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Abstract—Due to the additional temporal dimension, large-
scale video action recognition is even more challenging than
image recognition and typically takes days to train on modern
GPUs even for modest-sized datasets. We propose algorithms
and techniques to accelerate training of deep neural networks
for action recognition on a cluster of GPUs.

In terms of convergence and scaling, our distributed training
algorithm with adaptive batch size is provably superior to
popular asynchronous stochastic gradient descent algorithms.
The convergence analysis of our algorithm shows it is possible
to reduce communication cost and at the same time minimize
the number of iterations needed for convergence. We customize
the Adam optimizer for our distributed algorithm to improve
efficiency. In addition, we employ transfer-learning to further
reduce training time while improving validation accuracy.

Compared with the base-line single-GPU stochastic gradient
descent implementation of the two-stream training approach, our
implementation achieves super-linear speedups on 16 GPUs while
improving validation accuracy. For the UCF101 and HMDB51
datasets, the validation accuracies achieved are 93.1% and 67.9%
respectively. As far as we know, these are the highest accuracies
achieved with the two-stream approach that does not involve
computationally expensive 3D convolutions or pretraining on
much larger datasets.

I. INTRODUCTION

Image recognition and object detection have made tremen-
dous progress since the adoption of deep convolutional neural
networks (CNN). Current CNN models can classify the Ima-
geNet dataset [20] with over 1 million (M) inputs with very
high accuracy (e.g., see [22], [11], [8], [24]), and they can also
detect objects in a video frame in real time (e.g., see [19]).
Large amounts of data are needed to train these models, and
recent studies have tried to accelerate training (e.g., see [27],
[7D.

Compared to image classification, video action recognition
is even more challenging due to the additional temporal
dimension. The CNNs for action recognition are typically
more complex than those used in image recognition, which
causes their training to take even longer. Currently there are
two main approaches of action recognition using CNNs. The
first is a two-stream approach (e.g., see [21]) where sample
frames of a video are fed to a CNN as a spatial stream (also
called RGB stream), and the optical flows between frames are
fed to another CNN as a temporal stream (also called the flow
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stream). The predictions of the two streams are then com-
bined for classification. The second approach employs three-
dimensional (3D) convolutions (2D for the spatial dimension
with additional 1D for the temporal dimension) (e.g., see [3],
[26]). 3D convolutions are computationally very costly, and
the validation accuracies achieved are often times not much
better than those achieved by the two-stream approaches. In
our study we accelerate training for a single-GPU two-stream
implementation.

Our primary dataset is UCF101 [23]. UCF101 has over
13,000 video in 101 action categories. There are over 9500
training videos, and over 3700 validation videos. We also show
results on the HMDBS51 dataset [12].

The base-line single GPU implementation take days to train
both streams. We propose a distributed training algorithm to
reduce training time. In addition to communication overhead
that adversely impacts parallel efficiency, distributed training
also faces convergence challenges. Typically if we increase
the number of learners in a distributed implementation, more
data samples need to be processed to reach convergence.
Communication frequency plays a critical role on both com-
munication overhead and convergence speed. We adopt an
adaptive-batchsize K-step model averaging algorithm (AAVG)
to explicitly manage communication frequency. Our analysis
shows that in terms of accuracy and scaling, AAVG is superior
to popular asynchronous stochastic gradient descent (ASGD)
implementations such as Downpour [S5] and EAMSGD [29].
For our target datasets, we show that communication in
AAVG can be very sparse for optimal convergence. From
the perspective of distributed processing, AAVG achieves
almost linear speedup relative to the single-GPU baseline SGD
implementation for the same amount of data samples pro-
cessed. In addition to communication frequency, AAVG also
dynamically adapts batch sizes to balance convergence speed
and variance reduction among samples. For training with our
target datasets, we use the Adam optimizer [10] to avoid costly
hyper-parameter tuning (e.g., see [1]). Customizing Adam for
AAVG brings significant improvement in convergence speed.

AAVG significantly reduces the training time for the RGB
stream and the flow stream. Still, it takes much longer to train
the flow stream than the RGB stream. We transfer the model
learned for the RGB stream to the flow stream, reducing the
training time by as much as 30% while increasing validation



accuracy.

With our optimizations, AAVG actually processes fewer
samples than the baseline single-GPU implementation, and
thus achieves super linear speedups. It takes a couple hours
for AAVG to train both streams on 16 GPUs for the UCF101
dataset. For the UCF101 and HMDB51 datasets, the validation
accuracies achieved are 93.1% and 67.9% respectively. As far
as we know, these are the highest accuracies achieved with the
two-stream approach that does not involve computationally
expensive 3D convolutions or pretraining on much larger
datasets.

Our main contributions include a fast and adaptive dis-
tributed training algorithm and a transfer learning strategy for
speeding up the training of the flow stream.

In our study all implementations use Pytorch [17]. Commu-
nication among learners is done using CUDA-aware openMPI
2.0 through MPI4Py. Our cluster has 4 IBM Minsky nodes.
Each node has 2 Power8 GPUs with 10 cores each and 4
NVIDIA Tesla P100 GPUs. The interconnect between the
nodes is Infiniband.

