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The Thermal-Mechanical Failure project conducted in FY 2018 was divided into three sub-
projects:

1. Calibration of the uniaxial response of 304L stainless steel specimens at three temper-
atures (20, 150 and 310°C) and two strain rates (2 x 107* and 8 x 1072 s71).

2. Measurements of the fraction of plastic work that is converted to heat (Taylor-Quinney
parameter) for 304L stainless steel. This fraction is usually assumed to be 0.95 in
analysis because data is only available for a few materials.

3. Comparison of the predicted responses by isotropic and kinematic hardening plasticity
models in a couple of simplified structural problems. One problem is a can crush
followed by pressurization and is loosely associated with a crush-and-burn scenario.
The other problem consists of a drop scenario of a thin-walled cylinder that carries a
cantilevered internal mass.

1 Rate and Temperature Calibration for 304L Stainless Steel.

The objective of this part of the project was to attempt calibration of relatively simple
plasticity models for 304L stainless steel that take into account both rate and temperature
dependece of the material response. A set of material tests was conducted in the Structural
Mechanics Laboratory (Jones, 2018). In these tests, flat uniaxial tension test specimens
with test section nominal dimensions 1.25 in. by 0.375 in. by 0.060 in. were pulled at three
nominal temperatures: 25, 150 and 310°C. The tests at 25 and 310°C were conducted at
two strain rates: 2 x 107* s7! and 8 x 1072 s7!. The test at 150°C was carried out only
at the slower strain rate. The strain in the specimens was measured using an extensometer
with 0.5 in. gage length while a load cell outside the oven measured the load. In addition,
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thermocouples measured the ambient oven temperature as well as the temperature of the
specimen at the edges and center of the test section. See Jones (2018) for more information
regarding the test set-up.

Figure 1 shows the experimentally obtained engineering stress-strain curves at the three tem-
pearatures and slower strain rate in solid lines. Clearly, the strength and engineering strain
to failure decreased with increasing temperature. The decrease in failure engineering strain
is characteristic of this material in the temperature range shown. At higher temperatures,
the engineering strain at failure increases as demonstrated in experiments by Bonnie Antoun
(8343). Also note the slight serrations on the curve at 310°C.
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Figure 1: Measured engineering stress-strain curves for 304L stainless steel at three tempear-
tures and strain rate of 2 x 107 s~! shown in solid line. Results of the calibrated power-law
hardening model are shown dashed.

The start of the plasticity calibration process is to choose a model to represent the hardening
function of the material within a J,, isotropic hardening model. Following previous work
(Corona and Lester, 2017), a power-law hardening model where the hardening function is
given by

H = A+ B(e})", (1)

and A, B and n are the material parameters, seems reasonable. The stress-strain curve at
each temperature with the slow strain rate was fitted separately, so A, B and n are functions
of temperature. The measured temperature showed essentially isothermal conditions during
the tests. The values of the parameters at each temperature were found using a systematic
trial-and-error procedure. The parameter values are given in Table 1, and Fig. 1 shows the
resulting engineering stress-strain curves in dashed line. Since the shape of the hardening
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Table 1: Values of power-law hardening models at three temperatures.
T,°C A, ksi B,ksi n
25 40 189 0.635

150 20 121 0.345
310 7 113 0.230

curve is constrained by (1), it was difficult to reproduce the shape of the measured curves
over the whole strain rage. Compromises were made, especially for the two cases at high
temperature, to try to have the ultimate stress occur at about the same strain as in the tests.
These compromises led to gaps between tests and simulations that can be seen at strains
below 0.2.

The effect of strain rate on the measured stress-strain curves can be seen in Figs. 2(a) and
3(a). The measured curves, in solid lines, are compared for the slow and fast loading rates at
25 and 310°C, respectively. The effect of strain rate seems more pronounced at 25°C. Here,
the yield stress increased, but the strain at the ultimate stress decreased for the higher strain
rate test compared to the slow one. At 310°C, increasing the strain rate essentially did not
influence the yield stress, and only influenced the strain at ultimate stress a little. Note that
the serrations disappeared at the faster strain rate and the post-ultimate response dropped
less precipitously. Figures 2(b) and 3(b) show the increase in temperature measured at the
center of the test section in solid line for the higher strain rate tests. It is more pronounced
in the 25°C test.

