
SANDIA REPORT
SAND2018-14272
Unlimited Release
Printed December 2018

Application Note: Syntax, Parsing
and Feature Differences Between
HSPICE and Xyce-

Peter E. Sholander

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2018-14272
Unlimited Release

Printed December 2018

Application Note: Syntax, Parsing and Feature
Differences Between HSPICE and XyceTM

Peter E. Sholander
Electrical Models and Simulation
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1177

Abstract

This application note describes some known differences in syntax, parsing, and supported
features between the HSPICE and Xyce circuit simulators that might be relevant to both
internal Sandia Xyce users and other performers on the DARPA Posh Open Source Hard-
ware (POSH) program. It also presents strategies for converting HSPICE netlists and
libraries to Xyce netlists and libraries.

3

Copyright © 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS).

Trademarks

Xyce Electronic SimulatorTM and XyceTM are trademarks of National Technology & Engi-
neering Solutions of Sandia, LLC (NTESS).

All other trademarks are property of their respective owners.

Contact Information

Outside Sandia
World Wide Web
Email

http://xyce.sandia.gov

xyce@sandia.gov

Inside Sandia
World Wide Web http://xyce.sandia.gov

Email xyce-sandia@sandia.gov

Bug Reports
http://joseki-vm.sandia.gov/bugzilla

http://morannon.sandia.gov/bugzilla

"Cyce 0 Sandia National Laboratories

4

Contents

122. Differences Between Xyce and HSPICE

122.1 Syntax and Parsing Differences

122.1.1 Leading Whitespce

132.1.21nlineComments1

132 1 3 Allowed Characters in Node and Device Name§

132.1.4 Scaling Factors

132.1.5LineContinuattomaaracters1

142.1.6 Subcircuit Node Delineation and Wildcard Syntaxes

1412.1.7Suborcul_Parameters1

152.1.8 Expression Delimiters

152.1.9 Curly Braces Around Simple Function Calls

162.1.10 Nested Delimiters in Expressions

162.1.11 Continuation Characters in Expressions

172.1.121.1serdDefineclFunctionsl

172.1.13 Special Variables

172.1.14 Ground Node Synonyms

182.1.15GlobaLINfocles1

5

2.2 OPTIONS Processing and Syntax

2 2 1 OPTION vs OPTIONS

2.2.2.OPTIOINLSCALE

OKIBMIA I Rol►I :MAIM. it; Its] I Col►I:1 I YA /DOM :fiTell

2.3 Command Lines Not Supported in Xyce

2.4 Features That Act Differently in Xyce vs. HSPICE

2.4.1 Multiplicity (M Factor)

2.4.2 .OP Output

2.4.31\40SFETDeviceievels1

2.4.4TransientSourceFunctiont

2 4 5 Diode Model

2.4.6 Device Types

2.4.7 Verilog-A Support

2.4.8 Charge-based (or Charge-Conserved) Capacitor Model

2.4.9 AGAUSS and AUNIF

2.4.10 Other Mathematical Functions and Operators

2.4.11 Monte Carlo Analysis

2.4.12 .TRAN syntax

2.4.13 Using .AC Analyses with .TRAN

2.4.14.NODESET

2-4-T5—TEMP

MEM DI II AMI:i

2.4.17Powerrialculationsl

6

18

19

19

19

20

20

21

21

21

21

22

22

23

23

23

23

24

26

26

26

27

27

27

27

2.4.19 Noise Models and .NOISE Analyses

2.4.20 Multiple .END Statements

3. HSPICE Compatibility Improvements in Xyce 6.10

3.1 Model Binning

112.1ELStatenmIts1

f3.3

3.4 Device Model Optimization

7

28

28

28

30

30

30

31

31

List of Figures

2.1 HSPICE netlist with leading whitespace on a netlist line

2.2 HSPICE netlist with multiple .END statements

8

12

29

List of Tables

2.1 Math and Control Functions in HSPICE and Xyce

9

24

10

1. Introduction

Xyce is Sandia National Laboratories' SPICE-compatible high-performance analog circuit
simulator, written to support the simulation needs of the laboratories' electrical designers.
It has the capability to solve extremely large circuit problems on large-scale parallel com-
puting platforms, and contains device models specifically tailored to meet Sandia's needs.

The Sandia electrial design community also uses many Commerical Off the Shelf (COTS)
circuit simulators, such as HSPICE, PSpice, T-Spice and Spectre, as part of their design
flow. Those designers often then want a "low-friction path" to convert netlists generated
by those COTS tools into Xyce compatible netlists for subsequent use in Uncertainty
Quantification (UQ) studies and/or analyses for unique environments.

