
SANDIA REPORT
SAN D20XX-XXXX
Printed December 2018 n Sandia

National
Laboratories

Biologically inspired approaches for
biosurveillance anomaly detection and
data fusion

Patrick Finley, Drew Levin, Tatiana Flanagan, Walt Beyeler, Michael Mitchell, Jaideep
Ray, Melanie Moses, Stephanie Forrest

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.



ABSTRACT

This study developed and tested biologically inspired computational methods to detect anomalous
signals in data streams that could indicate a pending outbreak or bio-weapon attack. Current large-
scale biosurveillance systems are plagued by two principal deficiencies: (1) timely detection of
disease-indicating signals in noisy data and (2) anomaly detection across multiple channels. Anomaly
detectors and data fusion components modeled after human immune system processes were tested
against a variety of natural and synthetic surveillance datasets. A pilot scale immune-system-based
biosurveillance system performed at least as well as traditional statistical anomaly detection data
fusion approaches. Machine learning approaches leveraging Deep Learning recurrent neural
networks were developed and applied to challenging unstructured and multimodal health
surveillance data. Within the limits imposed of data availability, both immune systems and deep
learning methods were found to improve anomaly detection and data fusion performance for
particularly challenging data subsets.
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EXECUTIVE SUMMARY

Biosurveillance systems collect and analyze vast quantities of diverse real-time data from to provide
the Nation with advance warning of disease outbreak or bioweapons attack. The daily volume of
monitored information from hospital admissions, emergency responders, drug purchases, and social-
media search patterns is huge and growing rapidly as new sources come on line. Detection of
bioweapon and disease-outbreak signals in these large noisy data streams challenges traditional
statistics-based algorithms in current use. Scientists from Sandia National Laboratories (SNL),
University of New Mexico (UNM), and US Centers for Disease Control (CDC) have applied
advanced data analytics concepts to address these pressing national scale biosurveillance data-fusion
and anomaly-recognition gaps. Researchers have developed a broad array of classifiers including
artificial immune system models, traditional machine learning methods, and deep learning neural
networks and tested their performance against production biosurveillance data sets and synthetic
data sets. These methods show tremendous potential for detecting possibly devastating outbreaks
earlier and with greater reliability. While some of the new methods remain more data-hungry and
compute-intensive than traditional statistical approaches, additional algorithm tuning and new high
performance computing architectures may enable the new methods to improve biosecurity readiness
over the long term.
This report summarizes many statistical and computer science studies designed to explore novel
methods to improve large-scale biosurveillance system performance. Technical details of the work
summarized in this report are contained in individual publications and technical reports cited in the
reference section.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition

AD Anomaly Detection

Al Artificial Intelligence

ANN Artificial Neural Network

AUC Area Under Curve

BOW Bag of Words

C2W Character to Word

CB Chemical/Biological

CNN Convolutional Neural Network

CUSUM Cumulative Sum

DL Deep Learning

DOD Department of Defense

DTRA Defense Threat Reduction Agency

DUA Data Use Agreement

ED Emergency Department

EHR Electronic Health Record

EWMA Exponential Weighted Moving Average

ICD International Classification of Disease

IDF Inverse Document Frequency

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory

MDL Multimodal Deep Learning

ML Machine Learning

NASA National Aeronautics and Space Administration

NKP Natural Language Processing

NN Neural Network

Pll Personally Identifiable Information

PRC Precision Recall Curve

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SVD Single Value Decomposition

T2V Tweet to Vector

TF Term Frequency



1. INTRODUCTION

Modern biosurveillance systems rely upon a variety of electronic signals to detect potential disease
outbreaks. Typically, data from hospital emergency department admissions, emergency response
telemetry, and various social network media are analyzed to identify indications of potential disease
processes. Two categories of algorithms are vital to consistent and timely detection of disease from
electronic data streams: anomaly detection and data fusion (Hopkins et al. 2017). Anomaly detection
algorithms identify outliers in electronic signals that are atypical and might represent disease events.
Data fusion algorithms allow the integration of multiple contemporaneous data feeds to generate a
trigger signal that may not have been measureable on single channel data streams.

This report examines a range of novel anomaly detection and data fusion algorithms with potential
to serve as biosurveillance anomaly detection and data fusion components. The evaluated
algorithms are representative of a class of processes known as biologically inspired algorithms,
meaning that the algorithms mimic natural biological process in some way.

For brevity, this report summarizes prior published work resulting from a recently conducted
Laboratory Directed Research and Development study. Design details on the algorithms mentioned
on this report and results of performance testing can be found in a number of reports and
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2. BIOSURVEILLANCE DATA

Large scale biosurveillance systems rely on information derived from many sources to infer an
incipient disease outbreak or bioweapons attack. Typical data sources for biosurveillance include
hospital emergency department (ED) records, pharmaceutical prescribing and purchase information,
employee absenteeism information from large employers, and diagnostic laboratory results. Each of
these data sets may contain personally identifiable information (P11) and, thus are not publically
available. Production biosurveillance systems execute detailed data use agreements (DUA) with data
providers to ensure that PII is not accessible, and that strong data security procedures are in place.
Researchers often find it difficult to identify and acquire useful datasets for development and testing
of improved anomaly detection and data fusion algorithms.

For this study deidentified public health data have been obtained from a variety of sources.
Emergency department datasets were obtained through data-sharing agreements with public health
departments in North Carolina, Massechusets, and New Mexico. Summary influenza data was
obtained from US Outpatient Influenza-like Illness Surveillance Network (ILINet) compiled by the
US Centers for Disease Control and Prevention (CDC).

Biosurveillance anomaly detection and data fusion algorithm research requres varied data sets to be
used for development and testing to ensure that the system has been adequately tested and
calibrated to perform in conformance with requirements. Initial model development and testing has
largely relied upon synthetic data sets. Data sets generated using methods described by Levin and
Finley (2016) and Levin et al. (2018) permit the development team to rapidly determine performance
characteristics of system components by testing against synthetic data sets specifically configured to
exercise the capability or feature being developed or refined. To support integrated system testing
under controlled conditions for noise and anomalous signals, coherent synthetic data sets across all
data feeds have been used as software components are integrated into subsystems. In addition,
synthetic data permits performance evaluation for rare events such as overlapping outbreak events
that would not be expected in typical training data.

A variety of electronic health record data feeds and syndromic surveillance data sets have been
incorporated into the testing and evaluation processes once components are performing well on
purpose-designed synthetic data. Sandia's active data use agreements with a variety of entities,
including NC-DETECT, Boston Health and the New Mexico Department of Health, ensured the
availability of comprehensive data sets covering diverse geographical settings and seasonal
variabilities for many target diseases. These multimodal data sets have provided a rich variety of
well-studied natural outbreak signatures upon which to refine fusion and anomaly detection
capabilities.
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3. IMMUNE SYSTEM ANOMALY DETECTION AND DATA FUSION

National scale biosurveillance systems monitor a wide range of electronic signals to identify early
evidence of possible disease outbreaks or bio-weapon attacks. Early detection of an emergent
disease outbreak is crucial for a timely and cost-effective response. Signs of emergent outbreaks can
be hidden inside high-dimensional data that is both noisy and incomplete. Biosurveillance detection
of these events requires novel data analysis and classification techniques. The design and
implementation of such detectors is an ongoing task in the field of electronic biosurveillance
(Shmueli and Fieinberg 2006; Unkel et al. 2012; Gajewski et al, 2014). Current detection mechanisms
often derive from established methods of time series analyses from other domains (Goldenberg et
al. 2002; Cheng et al 2012; Schmueli 2013) and may not be best suited to deal with the complexity of
modern biosurveillance data.

