
LLNL-CONF-760618

Accelerating Deep Neural Network
Training for Action Recognition on a
Cluster of GPUs

G. Cong, G. Domeniconi, J. Shapiro, F. Zhou, B.
Y. Chen

October 29, 2018

Supercomputing 2018
Dallas, TX, United States
November 11, 2018 through November 16, 2018



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Accelerating deep neural network training for action

recognition on a cluster of GPUs

Guojing Cong, Giacomo Domeniconi, Joshua Shapiro*

IBM TJ Watson Research Center

1101 Kitchawan Road, Yorktown Heights, NY, 10598

{gcong,giacomo.domeniconi1, joshua.shapiro}@us.ibm.com

Fan Zhou

Georgia Tech

Atlanta, GA

fanzhou@gatech.edu

Barry Chen

Lawrence Livermore National Laboratory

Livermore, CA

chen52@llnl.gov

Abstract—Due to the additional temporal dimension, large-
scale video action recognition is even more challenging than
image recognition and typically takes days to train on modern
GPUs even for modest-sized datasets. We propose algorithms
and techniques to accelerate training of deep neural networks
for action recognition on a cluster of GPUs.

In terms of convergence and scaling, our distributed training
algorithm with adaptive batch size is provably superior to
popular asynchronous stochastic gradient descent algorithms.
The convergence analysis of our algorithm shows it is possible
to reduce communication cost and at the same time minimize
the number of iterations needed for convergence. We customize
the Adam optimizer for our distributed algorithm to improve
efficiency. In addition, we employ transfer-learning to further
reduce training time while improving validation accuracy.

Compared with the base-line single-GPU stochastic gradient
descent implementation of the two-stream training approach, our
implementation achieves super-linear speedups on 16 GPUs while
improving validation accuracy. For the UCF101 and HMDB51
datasets, the validation accuracies achieved are 93.1% and 67.9%
respectively. As far as we know, these are the highest accuracies
achieved with the two-stream approach that does not involve
computationally expensive 3D convolutions or pretraining on
much larger datasets.

I. INTRODUCTION

Image recognition and object detection have made tremen-

dous progress since the adoption of deep convolutional neural

networks (CNN). Current CNN models can classify the Ima-

geNet dataset [20] with over 1 million (M) inputs with very

high accuracy (e.g., see [22], [11], [8], [24]), and they can also

detect objects in a video frame in real time (e.g., see [19]).

Large amounts of data are needed to train these models, and

recent studies have tried to accelerate training (e.g., see [27],

[7]).

Compared to image classification, video action recognition

is even more challenging due to the additional temporal

dimension. The CNNs for action recognition are typically

more complex than those used in image recognition, which

causes their training to take even longer. Currently there are

two main approaches of action recognition using CNNs. The

first is a two-stream approach (e.g., see [21]) where sample

frames of a video are fed to a CNN as a spatial stream (also

called RGB stream), and the optical flows between frames are

fed to another CNN as a temporal stream (also called the flow
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stream). The predictions of the two streams are then com-

bined for classification. The second approach employs three-

dimensional (3D) convolutions (2D for the spatial dimension

with additional 1D for the temporal dimension) (e.g., see [3],

[26]). 3D convolutions are computationally very costly, and

the validation accuracies achieved are often times not much

better than those achieved by the two-stream approaches. In

our study we accelerate training for a single-GPU two-stream

implementation.

Our primary dataset is UCF101 [23]. UCF101 has over

13,000 video in 101 action categories. There are over 9500

training videos, and over 3700 validation videos. We also show

results on the HMDB51 dataset [12].

The base-line single GPU implementation take days to train

both streams. We propose a distributed training algorithm to

reduce training time. In addition to communication overhead

that adversely impacts parallel efficiency, distributed training

also faces convergence challenges. Typically if we increase

the number of learners in a distributed implementation, more

data samples need to be processed to reach convergence.