The various "Spicen" that flowered from the original SPICE root-stock have all diverged
with respect to their netlist languages, parser capabilities, and supported features. So,
translation from one netlist format to another is not always a straightforward exercise. The
translation process from PSpice to Xyce is discussed in the Xyce Reference Guide [1].

This application note documents differences between HSPICE and Xyce that might be rel-
evant to both internal Sandia Xyce users and other performers on the DARPA Posh Open
Source Hardware (POSH) program. It also presents strategies for converting HSPICE
netlists and libraries to Xyce netlists and libraries. The differences noted herein were
verified with Xyce Release 6.10 and HSPICE Version M-2017.03-SP2-1.

For external open-source users, source code for Xyce can be obtained from our website
at xyce.sandia.gov. The Xyce Reference Guide [1] and Users' Guide [2] provide more
detail on Xyce syntax and usage. They are also available at our website.

Finally, one purpose of this application note is to solicit feedback on additional incompat-
ibilities and differences between Xyce and HSPICE. The Xyce development team can
be contacted via email at xyce@sandia.gov. Feedback that includes small, runnable
HSPICE netlists that illustrate the compatibility issues, and can be freely shared with other
open source users, are especially helpful. Feedback allows the Xyce development team
to prioritize future improvements to Xyce, based on requests from our internal users, our
external partners, and our open-source user community.

11

2. Differences Between
Xyce and HSPICE

This chapter discusses differences in syntax, parsing capabilities, and supported features
between HSPICE and Xyce. The nominal focus is on the conversion of HSPICE netlists
and libraries into Xyce compatible netlists and libraries.

2.1 Syntax and Parsing Differences

This section focuses on cases where Xyce and HSPICE are nominally "feature compati-
ble", but their netlist syntaxes and/or parsing capabilities are fundamentally different. So,
the differences discussed in this section can mostly be resolved via character substitution,
insertion and/or deletion.

2.1.1 Leading Whitespce

The netlist shown in Figure 2.1 runs correctly in HSPICE. However, Xyce parsing treats
whitespace at the beginning of a netlist line as a comment character unless it is followed
by +, which is the Xyce continuation symbol, in which case Xyce treats the line as a
continuation. So, Xyce parsing of this netlist will exit with this error message ("There was
1 undefined symbol in .PRINT command: device V1") because the V1 instance line was
not processed by the Xyce parser. The work-around is to remove the leading whitespace.

Leading whitespace on a netlist line

V1 1 0 DC=O SIN(0 1 1e3 0 0)

R1 1 0 1

.TRAN lOus 1ms

.PRINT TRAN V(1) I(V1)

.END

Figure 2.1. HSPICE netlist with leading whitespace on a
netlist line

12

2.1.2 lnline Comments

Hspice uses a dollar sign ($) to specify inline comments:

R1 1 0 1K $ Adding a 1K resistor to circuit

The equivalent way to specify an inline comment in Xyce is to use a semicolon:

R1 1 0 1K ; Adding a 1K resistor to circuit

2.1.3 Allowed Characters in Node and Device
Names

Xyce and HSPICE have different rules for which characters are allowed in device names
and node names. See Section 2.3.2 ("Legal Characters in Node and Device Names") of
the Xyce Reference Guide [1] for more details on what is legal in Xyce.

2.1.4 Scaling Factors

The allowed scaling factors in Xyce are given in Chapter 4 of the Xyce Users' Guide [1].
There are at least two differences with HSPICE. First, the "atto" prefix, which is designated
by "a" or "A", is acceptable in HSpice but is not accepted in Xyce. The use of the "atto"
prefix in Xyce netlists must be replaced with "e-18".

In HSPICE, "x" and "X" are synonyms for "meg". So, all three scaling factors mean 1 e6 in
HSPICE. In Xyce, "x" and "X" are not recognized scaling factors. Xyce only uses "meg"
to denote 1e6. So, this netlist line is legal in HSPICE but not in Xyce:

V1 I 0 SIN(0 1 1X 0 0)

2.1.5 Line Continuation Characters

HSPICE uses both "\" and "+" as line continuation characters, albeit in different ways. So,
these (admittedly inartful) V1 and R1 instance lines are legal in HSPICE:

V1 1 0 \

SIN(0 1 1e3)

R1 1 2

+ I

13

In Xyce, only "+" is used as a continuation character. So, the V1 instance line given above
would fail Xyce parsing.