Current methods applied to health record surveillance rely on standard statistical approaches such as
control chart algorithms (Morton et al. 2001; Woodall et al. 2006) and Bayesian Belief Networks
(Burkom et al. 2011). While these methods perform well on specific types of data feeds, they often
don't handle multivariate data (control charts), continuous data (Bayesian Belief Networks), and
frequently do not scale well to the larger data sets available for biosurveillance.

To address these limitations, Levin and Finley (2017) turned to a known natural distributed anomaly
detector. The adaptive immune system is able to maintain a distributed repertoire of lymphocytes
that can recognize and respond to foreign pathogens while avoiding any response to healthy tissue.
Applying naturally inspired algorithms in new domains is an established practice. Previous work
using immune-inspired classification approaches have been successfully used to detect fraudulent
ATM transactions (Ayara et al. 2005), unauthorized intrusions Greensmith et al. 2006), anomalous
port scans (Greensmith and Aiklelin 2008; Greensmith et al. 2010), and invalid online media
streaming purchases (Huang et al. 2010).

3.1. Dendritic Cell Algorithm

Levin and Finley (2017) initially evaluated the Dendritic Cell Algorithm for potential applicability to
biosurveillance anomaly detection. They implemented the algorithm and tested it against challenging
synthetic datasets to evaluate its performance relative to traditional statistical based anomaly
detectors.

3././. Algorithm Description

The innate immune system is adept at recognizing and responding to a wide variety of foreign
pathogens. The dendritic cell algorithm was by Danger Theory, first described by Matzinger (1994).
Ubiquitous dendritic cells continuously ingest free antigens in tissue, thus maintaining individual
repertoires of their local environment. These dendritic cells simultaneously sample the local
molecular profile. In the event of an infection, epithelial cells will secrete specific 'danger' molecules.
Upon detection of these danger signals, dendritic cells will classify their entire current repertoire of
ingested antigens as foreign and travel to local lymph nodes to present these particles to
lymphocytes to initiate an immune response.
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The process of classification through the combination of local sampling and exogenous danger
signals has been implemented as the Dendritic Cell Algorithm (DCA) by Greensmith et al. (2006).
The DCA classifies data by first mapping input data (anti- gen) to a combination of three values:
safe, danger, and PAMP (pathogen associated molecular pattern) signals. Simulated immature
dendritic cells sample and aggregate these input values using a static trans- formation matrix for a
limited amount of time, after which the dendritic cell transitions to a mature (infection) or semi-
mature (no infection) state depending on the sampled data. Upon transitioning, all sampled data of
the dendritic cell are given a token indicating either mature or semi-mature. After the sampling
phase has run to completion, each individual data point is classified as safe or dangerous based on a
comparison of the relative token counts to a given threshold value.

3.1.2. Experimental

The DCA was implemented and tested with representative biosurveillance data sets. Results were
not encouraging, with the algorithm identifying strong potential disease signals, but not detecting
more subtle signals in noisier datasets (Figure 1). In addition to the algorithm's detection
performance, it proved to be very difficult to tune effectively, since the parameters of the algorithm
do not correspond to quantities of relevance to the biosurveillance domain. Finally, the DCA's
performance was judged inadequate since its design requires that raw input first be classified with a
traditional anomaly detection routine, such as CUSUM. Thus the DCA cannot produce anomaly
detection superior to the flawed control chart methods currently in use. Further research on using
the DCA for biosurveillance anomaly detection was not pursued (Levin and Finley 2017).

Analysls of Sample Data using Naive DCA Analysis of Sample Data using Naive DCA
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Alarm
Outbreak

A A
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Figure 1. Naive DCA Implementation. Without exogenous transformation of the input signal, the DCA is
unable to recognize non-stationary data. The DCA was tested against a stationary (left) and non-

stationary (right) data set, each with one simulated outbreak (green +). The DCA is able to properly
identify the outbreak in the stationary data set (red triangle), but cannot separate the outbreak from the

high baseline values in the non-stationary data set.

3.2. Negative Selection

The innate immune response is able to sample local antigen and respond to outbreaks as directed by
an exogenous danger signal, but is not able to learn or adapt to items previously seen. The adaptive
immune system is responsible for maintaining a repertoire of lymphocytes that can recognize and
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respond to pathogens previously classified as anomalous by the innate immune system, while
avoiding any response to healthy self antigens. The biological mechanism that generates and filters
the T cell population is known as Negative Selection (NS) (Nossal 1994). T cells that survive the NS
process should not be able to bind to any self molecules and therefore anything they do bind to can
generally be considered foreign.

3.2.1. Algorithm Description

Levin and Finley (2017) implemented a mechanistic version of the biological NS algorithm for use
as a biosurveillance detector. The artificial NS classifier handles multi- dimensional data time series
data. Artificial T cells have a independent detector for each data dimension and will recognize a data
point if each of its detectors react with each component of the sampled data point. Each input
dimension can be one of three possible data types: count, indicator or categorical.

To create a complete T cell repertoire, T cells are generated randomly such that they contain unique
values and specificity in each dimension. To generate random T cells, first a training data set with no
known disease outbreaks is examined T cell values are chosen uniformly from the upper and lower
ranges of numerical data, and sampled without replacement from categorical data. Indicator
specificity is constrained to be within a min and max numerical range of the generated center value
and categorical speci- ficity is set as the size of the T cell's subset of possible items. The minimum
size constraint on ranges corresponds to the biological mechanism known as Posi- tive Selection,
and ensures that generated T cells are appropriately general .

Once generated, each T cell is tested against the selected training set of baseline data. If a T cell
reacts to any baseline point, the T cell is removed from the population. This process is basis for the
Negative Selection designation and ensures that the remaining T cell repertoire does not react with
any data known to be quiescent. Future data that react with any of the surviving T cells will be
classified as anomalous. Because the remaining T cells survived both positive and negative selection,
they can be considered both appropriately specific and general.

3.2.2. Experimental

The anomaly detection performance of the NS algorithm was evaluated against a number of
different data sets. The algorithm performed well against all tested data sets, delivering anomaly
detection capabilities equaling or exceeding that of traditional statistics based anomaly detectors
(Figure 2).
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Figure 2. Negative selection anomaly detector sensitivity and specificity. Shows how the number of
T cells affects a Negative Selection classifier on a non-stationary data with a single outbreak (green +).
Too few T cells (upper-left) results in poor coverage of the anomalous space and an inability to detect
outbreaks (red triangles). Too many T cells (lower panels) results in over-saturated coverage and an

overabundance of false positive classifications.

3.3. Negative Selection Data Fusion

Levin et al. (2018) investigated the capacity of the Negative Selection (NS) algorithm to
simultaneously process multiple channels of input data. In nature, immune systems sense large
numbers of antigens simultaneously and trigger cascade responses to mount an effective
response. This inherent property of native parallelism in functioning is particularly intriguing
from the standpoint of alternative algorithms for biosurveillance. A recent review of outstanding
research issues in biosurveillance cited the need for vastly improved data fusion approaches to
enable emerging disease outbreakks to be detected from faint signals in multiple channels, where
each individual signal may not be strong enough by itself to rise above the detection threshold,
but complementary signals recorded across multiple channels can denote a signal of interest
when considered as a whole (Hopkins et al. 2017). Additionally, ensembles of NS detectors are
not only capable of multi-channel anomaly detection, but the data channels may represent
different data types resulting in multimodal data fusion capabilities.
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3.3.1. Experimental

To explore efficient anomaly detection across multiple channels, Levin et al. (2018) enhanced
the NS biosurveillance detector described by Levin and Finley (2017) by incorporating bagging
and a parallel implementation model that permitted more efficient computation by allowing
efficient distribution of training and testing loads to be parked on individual cores of a multicore
CPU architecture. Effective parallelism of the improved architecture was tested using a nine-
dimensional synthetic data set consisting of 100 individual generated one-year sets each with a
simulated anthrax incident for the detector to predict.