Communication frequency plays a critical role on both com-

munication overhead and convergence speed. We adopt an

adaptive-batchsize K-step model averaging algorithm (AAVG)

to explicitly manage communication frequency. Our analysis

shows that in terms of accuracy and scaling, AAVG is superior

to popular asynchronous stochastic gradient descent (ASGD)

implementations such as Downpour [5] and EAMSGD [29].

For our target datasets, we show that communication in

AAVG can be very sparse for optimal convergence. From

the perspective of distributed processing, AAVG achieves

almost linear speedup relative to the single-GPU baseline SGD

implementation for the same amount of data samples pro-

cessed. In addition to communication frequency, AAVG also

dynamically adapts batch sizes to balance convergence speed

and variance reduction among samples. For training with our

target datasets, we use the Adam optimizer [10] to avoid costly

hyper-parameter tuning (e.g., see [1]). Customizing Adam for

AAVG brings significant improvement in convergence speed.

AAVG significantly reduces the training time for the RGB

stream and the flow stream. Still, it takes much longer to train

the flow stream than the RGB stream. We transfer the model

learned for the RGB stream to the flow stream, reducing the

training time by as much as 30% while increasing validation



accuracy.

With our optimizations, AAVG actually processes fewer

samples than the baseline single-GPU implementation, and

thus achieves super linear speedups. It takes a couple hours

for AAVG to train both streams on 16 GPUs for the UCF101

dataset. For the UCF101 and HMDB51 datasets, the validation

accuracies achieved are 93.1% and 67.9% respectively. As far

as we know, these are the highest accuracies achieved with the

two-stream approach that does not involve computationally

expensive 3D convolutions or pretraining on much larger

datasets.

Our main contributions include a fast and adaptive dis-

tributed training algorithm and a transfer learning strategy for

speeding up the training of the flow stream.

In our study all implementations use Pytorch [17]. Commu-

nication among learners is done using CUDA-aware openMPI

2.0 through MPI4Py. Our cluster has 4 IBM Minsky nodes.

Each node has 2 Power8 GPUs with 10 cores each and 4

NVIDIA Tesla P100 GPUs. The interconnect between the

nodes is Infiniband.

The rest of the paper is organized as follows. Section II

introduces the two stream action recognition approach and the

neural networks used; Section III introduces AAVG and its

convergence properties, and demonstrates its performance with

UCF101; Section IV customizes Adam for AAVG; Section V

presents our results of transferring the model from the RGB

stream to the flow stream to accelerate the training; Section VI

discusses the speedup results achieved by AAVG; and Sec-

tion VII gives our conclusion and future work.

II. TWO-STREAM ACTION RECOGNITION

The baseline two-stream training for action recognition

implements the approach described in [21], and is illustrated

in Fig. 1. During training for the RGB stream, a random

frame from an input video is sampled and fed into a CNN

followed by a fully-connected layer for classification. For the

flow stream optical flows are computed for two consecutive

frames, and 10 consecutive flows are randomly sampled and

fed to another CNN. During training validation accuracy for

each stream is computed by averaging the prediction of 5 data

samples. The two streams are trained separately. For the final

validation, 25 samples are used for each stream instead of 5.

Fig. 1: Two-stream training architecture

Both CNNs in our study are based on ResNet152 [8] with

some modifications to the first and last layers. The weights in

ResNet152 are pretrained on the ImageNet dataset [20]. For

the RGB stream, the last layer of ResNet152 is modified for

101 output classes instead of 1000. For the flow stream, in

addition to the modification to the last layer, the input layer

is changed to 20 channels instead of the original 3 channels.

Simple averaging is used to combine the predictions from the

two streams.

The baseline implementation adopts a data augmentation

scheme described in [25]. The video frames are first scaled

to size 256×340. During training, a multi-scaled crop (random

crop whose width and height are randomly chosen from

256, 224, 192, 168, followed by a re-size of the cropped region

to 224× 224) and a random horizontal flip are applied to the

input. During validation, a center crop of 224 × 224 without

scaling is applied to the input.