To explore a possible way to model the test observations for temperature and strain rate
effects in the uniaxial tension tests, a simple material point model was constructed. This
model is valid only up to the ultimate stress point since it does not consider the neck that
develops in the test specimens past the ultimate stress point.

The description of the model starts with the expression between the true strain (¢;) and
engineering strain (&.), which is given by

gt = In(1 + &.). (2)

As is customary, the true strain increment is additively decomposed into an elastic and a
plastic part

de; = dej + deb. (3)
The relation between the true and engineering stress is given by
o = 0e(1 + €.). (4)

The true stress is given by the product of two functions
o, = HR ()

where

H=H(e,T) = AT) + B(T)(e})" ™, (6)



Distribution

120
%‘
=
[2])
()
o
)
()]
=
@
(0]
£
CC.D —— 25C, 2e-4 1/s
L ——25C, 8e-2 1/s
—-—- Simulation C=0
20 —-—- Simulation C=0.0209
—-—- Simulation (=0.6
—-— Simulation dC/dT
0 Il 1 ‘ 1 h 1
0 0.2 0.4 0.6 0.8 1
Engineering Strain (in/in)
(a)
90 -
80 -
.
G0 ol
e o
S 50 '/y///
4@ : /////
S40+ T
£ e
= P
=30 =
20
10 Simulation
25C, 8e-2 1/s
0 L Il 1 1 1 ]
0 0.1 0.2 0.3 0.4 0.5 0.6
Engineering Strain (in/in)
(b)

December 20, 2018

Figure 2: Comparison of measurements and predictions for the room temperature tests at a
strain rates of 2 x 107* and 8 x 1072 s71. (a) Engineering stress-strain and (b) temperature-

strain for the faster strain rate.
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Figure 3: Comparison of measurements and predictions for the tests at 310°C and strain
rate of 2 x 107 and 8 x 1072 s™!. (a) Engineering stress-strain and (b) temperature-strain
for the faster strain rate.
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is the power-law hardening expression in (1) with its three parameters being functions of
temperature and
:p
: 5
R=R(E,T)=1+C(T)In (—t> (7)
€o
is the Johnson-Cook form for rate dependence, where the calibration constant C' can also be
a function of temperature. The true stress increment is then given by

do, — HdR + RdH, (8)

where oH . OH
AH = 5 opdel + SrdT ()

and OR . OR
AR = Sepdé} + rdT. (10)

Finally, the model is adiabatic so that the increase in temperature due to plastic deformation
is given by

feiatd*?f
AT = ([32——= 11
Bz (1)

where § is the Taylor-Quinney parameter to be calibrated, p is the density of the material
and C' is the heat capacity.

In order to calculate A, B and n as functions of temperature, the data in Table 1 was
interpolated using a quadratic fit, as shown in Fig. 4. The parameters are plotted in terms

of the homologus temperature
T — L= T (12)
Tmelt - ,I'ref
where Tl is a reference temperature taken as 25°C and T, is the melting temperature
taken as 1400°C. The range of applicability of the fit does not extend beyond 310°C (T > 0.2)
but the temperatures considered here did not rise much past that value. The value of pC

was 562 1b-in/(in® —° Q)

Figure 5 shows a comparison between the numerical results in Fig. 1 to those obtained with
the simple model. The results match very well up to the ultimate stress. Recall that the
results of the model become invalid past this point. The results at high temperature are
slightly different due to the time step dependence of the simple procedure used.

The engineering stress-strain results from the simple model for the fast loading rate at 25°C
are shown in dot-dashed line and compared to the measurements in Fig. 2(a). Several cases
are shown as the different components of the model are activated:

e Without strain dependence nor adiabatic heating, the predicted response matches the
slow test (black line).
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Figure 4: Variations of the power-law hardening parameters with temperature and quadratic
fits. (a) A, (b) B and (c) n.
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Figure 5: Comparison of the engineering stress-strain responses from the calibration con-
ducted by simulating the geometry of the tension test (calibration) and the responses from
the material-point calculations (simulation).

e Setting the strain rate parameter C' to 0.0209 causes the intial yield to rise to the level
in the tests, but subsequently overpredicts the stress significantly (blue line). It also
overestimates the strain at the ultimate stress.

e Setting the percent of plastic work converted to heat (3) to 0.6 gives a response that
is closer to the test data (red line). This value was chosen based on matching the
measured temperature rise at the center of the specimen. The strain at ultimate stress
is more in-line with the test data.

e Adding a linear variation of C' so it goes from 0.0209 at room temperature to 0 at
310°C gives a curve that is slightly closer to the test results (green line).

e Figure 2(b) shows the predicted temperature as function of engineering strain for the
last case.