By enhancing the basic NS algorithm to better exploit the native distributed nature of the
immune system approach, Levin et al. (2018) effectively demonstrated the capability of T-Cell
detectors to operate efficiently on high dimensional data with a high level of sensitivity and
specificity (Figure 3).
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Figure 3. Application of negative selection for anomaly detection on a sample dataset. Upper Left:
Nausea counts of the WSARE dataset as an example dimension. Upper Right: The generated detectors
were applied to the second year of the dataset. A true anomalous outbreak occurs at day 277 and is

shaded pink. The size of each data point represents the number of detectors that overlap the point. Lower
Left: The alarm rate for each day of the test set, analogous to the size of the data points in the upper right

plot. Right: The ROC curve for the generated alarm rate as compared to the true outbreak.
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3.4. Biosurveillance Network Topology

Flanagan et al. (2018) discussed alternative topologies for biosurveillance information processing
networks based on two well-understood biological analogs. Both ant colonies and adaptive immune
systems function through distributed search and processing paradigms. The non-centralized
processing and sharing of information enables both archetypal systems to respond more quickly to
local events, and to effectively segregate spatiotemporal regions of disturbance from the unaffected
portion of the network, ensuring that the gross behavior of the network is largely maintained while
localized issues are isolated and resolved efficiently. Applying this motif to biosurveillance, they
postulated that shorter distance information flow, and smaller effective areas of decision effect could
similarly promote a more efficient national biosurveillance system, where nascient outbreaks are
detected and addressed locally, before they can spread long distances. Focusing on immune systems,
Flanagan, et al. proposed that the T-Cell-based biosurveillance anomaly detection and data fusion
concepts described by Levin and Finley (2007) and Levin et al. (2008) could scale to a corresponding
conceptualization of a regionalized biosurveillance network system patterned after the lymphatic
system. In the lymphatic system, T-Cell signals from adjacent tissues are monitored, and additional
adaptive cells are dispatched to the points of inflammation from which the T-Cell signals emenated.

Extending the analogy of Flanagan et al (2018) to the US biosurveillance system, two end member
cases can be considered (Figure 4). In the centralized topology, information processing and decision
processing are focused at a single location, such as at the CDC in Atlanta, GA. Alternatively,
information processing and interpretation could be distributed throughout the country, specifically
at local, county, or state health departments, thus speeding and simplifying response to locally-
derived disease outbreaks. Operationally, the national biosurveillance network functions as neither
end member example, but as some hybrid model, with budgets and available expertise often
dictating whether local or centralized resources are used. Flanagan's contribution to the discussion
is to cite numerous examples from natural systems showing that biosurveillance systems tending
toward the distributed pole could be expected to be more responsive to local needs and more
cabable of rapid response than centralized topologies which would presumably be more automated
and thus less expensive to provision and operate.

Figure 4. Conceptual models of centralized and distributed national biosurveillance networks.
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Beyeler and Finley (2018) presented a mathematical framework to quantify the relative advantages of
distributed and centralized biosurveillance network topologies. The framework examined the
relative importance of speed of detection and efficiency of communication, which favor centralized
topologies versus quick respone and use of local expert knowledge to reduce false-positive
detection. By considering the virulence of the pathogen and also potential for a disease propagation
pathway to exploit air travel to rapidly spread, the mathematical framework enabled biosurveillance
network topologies to be approached from a pathogen-specific standpoint, thereby suggesting
alternative topologies that are optimized to protect public health or provide bio-weapon attack alerts
for specific classes of disease causing agents. Initial model runs on synthetic data reported by
Beyeler and Finley (2018) should be followed up shortly by model runs on curated natural
biosurveillance data, thus enabling a more rigorous evaluation of the biologically-based concepts
proposed by Flanagan et al. (2018).
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4. NEURAL NETWORK ANOMALY DETECTION AND DATA FUSION

Concurrently monitoring multiple data sources to derive reliable alerts for potential disease
outbreaks or CB events can make biosurveillance much more accurate and sensitive. However
disparate biosurveillance data streams often differ in value type, update frequency, signal-to-noise
ratio and timeliness. Both the value and the difficulty of generating unambiguous event alerts from
noisy, disparate data streams is anticipated to grow in the near future as the number, complexity and
size of new online data sources will increase markedly.

Biosurveillance detection systems monitor a wide range of near-real-time data feeds to identify
indicators of disease outbreak or CB activities. These feeds can include social media posts or
searches, hospital admission data, meteorological conditions, population density and movement,
environmental sensors, laboratory test results, and public health reports among others. Inherent in
the collection and processing of multiple concurrent data feeds is the assumption that diverse
sources can provide a more reliable indication of a true outbreak and support the resolution of
ambiguous contradictory indicators that could result in false detection. Thus, the proposed research
and development effort defines the problem to be the generation of defensible alerts based on the
combined information from disparate data flows while concurrently minimizing possible false
indications.

4.1. Traditional Methods

Biosurveillance systems currently in use apply traditional statistical methods to identify anomalous
data values that could indicate a disease outbreak or bioweapon attack. These statistical methods are
well understood and provide consistent performance across different data types. Statistical data
fusion methods have been explored for for use in biosurveillance, but to date, few production
biosurveillance systems incorporate data fusion capabilities.

4.1.1. Anomaly Detection

Biosurveillance systems rely upon algorithms to recognize time-series data points whose values are
anomalously elevated relative to preceding data points; it is often interpreted as indicating that a
disease outbreak in occurring. Anomaly detection algorithms in current use vary in complexity from
simple sliding-window running-average calculations to sophisticated time-series statistical and
machine learning approaches. These conventional statistical multivariate anomaly detectors have two
primary limitations: (1) they encode temporal patterns via auto-regressive and seasonal methods,
which are not very useful if temporal patterns of outbreaks change from year to year; and (2) they try
to relate various data streams via Gaussian models, which are not always appropriate (e.g., in case of
low counts, where Poisson distributions are preferred).
A few statistical biosurveillance anomaly detectors have attained relative prominence. Cumulative
Sum statistics (CUSUM) and Exponential Weighted Moving Average (EWMA) are the most
common biosurveillance anomaly detection methods in current use (Shmueli and Burkom, 2010).
These methods are widely available in the Surveillance R package (Höhle, 2007). CUSUM is a
control chart method that displays the cumulative sums of the deviations of each sample value from
the anticipated target value. EWIVIA differs from other control chart methods in that it gives less
weight to data points that are further removed in time. CUSUM has been shown to be particularly
useful in error detection for data sets characterized by large changes over an extended period of time
(Han et al., 2010), or for anomalies exceeding one standard deviation unit (de Vargas et al. (2004))
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EWMA, on the other hand, was better at detecting anomalies not exceeding 0.5 standard deviation
units, especially if the occur early in the time series. CUSUM and EWMA will be compared with our
RNN-based anomaly detector when we assess its performance.