The baseline single-GPU training uses an initial learning

rate of 0.01, and the learning rate is reduced by a factor of 2

every 50 epochs. The maximum validation accuracies achieved

after 500 epochs with the RGB stream and the flow stream

are 85.04% and 84.5% respectively. The combined two-stream

validation accuracy is 91.3%. On a single GPU the RGB

stream takes around 12 hours to train, and the flow stream

takes more than two days to train.

Many machine learning practitioners are primarily con-

cerned with achieving the best possible accuracy. Thus it is

common to manually tune the hyper-parameters for best ac-

curacy. The hyper-parameters chosen, especially the schedule

for reducing the learning rate, can have significant impact

on training time. We discuss parallel speedups in detail in

Section VI.

III. ADAPTIVE-BATCHSIZE MODEL AVERAGING WITH

SPARSE COMMUNICATION

Parallel and distributed implementation of SGD abound in

the literature (e.g., see [18], [5], [15], [28], [4], [13], [14],

[29]). We introduce our adaptive-batchsize model averaging

algorithm, and analyze its convergence behavior in comparison

to existing ASGD implementations. Our analysis helps us set

the right communication frequency for convergence.

The AAVG algorithm solves the non-convex optimization

problem formulated as min
w∈X

F (w) where the objective func-

tion F : Rm → R is continuously differentiable but not neces-

sarily convex over X , and X ⊂ R
m is a nonempty open subset.

F can be understood as either the expected risk F (w) =
Ef(w; ξ) or the empirical risk F (w) = n−1

∑n

i=1 fi(w).

A. The AAVG algorithm

The formal description of AAVG is given in Alg. 1. AAVG

takes the following inputs: the training dataset T , the valida-

tion dataset V , the averaging interval K , the initial batchsize

B, the initial learning rate γ, the validation interval m, the

number of learners P , the number of steps N , and parameters

b1 and b2 that are used to adapt batchsize. With AAVG, P
learners run stochastic gradient descent concurrently (lines 4
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to 11 ), and average their parameters every K steps (line 12).

Every m steps, the algorithm evaluates validation accuracy a
on the validation dataset V and adapts batchsize according to

the validation result (lines 13 to 21).

When K=1, AAVG with constant batchsize is equivalent to

hard-sync parallelization of SGD [6]. Its convergence behavior

is exactly the same as SGD with batchsize PB. K = 1
incurs high overhead due to frequent communication. When

deploying AAVG, the right K plays a critical role in the

convergence speed relative to the number of data samples

processed and communication overhead.

Algorithm 1 AAVG (T , V , K, B, m, γ, P , N , b1, b2)

1: initialize w̃1

2: a∗ ← 0, B0 ← B, γ0 ← γ
3: for n = 1, ..., N do

4: Bn ← Bn−1, γn ← γn−1

5: for j = 1, . . . , P in parallel do

6: set wj
n = w̃n

7: for k = 1, ...,K do

8: randomly sample a mini-batch of size Bn from T

9: w
j
n+k ← w

j
n+k−1 −

γn

Bn

Bn∑
s=1
∇F (wj

n+k−1; ξ
j
k,s)

10: end for

11: end for

12: w̃n+1 ←
1
P

P∑
j=1

w
j
n+K

13: if n%m = 0 then

14: a← evaluate(w̃n+1,V)

15: if a < a∗ · b1 then

16: Bn ← Bn · b2
17: end if

18: if a > a∗ then

19: a∗ ← a
20: end if

21: end if

22: end for

Let ‖·‖2 denote the ℓ2 norm of a vector in R
d, and 〈·〉 denote

the general inner product in R
d We analyze the convergence

behavior of AAVG with fixed stepsize and batchsize under the

following assumptions.

Assumption 1. The objective function F : R
d → R is

continuously differentiable and the gradient function of F is

Lipschitz continuous with Lipschitz constant L > 0, i.e.
∥∥∇F (w) −∇F (w̃)

∥∥
2
≤ L

∥∥
w− w̃

∥∥
2

for all w, w̃ ∈ R
d.

