s prescriptive interpretation
of OpenACC. It’s the same as “multicore clacc” except it
further modifies the benchmark sources to (1) add worker to
every acc loop specifying only gang, (2) add gang worker

vector to every acc loop that doesn’t specify any of these
clauses, and (3) add private clauses to those that don’t
specify all their private variables correctly. Change 2 should
have an especially significant impact because, as described
in §II-G4, before this change, Clacc translates these loops
as sequential loops. The reason for the last change is that,
even though failures to specify variables as private don’t cause
misbehavior in the previous configurations, we have found
that changing the loop parallelization can alter a compilation
strategy that otherwise manages to mask such mistakes.

multicore clacc+pgcc gwv: This configuration enables us
to see if “multicore clacc gwv” performs differently when
the generated OpenMP is compiled with pgcc -fast -mp

-ta=multicore instead of Clang’s OpenMP support.
gpu pgcc: This configuration examines whether the GPU

can outperform multicore for our benchmarks, and so it gives
us evidence of how soon Clacc development should focus
on GPU support. We compiled each benchmark using pgcc

-fast -acc -ta=tesla:cc60.
For all test configurations, we ran the benchmarks using

SPEC’s runspec script. In most cases, we accepted the default
of three iterations per benchmark and ran the test, train
and ref workloads included with SPEC ACCEL. The only
exceptions were for a few configurations for 314.omriq, where
the benchmark ran for many hours with the ref workload, so
we chose to run only one iteration with the ref workload. As
is usual for SPEC benchmarks, only the durations for the ref

https://www.spec.org/accel/

Fig. 4. 303.ostencil

Fig. 5. 304.olbm

workloads are long enough to be interesting, and the test and
train workloads are interesting for verifying correct behavior.

B. Results

Other than a few cases that failed compilation, discussed
below, all benchmarks, all test configurations, all workloads,
and all iterations passed verification of the benchmark output.
Fig. 4, 5, and 6 present the duration of each iteration of each
benchmark on the ref workload for each test configuration.
As seen in these figures, the iterations within each group of
three tend to have similar durations. However, in a few cases,
we found that, if we ran the same experiment at another time,
the result was sometimes another group of three durations that
were similar to each other but noticeably different from the
prior three. We expect the culprit is simply OS noise. Thus,
for these results, we assume that small changes across test
configurations are probably not meaningful.

303.ostencil is a thermodynamics benchmark solving partial
differential equations (PDE) using a stencil code on a 3-D
structured grid. pgcc offers a substantial performance improve-
ment when moving offloading from host to multicore. Clacc
offers a modest improvement for the same move, but it’s small
enough that it might be just OS noise. However, under the
“multicore clacc gwv” configuration, Clacc is comparable with
pgcc on multicore and improves significantly over Clacc’s host
performance. Interestingly, this configuration merely adds a
single worker clause to a single gang loop that already has

Fig. 6. 314.omriq

a nested vector loop. Another interesting point here is that
attempting to compile Clacc’s OpenMP output with pgcc gives
significantly worse performance than either compiler does for
host. On the other hand, pgcc offloading to GPU is far better
than all other test configurations.

304.olbm is a computational fluid dynamics benchmark
implementing the Lattice Boltzmann Method (LBM) and
simulating incompressible fluids in 3D. pgcc offloading to
GPU clearly outperforms the other test configurations for this
benchmark. Otherwise, due to the aforementioned OS noise,
we are not convinced the small differences in the various
durations here are representative of important differences
among the test configurations. It’s no surprise that Clacc
offloading to multicore fails to see a significant improvement
over Clacc for host because 304.olbm specifies all acc loop

directives without gang, worker, or vector clauses, so Clacc
treats them as sequential loops. However, after we add those
clauses, Clacc does not produce better performance, and pgcc,
which applies the power of pgcc’s descriptive interpretation of
OpenACC, does no better either. We noticed that compilation
for “multicore clacc gwv” warned of a failure to vectorize. We
tried passing -Minfo to pgcc when offloading to multicore and
found that then it too reported that, due to a data dependency,
it was unable to vectorize each loop marked with acc loop

in 304.olbm. However, when we offload to the GPU, pgcc
reports successful vectorization.