4.1.2. Data Fusion

Electronic biosurveillance systems have traditionally relied upon standard statistical data fusion
methods to integrate data streams. Multivariate control charts in various forms are often applied to
multiple biosurveillance data streams (e.g. Fricker, 2007). Multivariate space-time clustering has
shown the capacity to incorporate spatial and temporal inhomogeneity in multivariate
biosurveillance data (Burkom, 2003; Kulldorff et al., 2007). Lau et al. (2012) demonstrated that
dynamic linear models can improve situational awareness of seasonal influenza activity from
multiple data streams.
More sophisticated fusion approaches specifically tailored to biosurveillance have been reported but
have yet to be incorporated into production systems including, for example, Bayesian networks
(Mnatsakanyan et al., 2009; Burkom et al., 2011). Corberán-Vallet (2012) reported improved
consistency among incidence-count data sets by sophisticated Bayesian statistical models.
Multivariate analysis based on generalized branching process methods were reported by Paul et al.
(2008) to achieve improved results for influenza and meningococcal disease in Germany. Schiöler
and Frisen (2012) derived a maximum-likelihood estimator to underpin a generalized-likelihood
multivariate detection method which was shown to be robust across multiple data streams
incorporating spatial variability for influenza outbreaks in Sweden. Ray et al. (2012) demonstrated
that Bayesian fusion of disease case counts together with spatial and temporal information
significantly improved the sensitivity of outbreak anomaly detection compared to depending solely
on case counts.

4.2. Biosurveillance Challenges

The existing statistical methods cited above have been shown to generate indicators of disease
activity from isolated multivariate biosurveillance data sets. However, existing methods lack
important features needed to effectively extract consistent actionable outbreak signals across the
expected range of potential input data streams. The factors we assert to be required for a general-
purpose production-level biosurveillance data fusion system include:

• Utilization of multiple data types. Ideally the system should incorporate integer count data,

categorical data, and real-valued sensor data.

• Resolution of temporal lags in correlated signals between data streams

• Resolution of missing or aperiodic data within time-series streams

• Recognition of historical patterns in multivariate data streams that have been associated

with prior outbreaks, and utilization of these patterns in weighting potential alert statuses

• Incorporation of maximal information content in the data streams, which has historically

been precluded by the existing options of early or late fusion.

4.2.1. Multiple data types

While simple case-count data have traditionally served as the basis for biosurveillance outbreak
detection, modern systems should a wide range of data types for analysis. Fusing multiple data
streams of the same basic type (e.g. integer case counts) can be accomplished with standard
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methods. Consistent integration of streams of fundamentally different types (e.g. real-value and
categorical) into an alert assignment weighting is not well-handled by existing methods

4.2.2. Temporal lags

Different data streams exhibit distinct temporal signatures for correlated events. For example, Ray
and Brownstein (2013) demonstrated that the time-series response of HealthMap news item counts
has a different characteristic response profile than the epi curve of the underlying disease incidence.
The news-based HealthMap feed rises very steeply and peaks while the corresponding case count
data are still building. As the news value of the potential outbreak wanes, the HealthMap activity
level drops rapidly, while the incidence counts are still rising toward a peak. Ray and Brownstein
implemented sophisticated statistical time-series smoothing procedures to overcome this particular
issue, but similar systematic lags among different data feeds could presumably lead to the assignment
of multiple offset peaks to separate stimuli rather than to a single event inducing different
characteristic temporal signatures along different data channels.

4.2.3. Missing data

Standard biosurveillance fusion methods, as well as those used in other domains such as battlefield
situational awareness, often rely upon regular coordinated updates from multiple data feeds, often at
hourly or daily intervals. However, electronic health records (EHR), hospital admission data, and
diagnostic laboratory results are often posted as they become available, leading to irregular data
frequency with substantial and unpredictable gaps between reported readings. Effectively merging
information from multiple irregularly-updated or aperiodic streams with strictly periodic update data
feeds such as hourly temperature or absolute humidity feeds is analytically challenging.

4.2.4. Pattern Recognition

Traditional biosurveillance data fusion methods often rely upon comparison of a composite value to
fixed thresholds to recognize an anomaly leading to the issuance of an outbreak alert. This naive
approach does not make use of information gleaned from prior outbreak incidents which could
indicate complex patterns among the monitoring data feeds prior to or coincident with the outbreak.
This inability to learn from prior experience prevents detection of both seasonal disease patterns
and signatures of the more rare historical outbreaks using present methods.

4.2.5. Fusion Order

Methods used to integrate data streams can be grouped into two categories, early fusion or late fusion.
Each of these approaches can have substantial advantages and drawbacks.
In early fusion approaches, disparate data feeds are amalgamated into a single indicator and the
subsequent anomaly detection determination is applied to that combined value. This approach
enables the data streams to be combined using methods that are optimized to exploit synergistic
properties of the incident data streams. However, since anomaly detection operates on the
combined data feed, early fusion methods can preclude choosing analytical processes specifically
tailored to extract maximal information from each separate data feed.
In late fusion, data feeds are analyzed for anomalies individually. Anomalies noted through extensive
analysis of single feeds are then evaluated at the fusion operation through, for example, logical AND
or OR operations to determine if the multivariate input values require that an outbreak alert be
issued. The advantage of late fusion is that analytical algorithms can be specifically tuned to best
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handle individual data feed characteristics. The major drawback is that subtle correlated indicators
which may exist among data feeds cannot be determined.

4.2.6. Deep Learning Alternatives

Recent research in AI has produced sophisticated mathematical methods with the potential to
address the outstanding issues in data fusion for biosurveillance noted above. Specifically,
multimodal deep learning (MDL), the innovative state-of-the art approach to multivariate data
fusion, has the potential to greatly improve sensitivity, specificity and timeliness of outbreak
detection from multiple biosurveillance data streams. This section provides descriptions of
technologies behind MDL, and describes examples of applications of constituent methods to
difficult analytical problems.

In contrast to the traditional statistical data fusion methods discussed previously, machine learning
(ML) methods enable computers to learn from data and make data-driven decisions and predictions
without being specifically programmed to address those particular decisions. Machine learning
systems are trained by exposing them to large quantities of data. From these training data, ML
systems can learn to discriminate patterns and relationships that are often quite subtle. Once trained,
ML systems can evaluate new data based on learned relationships and patterns to rapidly categorize
the new data or to predict missing values.

Recently a family of machine learning methods known collectively as Deep Learning (DL) have
shown remarkable ability to detect and operate upon subtle patterns and relationships within
complex data. Deep learning systems have revolutionized image processing, language translation,
autonomous vehicle guidance and many other fields over the past three years. While DL has not to
date been applied to biosurveillance data fusion, unique features of DL systems designed for image
processing and natural language processing can be repurposed to provide new and powerful
capabilities for the generation of improved outbreak detection alerts from multivariate
biosurveillance data feeds.

Deep learning relies upon Artificial Neural Networks (ANN), software structures that abstractly
mimic nerve cells and their connections. While ANNs have been known and used for decades,
recent advances in computational power and the availability of large training data sets have catalyzed
development of very large networks capable of encoding complex relationships and patterns.

4.2.7. Sequence Analysis

Many of the best known advances in Deep Learning have involved discovery and categorization of
patterns in images and videos using an architecture known as convolutional neural networks or
CNNs. While CNN's are flexible and able to be applied to many different problem domains, they
are not well-suited to biosurveillance data fusion due to their reliance on fixed size inputs.
Biosurveillance data streams are typically time series and are, by nature, of variable length.
Recurrent neural networks (RNNs) are particularly well-suited to problem domains characterized by
input data of indefinite size such as language. RNNs have recently been applied to language
translation, lip reading, and speech-to-text conversion (e.g. Socher et al., 2014). While the Natural
Language Processing (NLP) tasks addressed by RNNs may eventually have application to
biosurveillance, it is RNNs' ability to detect patterns in time-series data that is most relevant to
biosurveillance applications.
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Although RNNs have been applied in a variety of challenging pattern recognition and time-series
analyses, numerical instabilities can limit their utility for real-time mission-critical applications.
RNNs use feedback loops within their architecture to recursively improve the quality of weights
calculated through the iterative optimization step. The recursive processing that characterizes this
architecture can lead to vanishing gradients or exploding gradients within the network optimization
processes, preventing convergence. Additionally, the recursive nature of RNNs limits the ability of
these networks to maintain long term memory of prior states to at most two update cycles,
decreasing utility for many time-series tasks working to identify patterns in data based on examples
that were previously encountered.