Assumption 2. The sequence of iterates {wj} is contained in

an open set over which F is bounded below by a scalar F ∗.

Assumption 3. For any fixed parameter w, the stochastic gra-

dient ∇F (w; ξ) is an unbiased estimator of the true gradient

corresponding to the parameter w, namely,

Eξ∇F (w; ξ) = ∇F (w).

Assumption 4. There exist scalars M ≥ 0 and MV ≥ 0 such

that, for all k ∈ N,

Eξ

∥∥∇F (w; ξ)
∥∥2

2
−
∥∥Eξ∇F (w; ξ)

∥∥2

2
≤M +MV

∥∥∇F (w)
∥∥2

2
.

The average expected squared gradient norm

E
1
N

N∑
n=1

∥∥∇F (w̃n)
∥∥2

has been used as a metric for measuring

convergence. For example, with ASGD, after K updates to

the parameter server, the bound on E
1
N

N∑
n=1

∥∥∇F (w̃n)
∥∥2

is

[14]

E
1

N

N∑

n=1

∥∥∇F (w̃n)
∥∥2

≤
[C0(F (w̃1)− F ∗)

Nγ̄
+

C1L
2γ̄2M2P

2B̄

]

where C0 and C1 are constants independent of P . As P
increases, the convergence rate guarantee becomes larger

(worse).

The bound on the expected average squared gradient norm

as a convergence guarantee for AAVG with fixed stepsize and

batchsize is given in Theorem 1.

Theorem 1. With a fixed stepsize γn = γ̄ and a fixed batchsize

Bn = B̄ for all n ∈ N satisfying

B̄ ≥ Lγ̄MG(Lγ̄K +
1

P
).

the expected average squared gradient norm of F for AAVG

satisfy the following bounds for all N ∈ N:

E
1

N

N∑

n=1

∥∥∇F (w̃n)
∥∥2

≤
[
2(F (w̃1)−F∗)

N(K+1)γ̄ + Lγ̄M

B̄

(
1
P
+ LKγ̄

2

)]
·

(
PLγ̄K+1

PLγ̄(K−1)+1

)

Proof. Omitted for brevity.

Theorem 1 provides some guidelines for deploying AAVG.

The
2(F (w̃1)−F∗)

N(K+1)γ̄ term in the bound is primarily impacted

by N and goes to zero as N increases. Increasing K and γ
decreases this term. This in part explains why model averaging

may be effective with infrequent synchronizations (large K)

in our experiments with AAVG. The Lγ̄M

B̄

(
1
P
+ LKγ̄

2

)
term is

independent of N , and is impacted by the choice of P , B, and

K . It favors large B, large P , and small γ. If the total amount

of data samples collectively processed by all learners is kept

constant, this term forces some intricate relationships on the

parameters. For example, when p increases, the constant data

samples constraint forces N to decrease and thus increases the
2(F (w̃1)−F∗)

N(K+1)γ̄ term. Increasing the batchsize B seems beneficial

without side effects. Yet N decreases when B increases.

Increasing B reduces
Lγ̄M

B̄

(
1
P

+ LKγ̄
2

)
but also decreases

N .

The next theorem establishes that frequent synchronization

(e.g., K = 1) is not necessarily beneficial to convergence.

3



Theorem 2. Let S = N ∗K be a constant. Suppose AAVG is

run with a fixed stepsize γn = γ̄ and a fixed batchsize Bn = B̄
for all n ∈ N satisfying

LKγ̄

2
≥

1

P
, and B̄ ≥

3L2Kγ̄2MG

2
.

If 1 ≥ PLγ̄, then the optimal K to choose is Kopt = 1. If

1 < PLγ̄ then there is a unique optimal K value satisfying

Kopt > 1.