HSPICE also uses a double blackslash "\\" at the end of the line for continuation when
the continuation is inside a token or string. An example of how to translate that into Xyce
syntax will be given in Section 2.1.11

2.1.6 Subcircuit Node Delineation and Wildcard
Syntaxes

Hspice uses "." to separate circuit-hierarchy levels whereas Xyce uses ":" for the same
purpose. For instance, the Hspice syntax:

.PRINT DC V(X1.3)

which indicates that we wish to observe the voltage of node 3 in subcircuit X1 would have
the equivalent Xyce syntax of:

.PRINT DC V(X1:3)

HSPICE allows the use of "wildcards" in .PRINT statements that reference subcircuit
nodes. For example, this HSPICE syntax requests the nodal voltages at all nodes in
subcircuit xl:

.PRINT DC V(X1.*)

That "subcircuit wildcard" syntax is not supported in Xyce.

2.1.7 Subcircuit Parameters

In Xyce, the preferred syntax uses the keyword PARAMS: to specify subcircuit parameters
on both the .SUBCKT command line and on the X device instance line. An example is:

.SUBCKT RESISTOR 1 2 PARAMS: RESISTANCE = 1

R1 1 2 RESISTANCE

.ENDS

X1 1 0 RESISTOR PARAMS: RESISTANCE = 3

14

In Hspice, the PARAMS: keyword is not used, and the corresponding HSPICE netlist frag-
ment would be:

.SUBCKT RESISTOR 1 2 RESISTANCE = 1

R1 1 2 RESISTANCE

.ENDS

x1 1 0 RESISTOR RESISTANCE = 3

For HSPICE compatibility, Xyce should accept either syntax. (Note: This issue was the
subject of SRN Bug 1733.)

2.1.8 Expression Delimiters

Hspice delineates expressions via single quotes. An example HSPICE netlist fragment is:

.param r0 = 2

R1 1 0 '2*r0'

In the above netlist fragment, the resistance of R1 is given by the expression 2*r0 which
evaluates to 4. The corresponding preferred syntax in Xyce uses curly braces rather than
single quotes.

.param r0 = 2

R1 1 0 {2*r0}

However, the HSPICE syntax (with the single quotes) should also work in all Xyce ex-
pression contexts. If not then replace the single quotes with curly braces in the Xyce
netlist.

2.1.9 Curly Braces Around Simple Function Calls

Simple function calls in HSPICE do not require single quotes in order to be evaluated. For
instance:

.param r = agauss(0,1,2)

defines a parameter r which calls the function agauss to retrieve a value. In Xyce, curly
braces are recommend for the evaluation of every expression. The exceptions (per SRN
Bug 1692) are cases where the Xyce expression:

15

■ has no white space in it.

■ has an equals sign, so that the expression is part of a form like this: V=2 . 0*param

■ is not on a "command line" that begins with a dot (".").

■ does not have a function (e.g., agauss) embedded in it.

The example HSPICE netlist line given above does not meet all of those criteria, and the
Xyce syntax would need to be changed to:

.param r = { agauss (0 , 1, 2) }

2.1.10 Nested Delimiters in Expressions

It is not clear that this is an issue when converting HSPICE netlists to Xyce netlists.
However, it is not legal to have nested curly brackets in a Xyce expression. So, this set of
netlist lines is not legal in Xyce:

.param al = 2

.param a2 = { 1 + {2*al} }

The second line would have to be changed something like this:

.param a2 = { 1 + (2*al) }

So, if an HSPICE expression contains nested single quotes then only the outermost ones
should be changed into curly brackets in the corresponding Xyce expression. The inner
ones should be changed into parentheses instead.

2.1.11 Continuation Characters in Expressions

As mentioned previously in Section 2.1.5, HSPICE uses a double blackslash "\\" at the
end of the line for continuation when the continuation is inside a token or string. An
HSPICE example within an expression is:

R4 4 0 R='rl\\

+r2 '

16

The corresponding Xyce syntax would be this, where the first character of the second
line is the Xyce continuation character "+" and the single quotes have been (optionally)
replaced with curly braces to match the preferred Xyce syntax for expressions:

R4 4 0 R={rl
++r2}

2.1.12 User-Defined Functions

In HSPICE, .PARAM statements can be used to define functions. An example is this, which
sets the resistance of device R2 to 4:

.PARAM al=2

.PARAM SQUARE(X) = ,X*X,

R2 2 0 'SQUARE(al)'

The corresponding Xyce definition would use the .FUNC statement instead. So, that Xyce
netlist fragment would be:

.PARAM al=2

.FUNC SQUARE(X) {X*X}

R2 2 0 {SQUARE(a1)}

2.1.13 Special Variables

Xyce allows the use of TIME and TEMP to denote the current simulation time and tem-
perature within expressions. HSPICE also uses TIME, but uses TEMPER instead of TEMP.
The HSPICE special variable HERTZ, to denote the current simulation frequency, is not
supported in Xyce. Finally, VT is a special variable in Xyce but not in HSPICE.