4.2.8. Time-series Analysis

Extensions to basic RNN topologies have produced a powerful tool for mission-critical time-series
analysis. Long Short-Term Memory (LSTM) networks are a modification to traditional RNNs which
simultaneously resolve numerical instabilities while greatly extending the ability of the network to
incorporate long-term dependencies into pattern recognition tasks (Hochreiter and Schmidhuber,
1997). LSTMs have proven very useful to a wide variety of tasks that require processing sequences
of data. Vohra et al. (2015) use deep belief networks coupled with LSTMs to analyze musical
sequences. Zhao et al. (2016) applied LSTM networks to monitor the health of electrical motors in
factory settings and reported cases where the monitoring permitted timely replacement prior to
failure. LSTMs were trained on the actions of first responders during crises and provided timely
guidance to method selection for unfolding events (Nguyen et al., 2016). Applying LSTMs to
electronic health records allowed Choi et al. (2016) to reliably predict the propensity for heart failure
in patients with far greater precision than standard statistical approaches. Brownlee (2016)
demonstrated that LSTM analyses can simultaneously predict observed periodicity and non-
stationarity in airline passenger census data in spite of the limitation of very small training data sets.
As this brief discussion of LSTM-enabled analyses demonstrates, deep learning-based time-series
techniques have rapidly eclipsed traditional statistical approaches for investigation of challenging
data sets.

4.2.9. Anomaly Detection

The power of deep learning methods, particularly RNN-LSTM network analysis, has been
successfully applied to anomaly detection (AD) across a range of domains. LSTM-based AD
approaches are characterized by improved performance in noisy data settings and the ability to
resolve faint anomalies. George and Huerta (2017) applied deep learning methods to detect subtle
signatures of black-hole collisions in electromagnetic cosmic background noise. This deep-learning-
enabled anomaly detection example is particularly noteworthy in that the authors used neural
networks to both detect the anomaly and to classify the signal regarding the probable mass of the
black hole pair emitting the signal. Malhotra et al. (2015) exploited the unique capability of LSTM
networks to concurrently capture both long-term and short-term periodicities in complex data
streams, periodicities that enabled the reliable detection of previously undocumented anomalies in
reference time-series data sets from space shuttle telemetry, electrocardiograms, and engine sensors.
An extensive study of LSTM-based anomaly detection by al Dosari (2016) demonstrated
conclusively that unlike traditional AD methods, LSTM can detect not only anomalous point values,
but also anomalous complex patterns in time series data.
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4.2.10. Data fusion

Recent work on deep learning data fusion approaches have shown the promise of deep learning
methods for integrating disparate data sets. Foundational work by Ngiam et al. (2011) clearly
demonstrated the potential gain in information content from use of deep learning methods for
multivariate data streams. Using audio and video data streams to automate lip reading, Ngiam et al.
showed that while training a neural network with multimodal information provides rapid, consistent
classification of speech patterns, this novel method also enables reliable classification performance
when only one data feed was available. Wu et al. (2015) similarly showed that data fusion systems
composed of multiple deep neural networks consistently outperformed traditional canonical
correlation fusion methods on video and audio feeds. Ma et al. (2015) showed how multimodal deep
learning neural networks can reliably categorize images and their representative captions. Akita et al.
(2016) use deep LSTM networks to fuse financial time series data consisting of numerical and textual
information.

4.3. Applying Deep Learning to Biosurveillance

As our discussion of relevant literature shows, multimodal deep learning (MDL) approaches to time-
series analysis, anomaly detection, and data fusion have rapidly exhibited the potential to eclipse
statistical-based approaches in a wide variety of domains. Additionally, MDL approaches can directly
address identified outstanding issues with biosurveillance data fusion.

4.3.1. Missing and Aperiodic Data

While traditional biosurveillance data fusion methods struggle with missing data and data feeds with
differing granularity, recent studies demonstrate that MDL approaches have the potential to address
this biosurveillance issue directly. Lipton et al. (2016) adapted standard LSTM architectures to
enable adaptive data imputation for multivariate time-series electronic health record data feeds to
resolve significant gaps in individual inputs. Che et al. (2016) reported on architectural modifications
to standard LSTM-type networks to specifically optimize performance in patient records with
significant missing data.

4.3.2. Early vs Late Fusion

A recognized limitation of traditional data fusion methods is that either of the fundamental
approaches, early fusion or late fusion, imposes limits on the eventual quality of the combined data
product. Recent advances in MDL data fusion methods have demonstrated the potential advantages
of hybrid fusion approaches which overcome the recognized limitations of either early or late fusion.
Gandhi et al. (2016) devised a unique MDL architecture with independent pathways which apply
early fusion to temporal data streams, and late fusion to non-temporal values resulting in greatly
improved performance in image captioning processing.

4.3.3. Correlated Temporal Lags

Indicators of potential outbreaks can occur at different times in individual biosurveillance data
streams. Statistical methods struggle with correlating these lagged signals and assigning them to a
single event. MDL data fusion methods can outperform conventional methods on multivariate
temporal lags. Supervised training of LSTM networks with specific historical examples where lagged
indicators exist can produce default classification behavior that routinely groups these lagged signals
into a single event. While this feature of the MDL data fusion approach has not been reported in the
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literature, empirical tests to establish its feasibility are straightforward given a representative suite of
biosurveillance data.

4.3.4. Pattern Recognition

While traditional anomaly detection methods are largely limited to recognizing novel outbreaks,
MDL methods can concurrently recognize both the signatures for novel outbreaks and specific
signatures for previously encountered outbreaks. MDL-based anomaly detection operates on a
neural network trained by exposure to previously recorded data. By feeding the neural network
labeled historical data in which example outbreaks are noted, the system learns to detect distinctive
patterns in incoming data in addition to deviations of incoming signals from a threshold. This
constitutes a principal potential advantage of MDL-based anomaly detection over traditional
statistical methods.

4.3.5. Summary

Multimodal deep learning methods exhibit tremendous potential to improve routine multivariate
monitoring of electronic data for indications of disease outbreak or CB events. Deep learning AI
approaches have revolutionized natural language processing, time-series data analysis and
multivariate data fusion. The powerful capabilities developed in these divergent domains can be
leveraged to provide similar improvements in routine biosurveillance monitoring.

4.4. Experimental Evaluation of Deep Learning Approaches

A prototype biosurveillance data fusion application based on Multimodal Deep Learning (MDL) was
implemented and tested. The application monitors multiple electronic data streams and generates an
alert when patterns within the data streams indicate likelihood of a disease outbreak or CB event.
Data streams monitored by the application can be of various types, update rates and signal-to-noise
ratios. The application was built upon a Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) architecture, capable of learning characteristic patterns in multimodal biosurveillance
data streams which indicate anomalies of interest. Initial implementation has focused on fusion and
anomaly detection within simple pairs of data streams (e.g. integer case counts and real-valued
sensor feeds). Rigorous integrated validation of the fusion and anomaly detection processes to
ensure that system performance measured by standard metrics is maintained as additional, and more
complex, synthetic data streams are incorporated has not yet been performed. Further testing and
tuning of the MDL data fusion system incorporating biosurveillance data could ensure that design
goals and performance benchmarks are maintained with progressively more challenging field data
feeds. Eventually, standardized biosurveillance data streams should be evaluated with the prototype
application, with performance metrics evaluated to ensure required performance on production level
data. Once acceptable performance is demonstrated on the system using data feeds representative
of national biosurveillance data feeds, a prototype port of the application capable of real-time
analysis on real-time biosurveillance data feeds could be be implemented as further proof of
concept.