Figure 3(a) compares the engineering stress-strain results from the model to the test mea-
surements at 310°C. There is very little change between the results since the value of the
strain rate coefficient C' goes to zero at 310°C and the temperature rise is relatively mild
as shown in Fig. 3(b). In these calculations the fraction of plastic work converted to heat
was reduced from 0.6 to 0.5 to better match the temperature measurements. Note that the
main reason for the temperature difference between simulation and test is due to the much
flatter inital slope of the measurements. This is partly due to the overestimation of the stress
in the simulations, but it may also be a consequence of fixing the value of 3 for the whole
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simulation. Recent measurements have shown this to not be the case (Jones et al, 2018) and
will be briefly described in the next section.

2 Plastic Work Fraction Converted to Heat in 304L Stainless Steel

The objective of this work was to measure the fraction of plastic work that is converted
to heat (Taylor-Quinney parameter, 3), for 304L stainless steel specimens from the same
stock as were used in the previous section. Funding for the experiments was provided via an
Express LDRD (Amanda Jones, PI), and funds from this project helped to finalize the data
analysis and provided the final measurements of 3 from uniaxial tension tests. The results
yielded ( as a function of strain for two initial temeperatures and strain rates. This data is
important for V&V efforts because it provides essential information to validate the results
of thermal-mechanical models, especially under high rates of deformation when isothermal
models are not adequate.

The results of the effort as well as the description of the experiments and data reduction
have been documented in detail by Jones et al (2018). The principal results are shown in
Fig. 6 which is reproduced from their report. The plots show the Taylor-Quinney coefficent
[ as function of the true plastic strain in the uniaxial tension tests. Results are shown for
two ambient temperatures and two strain rates. The results for the faster strain rate are
shown in solid line and have significantly less uncertainty than those for the slower strain
rate. The main reason is that the thermal conduction, convection and radiation effects are
relatively minor due to the short duration of the test. The results show [ increasing with
true plastic strain in all cases.

Note that for the room temperature (RT) test with strain rate of 8 x 1072 s71, 3 varies from
0.55 to 0.8 over the strain range in the test. Therefore, the value used in the simulations
in Fig. 2(b), 8 = 0.6 is within the range of the measurements. For the test at 250°C at
the same rate on the other hand, 3 varies from about 0.35 to 0.72. The value used for the
results in Fig. 3(b), with ambient temperature of 310°C, was § = 0.5. That figure showed
that the temperature rise was initially faster in the model. The rate of temperature increase
seen in the tests increased with strain. This correlates, at least qualitatively, well with the
increase in [ seen in Fig. 6. The curves for the slower strain rate follow similar trends, but
note that 3 goes above one for the room temperature test, thus demonstrating the higher
level of uncertainty in the data reduction for the slow tests.

In conclusion, the measurements of # help validate the results obtained in Section 1. They
also provide motivation to incorporate material models where 3 can be a function of strain,
strain rate and temperature in thermal-mechanical analyises, provided that calibration data
is available.
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Figure 6: Taylor-Quinney coefficent measurements by Jones et al (2018).

3 Kinematic Hardening Models for Crush-Pressurization and Drop
Scenarios

3.1 The Bauschinger Effect

Problems in metal plasticity that involve reversed loading are generally best treated with
kinematic hardening models since they can represent the Bauschinger effect. Figure 7 illus-
trates this phenomenon using a schematic of a uniaxial stress-strain curve. Upon loading
from O the material is linearly elastic until the yield point A. Suppose the loading continues
to point B where the stress is g, and then it is reversed so the material first unloads elastically,
yields again at point C and continues loading into the plastic range again. The Bauschinger
effect refers to the observation that the yield stress at C is smaller in absolute value than the
initial yield stress at A. In other words, |o/| < 0,. The commonly used isotropic hardening
model, with its expanding yield surface, actually predicts that yielding under reverse load-
ing would not occur until 0 = —oy, therefore greately oversetimating the size of the elastic
region. Kinematic hardening on the other hand, keeps the original size of the yield surface
constant and hardening is accomodated by translation of the yield surface. It can therefore
account for the Bauschinger effect (see also Fig. 3 in Corona, 2018). The next two examples
compare structural responses as predicted by isotropic an kinematic hardening models.