2.1.14 Ground Node Synonyms

HSPICE allows the use of either the number 0 or the names GND, GND! or GROUND as syn-
onyms for the "ground node". Xyce can also treat 0, GND, GND! and GROUND as synonyms
for the ground node. However, one .PREPROCESS REPLACEGROUND statement must be in-
cluded in the Xyce netlist to enable that capability. Otherwise, Xyce will consider each of
those four terms as separate nodes with only node 0 being treated as the ground node.

17

2.1.15 Global Nodes

The documentation for Xyce 6.10 states that global nodes have to start with the prefix
"$G". That is actually not true. The .GLOBAL command was implemented in Xyce 5.1, for
HSPICE compatibility, but was never documented in the Xyce Reference Guide or Users'
Guide. So, the following Xyce netlist fragment defines a global node named G1, and then
uses it in a subcircuit definition:

.GLOBAL gl

. subckt rsub a b gl

Rab a b 2

Rbg G1 b 3

. ends

The documentation for the planned Xyce 6.11 release will include information on the
.GLOBAL command.

2.1.16 Controlled Sources

Both HSPICE and Xyce support the E, F, G and H devices, which are the "controlled
sources". There are many differences in the syntaxes and supported features for those
devices in HSPICE and Xyce. So, this subsection focuses on examples that may be
relevant to the DARPA POSH performers.

Both HSPICE and Xyce allow the E and G sources to have their outputs defined by an
expression. However, their syntaxes can be different. HSPICE examples are as follows,
where VOL is an allowed synonym for VALUE for the E source and CUR is an allowed syn-
onym for VALUE for the G source in HSPICE:

E1 1 2 VOL='V(5)'

G1 3 4 CUR=)V(5)'

The corresponding Xyce syntaxes are:

E1 1 2 VALUE=V(5)

G1 3 4 VALUE=V(5)

Some of these minor syntax differences, where the features are then identical, may be
addressed in future Xyce releases.

18

2.2 OPTIONS Processing and Syntax

There are many feature differences between the "options" supported by HSPICE and
Xyce. Some of the differences relevant to DARPA POSH are discussed in this section.

Feedback on additional HSPICE simulation options used by the DARPA POSH performers
is welcome, since mapping between options in different circuit simulators is often not
straightforward. (Note: the the Xyce Reference Guide [1] has a short discussion of this
issue for PSpice and Xyce. Sometimes one PSpice option needs to be mapped into
multiple Xyce options, or an option with the same name has a different meaning in those
two simulators.)

2.2.1 .OPTION vs. .OPTIONS

HSPICE uses this format for specifying simulation options:

.OPTION <optionName> <value>

In Xyce, options for each supported package are called according to the following format,
where <pkg> is a "package name" such as DEVICE. The "tag" is then similar to the HSPICE
"optionName".

.OPTIONS <pkg> [<tag>=<value>]*

The use of an HSPICE-style .OPTION line in a Xyce netlist will typically produce a Xyce
netlist parsing warning of the form "Unrecognized dot line will be ignored", rather than a
parsing error. That Xyce warning message will contain the file name and line number.
So, in general, it is important to check the Xyce warning messages when running netlists
that have been translated from other Spicen.

2.2.2 .OPTION SCALE

In HSPICE, . OPTION SCALE scales geometric element instance parameters whose default
unit is meters. This option is not currently supported by Xyce, but is viewed as a high-
priority addition to a future Xyce release.

19

2.2.3 .OPTION BYPASS and .OPTION
SIMACCURACY

Both HSPICE and Xyce have numerous options to control the tradeoffs between simula-
tion accuracy and simulation run-time. This subsection discuss two HSPICE options that
may be relevant to the DARPA POSH performers.

The HSPICE . OPTION BYPASS command "bypasses the model evaluations if the terminal
voltages stay constant". It can be applied to MESFETs, JFETs, BJTs, MOSFETs and
diodes. Xyce does not support bypass.