4.4.1. Data Fusion Approach

MDL data fusion systems have been demonstrated to provide robust and efficient integration of
disparate data types for a range of domains. However, application of this state-of-the-art data fusion
method to biosurveillance data feeds has not been reported in the literature. Thus adaptation of
published MDL data fusion methods to the unique characteristics and limitations of biosurveillance
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data constitutes a significant research and development component of SNL's biosurveillance
research to date

Conceptually, the MDL data fusion system uses LSTM-RNNs to combine multiple concurrent data
feeds into a single signal or decision variable that can then be mapped to the likelihood of a disease
outbreak or CB event. As with many machine-learning-based analytical processes, use of these
LSTM-RNNs for data fusion incorporates two distinct phases: training and classifying. For
biosurveillance data fusion, training entails feeding large historical archives of the data feeds to the
application before using the networks to perform actual data fusion. During the training operation,
the networks calculate specific numerical weights and non-linear transformations that encode
variational patterns observed within the training data set. For the biosurveillance data fusion
training task, supervised learning approaches were applied, labeling each item in the historical time
series data feeds as to whether they occurred during an active disease outbreak or CB event or not.
This labeling of historical example data feeds enables the neural network to differentiate patterns in
the combined data sets that indicate disease outbreak from patterns that do not. Once training was
complete, the neural network eventually was applied to classify synthetic real-time composite data
feeds to determine whether the unlabled inputs more closely match the learned features indicative of
an active disease outbreak or the features indicative of a non-outbreak condition.

4.5. Experimental

Two variants of MDL data fusion approaches demonstrate the potential of deep learning methods
for resolving biosurveillance issues common with single-channel decision support, or traditional
statistical methods of data fusion

4.5.1. Resolving Temporal Offsets

A prototype of an MDL data fusion application is presented to demonstrate the capabilities of this
innovative approach to generate meaningful outbreak alerts from multiple data streams. The
structure of the example LSTM-RNN neural network application is shown in the schematic
illustration in Figure 5. The example system is composed of four layers: a three node input layer, a
five-node densely connected LSTM layer a 5 node hidden layer and a single node sigmoid output
layer. The decision threshold of the final output layer was set at 0.5 to provide unbiased prediction
between two classes. The network was trained using the Adam optimizer with a learning rate of
0.001 and a binary cross-entropy loss function. The network used a batch size of 100 and was
trained for 100 epochs for this example.

Two multivariate synthetic data sets were constructed for this example, each consisting of three
separate inputs: clinic visits, news report counts, and day of the year. The system was trained for
10,000 days of synthetic data with known outbreak periods. A test data set consisting of 1,000 days
of clinic visits and news-report counts was constructed to test how well the neural network predicts
an outbreak and fires outbreak alerts.

Results of the example data fusion run are shown in Figure 6. Notice that news report counts and
clinic visits exhibit a temporal lag as described by Ray and Brownstein (2013) where the news counts
peak and decay before the clinic visits increase. The neural network accurately predicts two
outbreaks, (Day 350-400 and 600-680). Notice that temporal lag between the data peaks is not
incorrectly interpreted to represent two separate outbreaks Similarly, the peaks that occur in the
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daily clinic visit data set at around Day 100 and Day 780 do not trigger an alert because a correlated
peak in news report counts was not present. This trivial example demonstrates that MDL data
fusion systems exhibit reasonable behavior on test datasets, and easily handle the temporal lag issue
which challenges traditional statistical data fusion algorithms.
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Figure 6. Schematic diagram of
MDL data fusion
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A recent study demonstrates that multimodal data fusion using recurrent neural networks (RNNs)
can improve prediction of patient outcomes from hospital emergency department admission data.
The study examamined the predictive accuracy of a series of text classification methods on a
deidentified biosurveillance dataset. Next, highest performing text classification method
incorporated into a multimodal data fusion configuration, and the quality of the data-fusion derived
prediction was compared to previously determined metrics.
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4.5.2.1. Biosurveillance Data Set

This study relied upon a deidentified dataset of approximately 1,130,000 emergency department
visits in New Mexico during 2016. The dataset was provided by the New Mexico Department of
Health Epidemiology and Response Division. Each entry in the data set consisted the chief
complaint that each patient reported to upon admission to the ED. Chief complaints are typically
short text passages describing what the patient told the admitting ED clerk or nurse. The chief
complaints are typically 8 to 20 characters, often with medical jargon and abundant abbrievations
and misspellings.

Some typical chief compaints from the New Mexico data set include:

• 16 YR WCC

• EAR

• HEROINE WITHDRAWL

In addition to chief complaints each entry in the New Mexico data set had one or more ICD-10
diagnosis codes assigned to the patient when they were either dismissed from the ED or admitted to
the hospital. Additionally, the data set provided coded values to identify the hospital at which the
patient presented.

4.5.2.2. Single Mode Text Classification

The dataset was randomly separated into a training set (80% of the data) and a test set (20% of the
data). The investigation consisted of determining the accuracy of six natural language processing
(NLP) algorithms in predicting a patients discharge diagnosis ICD-10 code based on the chief
complaint that the patient provided upon admission to the ED.

Results of the text classification investigation are summarized in Table 1. The table shows classifier
accuracy for eleven different text classification methods: term frequency (TF), term frequency-
inverse document frequency (TF-IDF), single value decomposition/latent semantic analysis
(SVD/LSA), random forest, recurrent RNN with no text embedding (Free), random word
embedding, word2vec embedding, GloVe embedding, text2vec/long-short term memory (F2V-
LSTM), tweet2vec gated recurrent unit (T2V-GRU), and character to word (C2W). The best
performing classification method of the eleven tested is random text embedding/RNN with an
accuracy Of 0.837 as indicated by the bold font on Table 1.

Predictive performance of a range of text classification approaches was investigated by Scott et al.
(2018) on a much larger chief complaint dataset from New York. Reported results were consistent
with those from the New Mexico data set (Fable 1 and Figures 3 — 4).

4.5.2.3. Multimodal Data Fusion

The "Fusion" rows at the bottom show the improved prediction accuracy possible when facility ID
is added to the neural network classifier. Adding the additional input increases the prediction
accuracy from 0.837 to 0.849. Thus, multimodal data fusion enables greater prediction accuracy
than possible from simple text classification of the chief complaint alone.
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Table 1. Accuracy of predicted discharge codes derived from text classification

Accuracy ROC AUC Avg. RP('

Term Freq. .780 .858 .919

BoW
TF-IDF .751 .856 .921

SVD / LSA .762 .857 .921

Random Forest .782 .879 .934

Free .817

Word
Random .837 .900 .944

word2vec .831

GloVe .833

T2V LSTM .820

Char. T2V GRU .820

Trained C2W .816

FlIsion
Fixed .849 .912 .951

Free .849

The performance of the different text classification and data fusion methods on the New Mexico
data set are shown graphically in Figure 7. Using two other metrics of prediction quality rather than
accuracy, it is apparent that RNNs (orange line) are the best performing single mode classifier,
whereas multi modal data fusion approaches (gray line) are consistently higher performing than any
single-mode method.
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Figure 7. Chief complaint classification performance measured by ROC AUC and PRC.
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4.6. Future Research Directions

While this prototype implementation of a functioning MDL data fusion systemis straightforward,
implementing a pilot-scale application will require careful design and testing of alternative
architectures to determine the most appropriate system. The eventual implementation design and
testing process should investigate the relative performance impacts of different ways of structuring
the neural networks which underlie the system. Among the elements to be assessed during system
development are the timing of the data fusion operation and tuning of architectures for specific data
types.