314.omriq is a medical benchmark that performs MRI
image reconstruction. This benchmark spends the vast majority
of its time in a single loop that already has a gang outer
loop and a vector inner loop. When compiling with Clacc and
targeting host or multicore, the performance is poor enough
that we didn’t have time to run multiple iterations. Moreover,
the performance is roughly the same, so the specified loop
partitioning offers no measurable benefit over sequential ex-
ecution. As for 303.ostencil, “multicore clacc gmv” adds a
worker clause to the gang loop with a major positive impact
on performance. However, performance is still worse than
for pgcc compiling the benchmark sequentially. These results
suggest that poor scalar optimizations could be to blame. As
for the other benchmarks, moving to the GPU with pgcc offers
dramatic performance improvements. For the Clacc plus pgcc

compilation configurations, pgcc reported internal compiler
errors, which are hard to debug because pgcc is closed source.

IV. RELATED WORK

The home of the OpenACC specification and community is
the OpenACC website [4]. Several text books on OpenACC
exist to guide developers seeking to accelerate their appli-
cations [5], [16]. The OpenACC website lists a number of
compilers and tools for OpenACC [13]. The only production
open-source compiler cited is GCC [10], whose OpenACC
support is primarily developed by Mentor Graphics. A recent
blog from Mentor shows their attempts to improve GCC’s
OpenACC performance to match PGI’s [18].

PGI’s Michael Wolfe, the Technical Committee Chair for
OpenACC, explains the signficance and complexity of trans-
lating OpenACC to OpenMP [19]. Sultana et al. prototyped
a translator from OpenACC to OpenMP as an extension of
the Eclipse C/C++ Development Tools [20]. Their primary
objective is a simple, predictable source-to-source translation
intended to be paired with “manual restructuring and perfor-
mance tuning.” Clacc’s primary objective is production-quality
OpenACC compiler support. Another difference is they map
OpenACC’s vector loops to omp parallel for, perhaps due
to previously poor compiler support for omp simd.

V. CONCLUSIONS

We have presented Clacc, a recent project to develop
production-quality OpenACC compiler support for Clang and
LLVM. We have described Clacc’s objectives, design, and the
state of our prototype. A key design feature is to translate
OpenACC to OpenMP to build on Clang’s existing OpenMP
compiler and runtime support. Clacc is in active development
but currently only supports C, shared-memory multicore, and
a prescriptive interpretation of OpenACC. We have presented
an evaluation comparing the performance of several SPEC
ACCEL benchmarks using our Clacc prototype vs. PGI. This
evaluation confirms the need to extend with a more complex
descriptive interpretation of OpenACC and with GPU support.

VI. ACKNOWLEDGMENTS

We would like to thank the Clang and LLVM community for
all their time and valuable input during mailing list discussions
and code reviews as we have upstreamed our improvements
to the Clang and LLVM infrastructure from the Clacc project.
We would also like to thank Hal Finkel of Argonne National
Laboratory for his technical feedback on an early version of
the Clacc design that we posted to the Clang developer list.

This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Depart-
ment of Energy (DOE), Office of Science. This research
was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration. The US government retains and the publisher,
by accepting the article for publication, acknowledges that the
US government retains a nonexclusive, paid-up, irrevocable,

worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for US government
purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

REFERENCES

[1] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous
computing techniques,” ACM Computing Surveys, vol. 47, no. 4, pp.
1–35, 2015.

[2] B. Dally, “GPU computing to exascale and beyond,” 2010.
[3] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,

M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp,
S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott,
A. Snavely, T. Sterling, R. S. Williams, and K. Yelick, “Exascale
computing study: Technology challenges in achieving exascale systems,”
DARPA Information Processing Techniques Office, Tech. Rep., 2008.

[4] “OpenACC,” [Online]. Available: https://www.openacc.org/.
[5] S. Chandrasekaran and G. Juckeland, Eds., OpenACC for Programmers:

Concepts and Strategies. Addison-Wesley Professional, Sep 2017.
[6] “PGI,” [Online]. Available: https://www.pgroup.com/.
[7] S. Lee and J. Vetter, “OpenARC: Open Accelerator Research Compiler

for Directive-Based, Efficient Heterogeneous Computing,” in HPDC ’14:
Proceedings of the ACM Symposium on High-Performance Parallel and
Distributed Computing, Short Paper, June 2014.