The HSPICE .OPTION SIM_ACCURACY allows the end-user to "set and modify the size of
time steps. This option applies to all modes and tightens all tolerances, such as Newton-
Raphson tolerance, local truncation error, and other errors". It has user-configurable val-
ues between 1 and 100, with a default value of 10. Xyce does not directly support this
HSPICE option. However, the Xyce team has observed that similar tradeoffs can be ob-
tained by adjusting its tolerances. It also appears that the default tolerances in Xyce will
often produce more time-steps (and hence a longer run-time) than HSPICE when the
default value of 10 is used for in HSPICE for . OPTION SIM_ACCURACY

2.3 Command Lines Not Supported in
Xyce

The following command lines, found in HSPICE, are not directly supported in Xyce:

.ALTER

.TEMP

.IF, .ELSEIF, .ELSE and .ENDIF

This list is not intended to be exhaustive, and the Xyce team solicits feedback on addi-
tional command lines that are useful for the DARPA POSH performers. For .TEMP, the
corresponding Xyce approach is discussed in Section 2.4.15.

20

2.4 Features That Act Differently in Xyce
vs. HSPICE

This section discuss features that act differently in HSPICE and Xyce. The focus is on
ones that are of likely interest to the DARPA POSH program. So, this list is definitely not
exhaustive.

2.4.1 Multiplicity (M Factor)

In HSPICE, the "multiplicity" (or "M Factor") can be used to essentially specify multiple
netlist devices in parallel via a single instance line. In Xyce, the terms "multiplicity factor"
and "multiplier" are used to describe that same concept.

At present, the multiplicity factor (M parameter) is only supported in Xyce by the R, L, C
and MOSFET device models and some BJT device models (VBIC 1.3 and MEXTRAM).
It is not supported for the X device (subcircuits) which is a known deficiency for Xyce
support of the DARPA POSH program.

2.4.2 .0P Output

The Xyce . OP output generally contains less information than the . OP output from SPICE3F5
and most other "Spicen". The ".0P (Bias Point Analysis)" section of the Xyce Reference
Guide [1] has a discussion of how to work around some of these limitations with the Xyce
. PRINT output.

2.4.3 MOSFET Device Levels

The "levels" for various device models in Xyce may differ from those used in other circuit
simulators. However, for HSPICE compatibility, Xyce will accept two model levels for
these device models:

BSIM3 is MOSFET levels 9 and 49

BSIMSOI is MOSFET levels 10 and 57

BSIM4 is MOSFET levels 14 and 54

21

2.4.4 Transient Source Functions

The Xyce Piecewise Linear (PWL) source is not fully compatible with the HSPICE im-
plementation. The V and I device sections of the the Xyce Reference Guide [1] have a
discussion of this issue.

The other source definitions (SIN, EXP and SFFM) are compatible but the HSPICE perj itter
and seed parameters are not supported. Xyce also does not implement the HSPICE Pat-
tern source or Single Frequency AM source.

2.4.5 Diode Model

There are several known differences between the HSPICE and Xyce diode models. Xyce
has a Level 1 diode model which varies the saturation current /s, as a function of an
optional area parameter. HSPICE has this model, along with an additional additive term
that is a function of the sidewall area. In other words, the effective value of the saturation
current in HSPICE, which we will denote here as /VI is given by:

= IS x Ai + ISW X Pi

where L represents the standard saturation current per unit area, Isw the sidewall satura-
tion current per unit length, A3 is the junction area, and P., is the junction perimeter. Xyce
is missing the part of the model which incorporates Isw and P3 (effectively treating both of
them as 0).

Another issue is that HSPICE apparently allows multiple aliases (e.g., CJ, CJA and CJO
for diodes) for a single model parameter. Not all of those aliases may be recognized by
the Xyce parser. Xyce handles this by emitting a warning message during netlist parsing.
For example, if an unrecognized parameter BOGO was used in a . MODEL statement for say a
D1N3940 diode then Xyce parsing would emit the following warning message, "No model
parameter BOGO found for model D1N3940 of type D, parameter ignored". However, the
Xyce simulation would then run to completion.

One way to check for parameter name differences or unsupported parameters in any
of the devices in your Xyce netlist, after conversion from HSPICE but before running a
complete Xyce simulation, is to use the -norun command line option. That Xyce option
does netlist parsing and syntax/topology analysis, and then exits before running the circuit
simulation. The Xyce team can then help resolve any parameter mapping issues.