4.6.1. Early vs Late Fusion

A fundamental design decision in developing a pilot-scale MDL data fusion system for a given
domain is whether to combine the data feeds before the neural network modeling or after (Figure 8).
As discussed in detail earlier, early fusion entails concatenating multiple data feeds into a single
composite representation which is then input to a single neural network for processing. Late fusion,
on the other hand, typically inputs data from each individual feed into a separate neural network
component for learning and classification. The resulting outputs of these individual source-specific
neural networks are then combined to generate a consensus indicator of whether or not the
combined signals indicate an outbreak. Recently, researchers have proposed hybrid fusion systems
that incorporate the advantages of both early and late fusion in the final anomaly detection or
decision classification.
Given the potential impact of the selection of early, late or hybrid fusion architecture, further system
design should incorporate test implementations of each type of fusion system, followed by rigorous
testing on data sets to determine the configuration yielding the best performance for a given input.
These initial exploratory design evaluations will help ensure that the fusion architecture selected for
inclusion in the final system is well-vetted for the biosurveillance data environment.

Input Data Concatenate D Transform

Figure 8. Schematic Illustration of Early, Late and Hybrid data fusion.

4.6.2. Tuning for Specific Data Types

A planned pilot-scale data fusion application will use LSTM-RNNs to handle the data fusion and
anomaly detection actions. These networks are configurable in terms of the number of neural units
within each network and how they are interconnected. In addition to these network-specific
configuration decisions, the LSTM-RNNs are characterized by a number of hyper-parameters,
settings which are used to tune the networks for a given function. It is expected that LSTM-RNNs
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for different input data types will need to be configured and tuned separately to ensure optimal
performance of the network on that data set. As part of the initial design work of this effort,
systematic exploration of the effects of alternative network configurations and hyper-parameter
settings will be generated for each specific type of input data to be incorporated into the system, e.g.
integers, floating point numbers, categorical variables, and unstructured text.
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5. DISCUSSION

Automated electronic biosurveillance holds great promise to improve both public health response to
natural disease outbreaks, and minimizing potential casualties from a bioweapons attack. In both
cases, however, effective monitoring of data streams to reliability generate timely and accurate
response to natural disease outbreaks and potential bioweapon attacks face a large number of
technical, administrative and policy challenges. In addition to algorithmic anomaly detection and
data fusion challenges addressed in this report, collecting raw data on a national scale, aggregating
data from across large geographic and political areas, and archiving and storing vast number of
records needed is a monumental task. As an outgrowth of the Anthrax attacks in the United States
in 2001, the US government has invested much time and money into designing and constructing a
comprehensive national system to monitor hospital emergency department (ED) data, first under
the guise of BioSense, and subsequently as part of the NSSP program. As of November, 2018 the
national biosurveillance program in the United States collects a range of information ED visits from
over 80% of the nation's hospitals on a near-real-time basis and, rapidly compiles curates the data in
electronic formats amenable to algorithmic processing needed to quickly and accurately detect
indicators of anomalous ED activity indicative of disease outbreak from natural or adversarial
casuse. However, the size of the assembled near-real-time biosurveillance dataset create unique
challenges for anomaly detection routines, as do the inherent noise in the multichannel data.

The study documented in this report has explored a family of data analytics techniques with
potential to improve the performance of the existing national biosurveillance system in the United
States. Based on the assumption that biological and physiological processes must contend with
similarly large and noisy information streams, the analytical approaches that were investigated in this
study borrow heavily from natural systems in their design and implementation. The first family of
technicques explored in study are modeled after processes that the human immune system uses to
detect potential dangerous pathogens and marshall defenses to fight of the potential infection.
Similarly, deep learning neural networks adopt motifs from the human nervous system to enable
uniquely powerful methods to identify anomalous values in single and multiple data channels that
may indicate disease outbreaks. Applying these bio-inspired methods to national biosurveillance
represents an innovative approach to define potentially superior analytics methods that could
potentially generate much more actionable information on nascient outbreaks, and thus improved
return on investment on the national biosurveillance infrastructure.

5.1. immune system analogs

Immune-system based anomaly detectors and data fusion systems described in section 3 possess
characteristics that make them particularly intriguing for use on production biosurveillance systems.
The immune-system anomaly detectors are by design specifically tuned to detect novel pathogens.
Mimicking processes within the thymus gland where T-cells are generated, the synthetic T-cell
anomaly detectors described by Levin and Finley (2017) learn to ignore signals they have seen many
times before and to specifically fire when an anomalous signal is detected. Thus the inclusion of T-
cell-analog based anomaly detectors in national scale biosurveillance systems could serve to provide
an analytical method capabile of detecting novel pathogens, either naturally emerging or specifically
engineered as weapons. Since truly robust national biosurveillance would require the capability to
trigger on novel pathogen signatures as well as warning of expected seasonal outbreaks that are more
virulent than anticipated, an ensemble of immune-system based detectors combined with traditional
statistical methods could potentially improve the coverage of the national biosurveillance system to
cover both prototypical use cases.
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Additionally, immune-system based anomaly detectors are natively multi-channel. As demonstrated
by Levin and Finley (2018a), the T-cell analog anomaly detector can operate on a large number of
concurrent data feeds, each of which can be a different data type, e.g. numeric, integer, categorical or
indicator. This feature is not available with traditional statistical anomaly detectors. For example,
the most-used biosurveillance anomaly detection algorithms CUSUM and EMWA are strictly
applicable to single channel data streams. Thus the T-cell analog anomaly detectors could be
expected to adaptively operate on as many data channels are available for a given region, exploiting
the enhanced accuracy potentially available when additional channels are available, but still
producing consistent detection performance in areas where datasets are more sparse.

As shown by Flanagan et al. (2018) immune system concepts can also provide useful analyses
beyond anomaly detection that are applicable to national biosurveillance. Following the biological
analogy that naturally occurring T-cells have properties useful as biosurveillance anomaly detectors,
Flanagan postulated that examining mechanisms used by the immune system at a larger scale could
likewise inform biosurveillance. In particular, the immune system is functionally organized with
distributed hubs of biochemical processing localized in throughout the body in a network of lymph
nodes. From an abstract view, lymph nodes serve as hubs of information processing, caching
antibodies and directing them to respond to signals received from T-cells in remote tissues. The
authors argued that an adaptive national biosurveillance systems could best be thought of as (1)
mimicking T-cells in the function of biosurveillance anomaly detection algorithms, and (2)
mimicking the network of lymph nodes when considering how data collection, anomaly detection,
and response are organized into municipal, county and state public health departments, receiving
information specific to their spatio-temporal portion of the larger system and using this local
knowledge to instantiate effective control actions. This work cited recent complex system
approaches to better understand immune systems and ant colony foraging behavior could be
leveraged to derive useful measures of the relative effectiveness of distributed information
processing relative to more centralized processing in biosurveillance

Extending this analogy, Beyeler and Finley (2018) demonstrated a mathematical modeling approach
to explore the trade-off-space between a highly distributed biosurveillance system, with disease
detection and response analysis and response concentrated at local public health offices vs a
centralized biosurveillance system where all available public health is funneled to a central data
collation, analysis and response facility. Initial model runs showed the relative trade-offs between
speed of detection, system-wide sensitivity and specificity, and quality of information provided to
epidemiologists responding to a detected event. Early results show that each prototypical
biosurveillance network topology has particular advantages. Locally focused networks excelled in
rejection of false positive indications, since local cumulative historical knowledge could be applied to
better understand that some initial anomaly indicative of a small outbreak may not be likely to
spread explosively, and thus best be controlled with standard response measures. Models of the
centralized systems were found to leverage large geographic scale to alert local public health nodes
of distal outbreaks elsewhere in the network, enabling the local public health nodes to implement
heightened awareness and rapid response at first sign of spread. The best performing configuraton
was modeled as a compound network which incorporated significant local resource deployment
along with hierarchical central information distribution activities. Further model calibration activities
are ongoing to enable early parameter study results to be validated against large scale biosurveillance
data.
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6. CONCLUSIONS

This report has documented novel approaches to improving national-scale electronic biosurveillance
systems. Noting specific shortcomings in current biosurveillance system performance such as poor
response to noisy datasets and non-stationary baselines, two general families of candidate
approaches were identified, implemented, and tested against currently used methods. The evidence
and interpretations presented I this report suggest strongly that both general approaches identified
should be pursued to determine their feasibility for production biosurveillance applications.