[8] S. Lee, J. Kim, and J. S. Vetter, “OpenACC to FPGA: A Framework for
Directive-Based High-Performance Reconfigurable Computing,” in 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 544–554.

[9] A. Sabne, P. Sakdhnagool, S. Lee, and J. S. Vetter, “Understanding
Portability of a High-Level Programming Model on Contemporary
Heterogeneous Architectures,” IEEE Micro, vol. 35, no. 4, pp. 48–58,
July 2015.

[10] “GCC, the GNU Compiler Collection,” [Online]. Available: https://gcc.
gnu.org/.

[11] “Press Release: OpenACC Adoption Continues to Gain Momentum
in 2016,” [Online]. Available: https://www.openacc.org/news/
press-release-openacc-adoption-continues-gain-momentum-2016,
2016.

[12] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao, and et al., “The Sunway TaihuLight supercomputer:
system and applications,” Science China Information Sciences, vol. 59,
p. 072001, Jun 2016.

[13] “OpenACC: Downloads & Tools,” [Online]. Available: http://openacc.
org/tools.

[14] K. Friedline, S. Chandrasekaran, M. G. Lopez, and O. Hernandez,
“OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures,”
in High Performance Computing. Cham: Springer International Pub-
lishing, 2017, pp. 557–575.

[15] S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Mller, “ARCHER: Effectively
Spotting Data Races in Large OpenMP Applications,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2016, p. 5362.

[16] R. Farber, Ed., Parallel Programming with OpenACC. Morgan Kauf-
mann, 2017.

[17] “OpenMP Technical Report 7: Version 5.0 Public Comment Draft,”
[Online]. Available: https://www.openmp.org/specifications/, July 2018.

[18] R. Allen, [Online]. Available: https://blogs.mentor.com/embedded/blog/
2018/06/06/evaluating-the-performance-of-openacc-in-gcc/.

[19] M. Wolfe, “Compilers and More: OpenACC to OpenMP (and back
again),” Jun 2016. [Online]. Available: https://www.hpcwire.com/2016/
06/29/compilers-openacc-openmp-back/

[20] N. Sultana, A. Calvert, J. L. Overbey, and G. Arnold, “From OpenACC
to OpenMP 4: Toward Automatic Translation,” in Proceedings of the
XSEDE16 Conference on Diversity, Big Data, and Science at Scale, ser.
XSEDE16. New York, NY, USA: ACM, 2016, pp. 44:1–44:8.

https://www.openacc.org/
https://www.pgroup.com/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.openacc.org/news/press-release-openacc-adoption-continues-gain-momentum-2016
https://www.openacc.org/news/press-release-openacc-adoption-continues-gain-momentum-2016
http://openacc.org/tools
http://openacc.org/tools
https://www.openmp.org/specifications/
https://blogs.mentor.com/embedded/blog/2018/06/06/evaluating-the-performance-of-openacc-in-gcc/
https://blogs.mentor.com/embedded/blog/2018/06/06/evaluating-the-performance-of-openacc-in-gcc/
https://www.hpcwire.com/2016/06/29/compilers-openacc-openmp-back/
https://www.hpcwire.com/2016/06/29/compilers-openacc-openmp-back/

	I Introduction
	I-A Clacc Objectives
	I-B Contributions

	II Methodology
	II-A High-Level Design
	II-B acc2omp Background
	II-B1 TreeTransform Caveat 1: Transitory semantic data
	II-B2 TreeTransform Caveat 2: Permanent semantic data
	II-B3 TreeTransform Caveat 3: Unknown limitations

	II-C acc2omp Design
	II-D OpenMP Implementation Reuse
	II-E Traversing OpenACC vs. OpenMP AST
	II-E1 Printing
	II-E2 Dumping
	II-E3 Other Traversals

	II-F Development Strategy
	II-F1 C vs. C++
	II-F2 Shared-Memory Multicore vs. GPU
	II-F3 Prescriptive vs. Descriptive

	II-G Mapping OpenACC to OpenMP
	II-G1 Mapping Notation
	II-G2 Semantic Clarifications
	II-G3 Parallel Directive
	II-G4 Loop Directive

	II-H Combined Directive
	II-I LLVM IR Analysis

	III Evaluation
	III-A Testing Methodology
	III-B Results

	IV Related Work
	V Conclusions
	VI Acknowledgments
	References