22

2.4.6 Device Types

The "device type" has several fundamental differences between HSPICE and Xyce. HSPICE
uses the B-device to denote an IBIS (I/0 Buffer Information Specification) buffer. The
B-device is the non-linear dependent source in Xyce. The HSPICE S-device is an S pa-
rameter element. The S-device is a voltage controlled switch in Xyce. In HSPICE, the T-,
U- and W-devices are all transmission line models. In Xyce, the U-device is a behavioral
digital device, while the W-device is a current controlled switch. Finally, HSPICE has a
P-device (port), which is not supported in Xyce.

2.4.7 Verilog-A Support

Xyce does have the capability to dynamically link in Verilog-A models. However, that
capability is limited and not HSPICE compatible. In particular, it is not possible to insert
Verilog-A models into Xyce via the netlist alone. So, Xyce does not support the HSPICE
.HDL command.

2.4.8 Charge-based (or Charge-Conserved)
Capacitor Model

The HSPICE capacitor device allows both C (capacitance) and Q (charge) as instance
parameters. So, both of these instance lines are legal in HSPICE, where "expression"
denotes a legal HSPICE expression:

C1 nodel node2 C='expression'

C2 node3 node4 Q='expression'

Xyce does not support Q as an instance parameter, and only the first instance line is legal
in Xyce. The Q-based capability could likely be added though, if it is useful to the DARPA
POSH performers.

2.4.9 AGAUSS and AUNIF

The AGAUSS and GAUSS functions are defined both in HSPICE and Xyce to handle Gaus-
sian distributions. For uniform distributions, HSPICE then uses the AUNIF and UNIF func-
tions, while Xyce uses the RAND function. The Xyce definitions are given in the "Ex-
pressions" section of the Xyce Reference Guide [1]. The HSPICE and Xyce versions of
AGAUSS, GAUSS, and their respective AUNIF, UNIF and RAND functions, are not fully compat-
ible yet. A summary of the issues is as follows.

23

In HSPICE, if Monte Carlo (MC) sampling is not turned on then the AG/um and
GAUSS functions just return the mean of the distribution. If MC sampling is turned on,
then HSPICE will randomly sample the specified distributions.

In Xyce 6.10, there is no mode that will result in the AGAUSS, GAUSS or RAND functions
returning the mean. Xyce will always return a random number from the specified
distribution.

Currently, the AGAUSS, GAUSS and RAND functions in Xyce 6.10 are not connected
to its sampling capability at all. Instead, the Xyce sampling code only samples
parameters using its own separate specification and that code does not use the
random functions in the Xyce expression library.

These AGAUSS and AUNIF compatibility issues are currently deemed a high priority for
Xyce's support of the DARPA POSH program.

2.4.10 Other Mathematical Functions and
Operators

A number of mathematical functions exist in Hspice that either have different names in
Xyce, or are simply not implemented in Xyce. Known issues of this nature are summarized
in Table 2.1. The HSPICE functions that are not implemented in Xyce have empty entries
in the Xyce column in that table. (Note: there are also capabilities in Xyce that are not in
HSPICE , but this application note is focused on translating from HSPICE to Xyce.)

Table 2.1: Math and Control Functions in HSPICE and
Xyce

HSPICE Xyce
HSPICE
Cate-
gory

Description/Comments

& math

math

Boolean AND

Boolean OR

** math

- is an allowed synonym for the
exponentiation operator (**) in
HSPICE. However, - denotes

boolean XOR in Xyce.

24

Table 2.1: Math and Control Functions in HSPICE and
Xyce

HSPICE Xyce HSPICE
Class

Description/Comments

nint(x) math
Rounds x up or down, to the nearest

integer.

def(x) control
Returns 1 if parameter x is defined. 0

otherwise.

db(x) math returns the value of x in decibels

logl 0(x) log(x) or loglOx() math

HSPICE returns the base 10
logarithm of the absolute value of x,

with the sign of x: (sign of
x)logl 0(abs(x))

log(x) In(x) math
HSPICE returns the natural logarithm
of the absolute value of x, with the
sign of x: (sign of x)log(abs(x))

cond ?x : y IF(cond,x,y)

Ternary operator returns x if cond is
not zero. Otherwise, it returns y. An
HSPICE example is .param z=

`condition ? x:y'

val(element) element various

returns a parameter value for a
specified element. In HSPICE val(r1)
returns the resistance value of the rl

resistor. In Xyce, just rl is used.

val(element.param) element:param various

In HSPICE, val(r1 .temp) returns the
value of the temp parameter for

resistor rl . In Xyce, just rl :temp is
used.

25

2.4.11 Monte Carlo Analysis

HSPICE supports Monte Carlo sampling via the use of the AGAUSS, GAUSS and RAND key-
words which are then used within expressions. The .SAMPLING command was added for
the Xyce 6.10 release, but that capability is not compatible with how HSPICE does Monte
Carlo sampling.