Proof. Under the assumptions S = N∗K and LKγ̄/2 ≥ 1/P ,

we can rewrite the bound on the convergence guarantee as

E
1

N

N∑

n=1

∥∥∇F (w̃n)
∥∥2

2

≤
[2(F (w̃1) − F∗)K

Sγ̄(K + 1)
+

L2γ̄2MK

B̄

]( PLγ̄K + 1

PLγ̄(K − 1) + 1

)
.

(1)

To move on, we set

B(K) :=
( αK

K + 1
+ βK

)( aK + 1

a(K − 1) + 1

)

where

α =
2(F (w̃1)− F ∗)

Sγ̄
, β =

L2γ̄2M

B̄
, and a = PLγ̄.

To figure out the monotonicity of B(K), one needs to solve

B′(K) = 0 which is equivalent to solving a quartic equation.

Instead of solving it explicitly, we investigate the solution

analytically. The bound on the convergence guarantee can be

decomposed into two parts:

f(K) =
αK

K + 1
∗
(

aK + 1

a(K − 1) + 1

)
, g(K) = βK ∗

(
aK + 1

a(K − 1) + 1

)
. (2)

One can easily get that

f ′(K) =
α(2aK + 1)(1− a)

(K + 1)2(a(K − 1) + 1)2

which indicates that if 1 > PLγ̄, then it is increasing with

respect to K . Otherwise, it is decreasing. On the other hand,

we have

g′(K) =
β(a2K2 + 2a(1− a)K + 1− a)

(a(K − 1) + 1)2
.

By analyzing the quadratic equation with respect to K , we

conclude: If 1 ≥ a, then g(K) is increasing with respect to

K; if a > 1, then g(K) obtains its minimum when

K̂opt =
a− 1 +

√
a(a− 1)

a
.

Using the condition a > 1 and K ≥ 1, one can easily check

that K̂opt ∈ (0, 2).
If 1 ≥ PLγ̄, the bound is always an increasing function with

respect to K . Together with the constraint LKγ̄/2 ≥ 1/P ,

we have Kopt = 2
LPγ̄

≥ 2. Thus K = 1 is an optimal

choice in this case. However, when 1 < PLγ̄, the situation

becomes complicated. As we discussed above, f(K) is a

decreasing function of K with a sublinear decreasing rate.

g(K) is decreasing at first and then grows almost linearly as

K is increasing. If (F (w̃1)−F ∗)/(Sγ̄) is large enough such

that f(K) is dominant, the bound (1) decreases if K increases.

Meanwhile, a large enough K can make g(K) dominant,

which eventually makes the bound (1) increase as K increases.

As a consequence, when 1 < PLγ̄, the function value B(K)
can be decreasing at the very beginning and increasing almost

linearly later on. Thus the optimal K value of B(K) in this

case satisfies Kopt ≥ 1.

Theorem 2 establishes a foundation for explicitly managing

convergence and communication cost that are both impacted

by K . If the optimal K for convergence is not 1, as a lucky

coincidence, K > 1 also reduces communication overhead on

a cluster.

We experiment with different K values and observe their

impact on the validation accuracy. The results are shown in

Figures 2 and 3. In the figures the evolution of validation

accuracy is plotted.
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Fig. 2: AAVG performance relative to K. For clarity, validation

accuracies are shown for every other epoch. K = −1 is for

averaging the models once after an entire epoch

Fig. 2 shows the impact of K on accuracy for the RGB

stream. We experiment with K=1, 2, 4, 8. We also experiment

with model averaging after an entire epoch is done, represented

by the K=-1 line in the figure. The number of batches each

learner processes in an epoch depends on B and P . With

B = 32 and P = 16, the number of batches processed by a

learner in an epoch is bout 18. The optimizer we use is Adam.

For K=1, 2, 4, and 8 there are no clear winners in terms of the

validation accuracy achieved after each epoch. K=-1 achieves

the highest validation accuracy after 100 epochs among all

runs.

Fig. 3 shows the validation accuracies for the flow stream

for K=1, 2, 4, 8, and -1. AAVG is run for 200 epochs. We use

batchsize 64, and the optimizer is Adam. The plots for K = 1
and K = 2 almost completely overlap with each other. Again

K = −1 yields the best validation accuracy among all runs.