6.1. Immune system analogs

The cited publications on immune system analogs for biosurveillance (Levin and Finley 2016, 2017a,
2017b; Levin et al. 2018; Flanagan et al. 2018; Beyeler and Finley 2018) paint a compelling case for
additional research on the feasibility of applying such methods to national scale biosurveillance.

T-cell mimicking anomaly detectors respond reliably to spiked synthetic biosurveillance datasets,
often outperforming standard statistical detector performance, particularly in difficult-to-resolve
instances of nonstationary baselines and high noise content (Levin and Finley 2016, 2017a, 2017b).
Additionally this family of detectors is natively multichannel and multimodal, thus serving not only
as a potentially superior approach to single-channel anomaly detection, but also as a superior data-
fusion method. This is ability to simultaneously address both anomaly detection and data fusion
deficiencies is particularly compelling, given that a recent review on pressing research needs in
biosurveillance noted that improving data fusion capabilities of production biosurveillance systems
remains a pressing need and recommended as a top research priority (Hopkins et al. 2017).

Pioneering system studies by Flanagan et al. (2018) and Beyeler and Finley (2018) demonstrate the
potential utility of considering the design and operation of a large scale adaptive biosurveillance to
be a complex adaptive system, and thus amenable to a formidable range of analytical and simulation
tools. Flanigan et al. (2018) showed the potential applicability to biosurveillance of prior studies on
ant foraging behavior and lymph node networks as exemplars of distributed information and
decision making frameworks which operate according to well-understood priniciples.

The mathematical modeling framework developed by Beyeler and Finley (2018) shows promise in
providing quantitative guidance to design and operation of large scale biosurveillance systems. By
modeling the effects of distributed vs centralized information flow and decision making on the
ability of biosurveillance systems to detect evidence of potential disease activity by balanced
application of the subject matter knowledge of public health practitioners in individual local
jurisdictions along with the efficiency and broad global awareness that centralized resources provide.

6.2. Deep Neural Networks

This study applied the rapidly developing techniques of deep neural networks to several pressing
problems in biosurveillance (Levin and Finley 2017c, 2018c, Lee et al. 2017 2018). In addition to
single channel anomaly detection, multimodal data fusion and text classification were investigated.
In each case, deep neural networks, specifically long-short term memory (LSTM) and gated
recurrence unit (GRU) recurrent neural networks (RNNs) performed at least as well as standard
methods, and often far exceeding presently used statistical methods. Furthermore, this study
demonstrated that newer, more sophisticated neural network architectures such as time-aware
recurrent, attention, and wavenet variants of RNNs possess features that may enable even better
performance once rigorously tested on biosurveillance data sets.
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6.3. Future Directions

This study has shown that bio-inspired analytical architectures can outperform traditional statistical
methods on objective comparison tests on synthetic and actual biosurveillance datasets. Further
research and development efforts are needed to provide necessary calibration, verification, and
validation studies to confirm that the performance improvements described in this study are
consistent across the range of conditions in which production biosurveillance systems would be
anticipated to function.
Specific recommendations for future work include:

1) Comprehensive testing and evaluation of the algorithms discussed in this report on a wide
range of synthetic and production biosurveillance data sets to further verif and calibrate
(access to sufficient biosurveillance datasets during the course of this study precluded
incorporating this step into the current research)

2) Pilot test algorithms on a high-volume dataset equivalent to the national biosurveillance feed
to test algorithms for scalability

3) Identify opportunities to perform anomaly detection and data fusion using the studied
algorithms alongside the existing national surveillance to compare sensitivity, specificity and
timeliness of the novel methods

4) Apply these novel algorithms in domains other than biosurveillance, such as in deriving
longitudinal risk predictions for various ailments from electronic health records from large
medical systems
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APPENDIX A. APPENDIX PUBLICATIONS AND REPORTS

Following is an abbreviated list of some of the publications and reports from which this report was
compiled. These entries include works on immune system and and neural network methods for use
in biosurveillance:

Beyeler W, Finley P. Modeling distributed information processing and decision making in national-
scale biosurveillance systems. Sandia National Lab.(SNL-NM) (No. SAND20XX), Albuquerque,
NM (United States); 2018. (in review)

Finley P, Levin D, Tutorial on Natural Language Processing, Word Embeddings, and Deep
Learning for Health Surveillance International Disease Surveillance Annual Conference, Atlanta
GA, December 5-8, 2016. (Invited)

Finley P, Levin D. Future directions in NLP for Biosurveillance: Text Embedding and Deep
Learning. Presented at 2016 ISDS Annual Meeting, Atlanta GA, December 5-8 2016.

Flanagan T, Beyeler W, Levin D, Finley P, Moses M, Movement and spatial specificity support
scaling in ant colonies and immune systems: Application to national biosurveillance., in
Evolution, Development and Complexity - Multiscale Evolutionary Models of Complex
Adaptive Systems, ed Georgiev G, Smart J, Price M, Martinez C, 2008, Springer (in press)

Hopkins RS, Tong CC, Burkom HS, Akkina JE, Berezowski D, Shigematsu M, Finley PD, Painter I,
Gamache R, Del Rio Vilas VJ, Streichert LC, A Practitioner-Driven Research Agenda for
Syndromic Surveillance, Public Heath Reports, (in review).

Lee S, Levin D, Thomas J, Finley P, Heilig C. Exploring the Value of Learned Representations for
Automated Syndromic Definitions. Online Journal of Public Health Informatics. 2018 May
17;10(1)

Lee SH, Levin D, Finley P, Heilig CM. Chief complaint classification with recurrent neural
networks. Journal of Biomedical Informatics 2018 (in Press).

Levin D, Finley P, Evaluating Text Embedding Schemes for Medical Chief Complaint Classification,
Sandia National Laboratories 1st Annual MLDL Conference, August 9st, 2017

Levin D, Finley P, Time Aware RNNs for Medical Risk Prediction, Sandia National Laboratories
2nd Annual MLDL Conference, August 1st, 2018

Levin D, Finley P, Time Aware RNNs for Suicide Risk Prediction, Workshop on Outcomes
Research in Veteran Suicide, Lawrence Berkeley National Labs, July 30th 2018 (Invited)

Levin D, Finley P. A Spatial Biosurveillance Synthetic Data Generator in R. International Disease
Surveillance Annual Conference, Atlanta GA, December 5-8, 2016. Online journal of public
health informatics. 2017;9(1).

Levin D, Finley P. A Spatial Biosurveillance Synthetic Data Generator in R. Presented at 2016 ISDS
Annual Meeting, Atlanta GA, December 5-8 2016.

Levin D, Finley P. Synthetic data generators for the evaluation of biosurveillance outbreak detection
algorithms. Sandia National Lab.(SNL-NM) (No. SAND2018-11533), Albuquerque, NM
(United States); 2018.
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Levin D, Moses M, Flanagan T, Forrest S, Finley P. Negative selection based anomaly detector for
multimodal health data. In Computational Intelligence (SSCI), 2017 IEEE Symposium Series on
2017 Nov 27 (pp. 1-7). IEEE. (Invited)
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