2.4.12 .TRAN syntax

The . TRAN command in Xyce only support single-point analyses. In addition, the com-
mand syntax differs between HSPICE and Xyce. In Xyce, the simplest form is (where the
parameters enclosed in [] are optional):

.TRAN <initial step value> <final time value>

+ [<start time value> [<step ceiling value>]] [UIC]

In HSPICE, the simplest form is:

.TRAN <tstepl> <tstop1> [START=val] [UIC]

Both START=val and <start time value> refer to the time at which output of the simu-
lation results begins, and both have a default of 0. In Xyce, the <initial step value>
parameter is "used to calculate the initial time step". However, the <tstepl> parameter in
HSPICE is the "printing or plotting increment for printer output and the suggested comput-
ing increment for post-processing". If the user desires Xyce output at fixed time intervals,
then the appropriate . OPTIONS OUTPUT statement would produce interpolated output at
the requested time points.

2.4.13 Using .AC Analyses with .TRAN

In some HSPICE simulations, a . TRAN analysis could be used to establish multiple op-
erating points for a .AC analysis. This could be done, for example, with these HSPICE
commands:

.TRAN ln 5u $ Transient analysis

.OP lu 2u 3u $ Request operating point analysis

.AC DEC 100 1 20e9 $ AC analysis

In this case, HSPICE would perform separate .AC analyses for all of the time values
specified as well as one .AC run at time zero.

26

Xyce does not support this capability. Its . AC analysis is only done at time zero, and Xyce
does not support the use of the . TRAN and . AC commands in the same netlist.

2.4.14 .NODESET

The Xyce . NODESET command uses a different strategy than either SPICE3F5 or HSPICE.
So, the Xyce behavior may differ from that provided by . NODESET and . OPTION DCHOLD in
HSPICE. In addition, Xyce does not allow the use of "wildcards" in .NODESET (or . IC)
statements. The ".NODESET (Approximate Initial Condition, Bias point)" section of the
Xyce Reference Guide [1] gives more details on the Xyce implementation.

2.4.15 .TEMP

The HSPICE . TEMP command allows the user to specify multiple temperatures, and the
simulation will be repeated at each temperature. Xyce does not directly support . TEMP.
Instead the desired simulation temperatures would be specified via the . STEP or . DATA
commands in Xyce 6.10.

2.4.16 DTEMP

HSPICE supports the DTEMP instance parameter for its R, L and C devices. The HSPICE
definition is "the temperature difference between the element and the circuit, in degrees
Celsius, with a default value of 0. To modify the temperature for a particular element, use
the DTEMP parameter in an instance line".

Xyce does not support the DTEMP instance parameter for its R, L and C devices. Instead,
those devices have a TEMP instance parameter which sets the device temperature. So, the
work-around for Xyce would be to use its TEMP special variable (see Section 2.1.13). lf,
for example, an HSPICE R-device instance line had DTEMP=<val> then the corresponding
Xyce instance line would use TEMP={TEMP + <val>}. The DTEMP instance parameter will
likely be added for the R, L and C devices in a future Xyce release.

2.4.17 Power Calculations

The ID 0 operator for power may give different results for semiconductor devices (D, J,
M, Q and Z devices) and the lossless transmission device (T device) in Xyce than with
HSPICE. The relevant device sections of the Xyce Reference Guide [1] give details on
how power is calculated for each Xyce device.

27

2.4.18 .MEASURE

The Xyce implementation of . MEASURE has some incompatibilities and differences with
HSPICE. See Section 2.1.14 of the Xyce Reference Guide [I] for more details. These
differences will likely be resolved in a future Xyce release.

2.4.19 Noise Models and .NOISE Analyses

The . NOISE analysis capability in Xyce is not widely used yet. So, it is less "mature" than
the .TRAN and . DC analysis capabilities in Xyce. One limitation is that the Xyce implemen-
tations of the noise models for some of the ADMS-derived semiconductor devices (such
as VBIC) have not been validated yet. In particular, there was no "gold standard", supplied
by the Compact Model Coalition (CMC), for the VBIC device that the Xyce implementation
could be tested against.

A second limitation is that the ability to print out the individual noise contributions, from
all the noise sources in all of the devices in the netlist, is not an "officially supported"
capability in Xyce 6.10. It is not offically supported because of the testing/validation
issues mentioned above.

The third limitation is that not all Xyce devices support noise sources yet. Of particular
interest may be the noise models for the BSIM4 device model. Also, the noise model for
the FBH device model has not been implemented yet.