For both streams, our experiments show that Kopt can be

fairly large. Very sparse communication among the learners

actually helps convergence. We use K = −1 for all our AAVG

implementations. With K = −1, computation dominates
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Fig. 3: AAVG performance relative to K. For clarity, validation

accuracies are shown for every 5th epoch

communication. Ignoring I/O overhead (determined by the

storage type and file system), AAVG with K = −1 achieves

near linear speedup with the UCF101 dataset.

AAVG with constant batchsize achieves 81.6% validation

accuracy for the RGB stream , and 84.1% validation accuracy

for the flow stream.

B. Dynamically adapting batchsizes

The bound on the convergence guarantee in Theorem 1

decreases as the learning rate decreases and/or the batch size

increases. The Adam optimizer adaptively scales the learning

rate for each individual gradient component. We consider

dynamically adapting batchsize for faster convergence.

When the objective function F (w) is strongly convex, new

developments for efficient SGD computation focus on methods

that construct increasingly accurate estimates of the gradient

using larger sample batches Bn as iterations progress, i.e.

Bn → ∞ as n → ∞. The intuition behind this ([16]) is that

while gradient estimates from small batches are sufficient at

the beginning of a procedure and make rapid progress, SGD

with increasing batchsize should eventually start to resemble

deterministic algorithms for strongly convex problems via

larger Bn batch sampling (When F is the empirical loss

function, a natural upper bound on Bn is the full dataset).

The batchsize increase schedule can be carefully tuned such

that the overall method enjoys convergence that is linear in

the total computational effort (function evaluations at samples)

expended (see [2] section 5.1). If Mn =
∑

n Bn repre-

sents total effort up to iteration n, then the optimality gap

(F (wn) − F ∗) = O(M−1
n ), and so one needs to expend

O(ǫ−1) effort to reduce the optimality gap to ǫ. No such

guarantee exists for general non-convex F formulations.

AAVG increases the batchsize by a factor of b2 whenever

the validation accuracy does not improve by a margin of b1.

In our implementation, we use b1 = 1 and b2 = 2. We keep

the maximum batchsize to 576.

Fig. 4 shows the impact of dynamically adapting batchsize

on the validation accuracy for the RGB stream. Adaptive B
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Fig. 4: Validation accuracy with adaptive batchsize

(starting at 32) brings significant improvement of accuracy

over constant B=32. The best validation accuracy achieved

with constant B is at 81.6 %, while the best validation

accuracy achieved with adaptive B is at 83.7%. In the figure

batchsize adaption first occurs after 5 epochs. After 20 epochs,

the validation accuracy with batchsize adaptation is much

higher than without.
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Fig. 5: Validation accuracy with adaptive batchsize

The impact of dynamically adapting batchsize on the valida-

tion accuracy for the flow stream can be found in Fig. 5. Again

we notice adaptive B brings improvement of accuracy over

constant B, although the improvement is not as dramatic as

that for the RGB stream. The best validation accuracy achieved

with constant B is at 84.1 %, while the best validation

accuracy achieved with adaptive B is at 84.5%.

IV. CUSTOMIZING THE OPTIMIZER FOR AAVG

AAVG averages the weights from all learners after each K
steps and adapts the batchsize. To avoid manually tuning the

learning rates, we use the Adam optimizer to manage them

n our experiments. Adam maintains two quantities, m, the

weighted average of historical gradients, and v, the weighted

average of the historical squared gradients. The learning rate

5



of each component in the gradient is scaled by m√
v

. From the

perspective of each Adam optimizer, model averaging disrupts

its internal state, that is, m and v, as the model weights have

changed. We adjust m and v in the Adam optimizer for AAVG.

The ResNet model used in our two-stream training employs

batch normalization [9]. Batch normalization has been shown

to significantly boost neural network performance. During

validation batch normalization maintains a running mean and

variance of the input for the specific layer and rescaling these

inputs according to the mean and variance. After averaging

in AAVG, the current mean and variance may no longer be a

good fit for the next batch, and need to be adjusted.