3.2 Container Crush Followed by Pressurization

Figure 8 shows a schematic of this problem. It consists of a cylindrical container with
diameter and length of 3 in. and uniform thickness ¢ laterally crushed first between two rigid
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Figure 7: Bauschinger effect: Upon reverse loading from point B the material yields at point
C such that |0)| < o,.

plates by moving the top plate down by a distance A = 0.25 in. after first contact. Following
crush, the can is pressurized internally until the pressure reaches P = 1000 psi. The material
is taken to have Young’s modulus and Poisson’s ratio £ = 30 x 10° psi and v = 0.3. The
yield stress is o, = 40 ksi and the hardening modulus is a constant Ef = 260 ksi. The
density of the material was taken as 0.29 1b/ in~°.

This example clearly calls for the exploration of kinematic hardening due to the nature of
the load sequence. Cases with two different thicknesses will be considered: ¢ = 0.020 in. and
t = 0.080 in. Figure 9 shows the calculated displacements at two points described in the
insert for the case with ¢ = 0.02 in. These calculations were conducted using Abaqus/Explicit
with shell elements of type S4R.

Crushing was applied in 10 ms followed by pressurization also in 10 ms. Figure 9(a) shows
the calculated displacements during crush. The isotropic hardening results are shown in solid
line while the kinematic hardening results are shown in dashed line. Note that although the
results from isotropic and kinematic hardening are close, they are not identical. This can
happen due to local unloading or reloading at some points of the container during crush,
or to the non-proportionality of the stress trajectories, which can also make the calculated
responses of the two models to differ. This was not investigated further in this example.
Figure 9(b) shows the motion of the same two points during pressurization. At the start
of pressurization, the compression plate is removed from the model, so oscillations in both
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displacements can be seen at low pressure. Whereas D4 increases smoothly, point D, shows
a relatively sudden jump at approximately 200 psi. In any case, the results from both
isotropic an kinematic hardening are very similar for this thickness. Since thin shells are less
influenced by material plastic behavior, it is worth investigating the case when the container
thickness is a factor of 4 larger.

Figure 10 shows similar results for a can with ¢ = 0.08 in. There is little diference between
the predictions of the two models during crush as seen in Fig. 10(a). More significant
differences between the results calculated by the isotropic and kinematic hardening models
occur during pressurization. Both models predic a sudden increases for both D, and Dy,
but while the jumps for the isotropic hardening model occur at about 900 psi, those for
the kinematic hardening model occur just before 600 psi. If the quantity of interest was
the container configuration bewteen 600 and 800 psi, for example, the two models give very
different answers.

L 1YA
_><t_
xtr
- P > 3
/¢\
/ / / /

Figure 8: Geometry for the can crush exercise.

3.3 Can Drop

In the second scenario that will be used to compare the results of isotropic and kinematic
hardening it is perhaps less obvious that significant differences between the two models would
be apparent. The scenario is described schematically in Fig. 11. It consists of a an outer
circular cylindrical container. A second cylindrical shell resides inside the first, carries a 2.6
Ib mass at its forward end and is attached in cantilever fashion to the base of the outer
container at the other. The whole assembly is tilted at § = 30° and impacts a rigid surface
with velocity V' = 431 in/s. The quantity of interest is the equivalent plastic strain induced
at the junction between the inner and outer cylinders. The simulation is carried out for 5
ms, which is sufficient for the container to impact the ground first on the left and then on
the right.