Another important difference is that Xyce and SPICE3F5 report root mean square (RMS)
noise values. HSPICE reports mean square (MS) noise values.

2.4.20 Multiple .END Statements

The netlist shown in Figure 2.2 is legal in HSPICE. Both simulations will be run, once
with the resistance of R2 equal to 2 and once with its resistance equal to 3. In Xyce, the
simulation would only be run with the resistance of R2 equal to 2. All of the text after the
first . END statement would be treated as comment lines by the Xyce parser. To run both
simulations in Xyce, the appropriate . STEP or . DATA statement would be used to set the
desired values for the resistance of R2.

28

Multiple .END statements

V1 1 0 SIN(0 1 1e3)

R1 1 2 1

R2 2 0 2

.TRAN 10u lm

.PRINT TRAN V(1) V(2)

.END

V1 1 0 SIN(0 1 1e3)

R1 1 2 1

R2 2 0 3

.TRAN 10u lm

.PRINT TRAN V(1) V(2)

.END

Figure 2.2. HSPICE netlist with multiple .END statements

29

3. HSPICE Compatibility
Improvements in Xyce 6.10

This chapter discuss some improvements to HSPICE compatibility that are included in the
Xyce 6.10 release.

3.1 Model Binning

An initial capability for "model binning" based on length (L) and width (W) parameters was
added in Xyce 6.10 for MOSFET devices. The ".MODEL (Model Definition)" section of the
Xyce Reference Guide [1] gives more details on how to invoke that new Xyce capability.
It also describes some of the current limitations of that capability.

Additional known limitations are that the Xyce model binning is not currently compatible
with parametric sweeps of L and W parameters. This issue was the subject of a question
to the Google groups forum for Xyce:

https://groups.google.com/forum/#!topic/xyce-users/rQ-R_N4NUlfc

Another limitation, which is also not mentioned in the Xyce Reference Guide, is that
model binning is currently very generic, in that it only applies to the L and W parameters.
However, some device models might use binning of other parameters, in addition to L and
W.

3.2 .LIB Statements

Xyce does support the .LIB netlist line. However, in Xyce 6.8 and earlier (see SRN Bug
1731 and SON Bug 42), the parser would attempt to treat . LIB <name> statements the
same as . INC <name> statements. The logic that supported that was flawed and was
removed for Xyce 6.9 as SON Bug 980. So, Xyce 6.10 should now rigorously support the
HSPICE . LIB syntax where there is a library definition statement (. LIB <library name>)
and a library inclusion statement (. LIB <library file> <library name>). Incorrect use
of . LIB should now return informative error messages.

30

As a final note, in correcting the . LIB behavior for Xyce 6.9, a small logic error was intro-
duced that could cause issues with parsing library definitions when subcircuit definitions
were inside them. That issue was corrected in the Xyce 6.10 release, as SON Bug 1038.

3.3 .DATA

Sweep loops in Xyce netlists can now be specified using an HSpice-style .DATA com-
mand. This capability, which has been applied to .STEP, .DC and .AC analysis in Xyce
6.10, allows the user to specify parameter loops in which multiple parameters are changed
simultaneously. The ".DATA (Data Table for sweeps)" section of the Xyce Reference Guide
[1] gives more details. At present, only the "inline" form of the .DATA command is imple-
mented in Xyce. The "external file" and "column laminated" forms are not supported.

3.4 Device Model Optimization

The BSIM-CMG version 110 (MOSFET level 110) and the 3-terminal version of VBIC 1.3
(BJT level 11) have been extensively optimized and now run much faster than they did in
previous Xyce releases.

31

References

[1] Eric R. Keiter, Karthik V. Aadithya, Ting Mei, Thomas V. Russo, Richard L. Schiek,
Peter E. Sholander, Heidi K. Thornquist, and Jason C. Verley. Xyce Parallel Electronic
Simulator: Reference Guide, Version 6.10. Technical Report SAND2018-12374, San-
dia National Laboratories, Albuquerque, NM, 2018.

[2] Eric R. Keiter, Karthik V. Aadithya, Ting Mei, Thomas V. Russo, Richard L. Schiek,
Peter E. Sholander, Heidi K. Thornquist, and Jason C. Verley. Xyce Parallel Electronic
Simulator: Users' Guide, Version 6.10. Technical Report SAND2018-12373, Sandia
National Laboratories, Albuquerque, NM, 2018.

32

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

34

v1.40

35

Sandia National laboratories

36