Alg. 2 implements the customization of Adam and batch

normalization for AAVG. Alg. 2 takes 4 inputs, {mj}, {vj},
{mb

j}, and {vbj}, 1 ≤ j ≤ P . Among them, {mj} and {vj}
are the internal states for the Adam optimizer. They are first

summed in reductions (line 2) and each optimizer updates its

local mj and vj as the average (line 5).

After model averaging, the running mean and variance

for batch normalization at each learner are re-computed by

combining the mean and variance from other learners (line 6).

Algorithm 2 Adjust-optimizer({mj}, {vj}, {m
b
j}, {v

b
j},

P )

1: zj ← vbj + (mb
j)

2

2: set m =
∑P

j mj , v =
∑P

j vj

3: set mb =
∑P

j mb
j , set z =

∑P
j zj

4: for j = 1, . . . , P in parallel do

5: mj ← m/P , vj ← v/P
6: mb

j ← mb/P , vbj ← z/P − (mb
j)

2

7: end for

For the RGB stream the impact of customizing the optimizer

for AAVG on the validation accuracy is illustrated in Fig. 6.

In the figure, AAVG with customized Adam consistently

outperforms AAVG after 20 epochs. The highest accuracy

achieved with optimizer customization is 85.06 %, while the

highest accuracy achieved with AAVG is 83.7%. It takes

AAVG with customized Adam 61 minutes to train the RGB

stream with 16 GPUs, while it takes the base-line single-GPU

SGD implementation 2067 minutes to train to achieve similar

validation accuracy.

Fig. 7 shows for the flow stream the impact of customizing

the optimizer for AAVG on the validation accuracy. In the

figure, the highest accuracy achieved by AAVG with cus-

tomized Adam is 84.7 %, while the highest accuracy achieved

with AAVG is 84.5%. It takes AAVG with customized Adam

439 minutes to train the flow stream on 16 GPUs. It takes a

few days for the single-GPU implementation to train the flow

stream.

The accuracy after combining results from the two streams

is 91.4%.
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Fig. 6: Improvement with adjusting the optimizer for AAVG
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Fig. 7: Improvement with adjusting the optimizer for AAVG

V. TRANSFER LEARNING FOR TRAINING THE FLOW

STREAM

Two factors contribute to the slower training of the flow

stream compared to the RGB stream. The first is that the

pretrained ResNet was trained with RGB images not flow

inputs. The second is that the input layer of the modified

ResNet used in the flow stream has significantly more channels

and thus more weights to train.

To further accelerate training for the flow stream, one

option is to use more GPUs. This is not always attractive

as it demands more computing resources. In addition, our

analysis of the convergence guarantee in Theorem 1 indicates

convergence challenges with large P .

Instead of using ResNet with weights trained on ImageNet,

we use the network trained for the RGB stream. For the input

layer, we populate the filter weights for each channel with the

mean of the weights of the 3 RGB channels in the ResNet for

the RGB stream.

Figure 8 compares the convergence behavior of AAVG

(with customized Adam) and AAVG with transfer learning in

addition to customized Adam for the flow stream. In the figure,

the validation accuracy with transfer learning is significantly

6



higher than AAVG without transfer learning for the first 100

epochs. Eventually the highest validation accuracies achieved

by the two approaches are similar, but with transfer learning

the highest accuracy is achieved at around epoch 150, while

without transfer learning the highest accuracy is achieved at

around epoch 185.
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Fig. 8: Impact of transfer learning on the flow stream