Figure 12(a) shows the case when a material with the same elastic and yield properties as in
the previous case, but with very low hardening modulus E¥ = 30 ksi is used. The maximum
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equivalent plastic strain occurred at location A, and is plotted against time. The isotropic and
kinematic hardening results are indicated in the figure. At times, only the accumulation of
plastic strain when the stress triaxiality in the material is positive is considered to determine
whether material failure may occur. Therefore, triaxiality information is included in the
figures by the color of the lines. Green means that the triaxiality is zero or negative while
red means that the triaxiality is positive. Note that the initial jump in equivalent plastic
strain at first impact is essentially the same for both models. The susequent relative motion
of the inner container with respect to the outer is enough to induce plastic defomration and
causes the plastic strain to continue to increase. During this time the container is rotating
so as to decrease the angle #. A second jump in plastic strain a little after 3 ms occurs when
the front of the container strikes the rigid surface. The jump predicted by the kinematic
hardening model at this time is somewhat larger than the one by the isotropic hardening
model. All in all, the differences are not that great. This is mostly due to the low hardening
modulus of the material.

Bigger differences can occur for high hardening materials, as shown in Fig. 12(b) where
EP = 660 ksi. Althought the overall plastic strains are smaller in this case, the difference
between the predictions by the two material models is much more striking (twice as much
plastic strain predicted by kinematic vs. isotropic hardening) indicating that in this class
of impact problems it may be prudent to consider the use of kinematic hardening models.
Finally, Fig. 13 shows the configurations as predicted by both models at the end of the
simulation. No major differences can be appreciated at this level even though the kinematic
hardening model predicted significantly higher plastic strains at point A. (The contours of
equivalent plastic strain shown are from the opposite side of the shell from which the results
in Fig. 12 were obtained).

4 Summary and Conclusions

This memo summarized the activities undertaken during FY2018 for the project on V&V
of Thermal-Mechanical Failure. It was divided into three parts. The first demonstrated
that to capture the behavior exhibited by 304L stainless steel at different strain rates and
temperatures it is necessary to include a significant amount of complexity in the material
model, even if it is based on classical plasticity. In particular, the shape of the hardening
function changes with temperature, which in the current work was accommodated by making
the parameters of a power-law hardening model functions of temperature. Furthermore the
rate-dependence of the material response also has to be accounted for. This was accomplished
by introducing a Johnson-Cook-like rate dependence with the rate dependence term being
a function of temperature as well. Finally, for the high strain rate tests considered here,
including adiabatic heating of the specimen was necessary. Based on this model, the fraction
of plastic work converted to heat (Taylor-Quinney parameter, ) was set to 0.6 when the
initial temperature was at 25°C and to 0.5 when the initial temperature was 310°C to match
the experimental measurements.

The second part addressed the measurement of the Taylor-Quinney parameter for the same
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Figure 11: Geometry for the can drop exercise.
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Figure 12: Equivalent plastic strain measured at point A during impact. (a) For a low
hardening material with E¥ = 30 ksi and (b) for a higher hardening material with EY = 660
ksi.
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(b)

Figure 13: Final configurations of the can drop problem at time of 5 ms with contours of
equivalent plastic strain. (a) Isotropic hardening model and (b) kinematic hardening model.
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material. It was found that under uniaxial stress loading, the value of the parameter de-
pended on the values of temperature, strain rate and strain. In general the parameter in-
creased with strain but its initial value decreased with temperature and strain rate. For the
lower, quasi-static rate considered, the tests were essentially isothermal, and the uncertainty
in the measured trends is significant.

The third part of the report addressed comparisons between isotropic and kinematic hard-
ening plasticity models for two problems: crush of a can followed by internal pressurization
and a drop scenario involving a cylindrical can that included an internal component in the
form of a smaller, cantilevered cylindrical shell that carried a weight at its free end (Fig. 11).
The first problem obviously includes load reversals at the material level and one can expect
significantly different predictions between kinematic and isotropic models. The results show
that this is indeed the case, although the degree to which the results can differ depends
on the parameters of the problem. It is perhaps less intuitive that the drop scenario could
involve load reversals large enough for the results to display significant differences between
isotropic an kinematic models. The results show significant differences between the models
when looking at the accumulated equivalent plastic strain at a critical point in the geometry.
The results therefore point to a need to evaluate predictions by kinematic hardening models
when looking at drop scenarios or problems that involve sequential loading.

Sandia National Laboratories is a multimission laboratory managed and operated by Na-
tional Technology € Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-NA0003525.
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