In addition to accelerating the training of the flow stream,

the accuracy from combining the two streams is also improved

with transfer learning. Tab. I shows the accuracies achieved

by the four AAVG implementations with the RGB stream, the

flow stream, and the combined two streams for the UCF101

and the HMDB51 datasets. In the table, AAV G1 imple-

ments AAV G with constant batchsize; AAV G2 implements

AAV G with adaptive batchsize; AAV G3 implements AAVG

with both adaptive batchsize and customized optimizer; and

AAV G4 is AAV G3 with weights transferring from the RGB

stream to the flow stream. For the HMDB51 dataset, we

show only results for AAV G3 and AAV G4 due to limited

machine time available on the cluster to run experiments. For

the UCF101 dataset, from AAV G1 to AAV G4, the combined

two-stream accuracy consistently increases. Note that the RGB

stream of AAV G4 is exactly the same as the RGB stream

of AAV G3. Although transfer learning does not improve the

validation accuracy of the flow stream, it does significantly

increases the accuracy of the two streams combined.

UCF101 HMDB51

RGB Flow 2stream RGB Flow 2stream

AAVG1 81.6 84.1 88.3 - - -

AAVG2 83.7 84.5 89.7 - - -

AAVG3 85.6 84.7 91.4 61.4 55.9 67.0

AAVG4 85.6 84.7 93.04 61.4 56.0 67.9

TABLE I: Comparison of different AAVG implementations

VI. DISCUSSION ON SPEEDUPS

In training deep neural networks, the additional accuracy

dimension makes comparing speedup results less straight-

forward. It is extremely rare that training with different

implementations results in the same model with the same

training/validation accuracy. Moreover, a slight increase in

accuracy may require many epochs of additional training.

AAVG achieves superlinear speedup over the base-line

single-GPU implementation for similar accuracies achieved

due in part to the fact that the single-GPU SGD implemen-

tation runs for more epochs. Note that AAVG uses Adam

as the optimizer. It is entirely possible that extensive hyper-

parameter search may yield a better learning rate adaptation

schedule with which SGD may converge with fewer epochs.

Yet hyper-parameter search itself is extremely time consuming.

As AAVG uses Adam, it does not rely on hyper-parameter

search to find the right learning rate adaptation schedule. In

our analysis of AAVG, we establish that sparse communication

actually results in better convergence behavior. Thus ignoring

I/O overhead, we expect close to linear speedup if we compare

the time spent on one epoch by AAVG and the single-GPU

SGD implementation. The performance of the algorithm in

terms of both accuracy achieved and time spent on training

depends almost entirely on its convergence property.

It is therefore interesting to compare the convergence be-

havior of AAVG with single-GPU Adam. We run AAVG with

16 GPUs and Adam with a single GPU. The evolution of

validation accuracies are shown in Fig. 9.
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Fig. 9: AAVG vs. Adam

In Fig. 9, in the first a few epochs, Adam reaches higher val-

idation accuracy than AAVG. After 5 epochs, AAVG catches

up, and maintains higher validation accuracy than Adam. The

best accuracy achieved with Adam is 67.5%.

VII. CONCLUSION AND FUTURE WORK

Training deep neural networks for action recognition is time

consuming. AAVG is an efficient distributed training algorithm

with adaptive batchsize that explicitly manages the impact of

model averaging frequency on both convergence and commu-

nication overhead. According to our analysis and experimental

evaluation, AAVG with very sparse synchronization (i.e. once

per epoch), shows very good convergence behavior. As a

happy conincidence, the communication overhead is very low.

Customizing the Adam optimizer and its batch normalization

for AAVG improves training time and accuracy. For the

7



two-stream action recognition approach, we employ transfer-

learning from the spatial stream to the temporal stream that

further reduces training time for the flow stream with improved

validation accuracy.

In its best convergence results, AAVG shows super-linear

speedups on 16 GPUs over the base-line single-GPU SGD

implementation while improving accuracy. For the UCF101

dataset, our validation accuracy is 93.1%. As far as we know,

this is the highest accuracy achieved with the two-stream

approach that does not involve 3D convolution or pretraining

on much larger datasets. For the HMDB51 dataset, AAVG

achieves a validation accuracy of 67.9%.

In our future work, we plan to evaluate our algorithm on

even larger datasets.
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