The rest of the paper is organized as follows. Section II
introduces the two stream action recognition approach and the
neural networks used; Section III introduces AAVG and its
convergence properties, and demonstrates its performance with
UCF101; Section IV customizes Adam for AAVG; Section V
presents our results of transferring the model from the RGB
stream to the flow stream to accelerate the training; Section VI
discusses the speedup results achieved by AAVG; and Sec-
tion VII gives our conclusion and future work.

II. TWO-STREAM ACTION RECOGNITION

The baseline two-stream training for action recognition
implements the approach described in [21], and is illustrated
in Fig. 1. During training for the RGB stream, a random
frame from an input video is sampled and fed into a CNN
followed by a fully-connected layer for classification. For the
flow stream optical flows are computed for two consecutive
frames, and 10 consecutive flows are randomly sampled and
fed to another CNN. During training validation accuracy for
each stream is computed by averaging the prediction of 5 data
samples. The two streams are trained separately. For the final
validation, 25 samples are used for each stream instead of 5.
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Fig. 1: Two-stream training architecture

Both CNNSs in our study are based on ResNetl152 [8] with
some modifications to the first and last layers. The weights in
ResNet152 are pretrained on the ImageNet dataset [20]. For
the RGB stream, the last layer of ResNetl152 is modified for
101 output classes instead of 1000. For the flow stream, in
addition to the modification to the last layer, the input layer
is changed to 20 channels instead of the original 3 channels.
Simple averaging is used to combine the predictions from the
two streams.

The baseline implementation adopts a data augmentation
scheme described in [25]. The video frames are first scaled
to size 256 x 340. During training, a multi-scaled crop (random
crop whose width and height are randomly chosen from
256,224,192, 168, followed by a re-size of the cropped region
to 224 x 224) and a random horizontal flip are applied to the
input. During validation, a center crop of 224 x 224 without
scaling is applied to the input.

The baseline single-GPU training uses an initial learning
rate of 0.01, and the learning rate is reduced by a factor of 2
every 50 epochs. The maximum validation accuracies achieved
after 500 epochs with the RGB stream and the flow stream
are 85.04% and 84.5% respectively. The combined two-stream
validation accuracy is 91.3%. On a single GPU the RGB
stream takes around 12 hours to train, and the flow stream
takes more than two days to train.

Many machine learning practitioners are primarily con-
cerned with achieving the best possible accuracy. Thus it is
common to manually tune the hyper-parameters for best ac-
curacy. The hyper-parameters chosen, especially the schedule
for reducing the learning rate, can have significant impact
on training time. We discuss parallel speedups in detail in
Section VI.

III. ADAPTIVE-BATCHSIZE MODEL AVERAGING WITH
SPARSE COMMUNICATION

Parallel and distributed implementation of SGD abound in
the literature (e.g., see [18], [S], [15], [28], [4], [13], [14],
[29]). We introduce our adaptive-batchsize model averaging
algorithm, and analyze its convergence behavior in comparison
to existing ASGD implementations. Our analysis helps us set
the right communication frequency for convergence.

The AAVG algorithm solves the non-convex optimization
problem formulated as miI)l( F(w) where the objective func-

tion F': R™ — Ris con‘gnuously differentiable but not neces-
sarily convex over X', and X C R"" is a nonempty open subset.
F' can be understood as either the expected risk F'(w) =
Ef(w;&) or the empirical risk F(w) =n~"1>"" | fi(w).

A. The AAVG algorithm

The formal description of AAVG is given in Alg. 1. AAVG
takes the following inputs: the training dataset 7, the valida-
tion dataset ), the averaging interval K, the initial batchsize
B, the initial learning rate -, the validation interval m, the
number of learners P, the number of steps N, and parameters
b; and by that are used to adapt batchsize. With AAVG, P
learners run stochastic gradient descent concurrently (lines 4



to 11 ), and average their parameters every K steps (line 12).
Every m steps, the algorithm evaluates validation accuracy a
on the validation dataset V and adapts batchsize according to
the validation result (lines 13 to 21).

When K=1, AAVG with constant batchsize is equivalent to
hard-sync parallelization of SGD [6]. Its convergence behavior
is exactly the same as SGD with batchsize PB. K = 1
incurs high overhead due to frequent communication. When
deploying AAVG, the right K plays a critical role in the
convergence speed relative to the number of data samples
processed and communication overhead.

Algorithm 1 AAVG (T, V, K, B, m, v, P, N, by, bs)
1: initialize wy
2:a* <« 0, By B, v+~
3: forn=1,..,N do

4: Bn <— anl, Yn < Yn—1

5: for j=1,..., P in parallel do

6: set Wi = w,

7: for k=1,...,K do

8: randomly sample a mini- batch of size B,, from T
o Wk W1 T B Z VE (W, 1»§k 5)
10: end for

11:  end for
12: v~vn+1<— an+K

13: if n%m = 0 then

14: a <+ evaluate(Wp41, V)
15: if a < a*-b; then

16: B, < B, - by

17: end if

18: if a > a* then

19: a* +—a

20: end if

21:  end if

22: end for

Let ||-||2 denote the £, norm of a vector in R, and (-) denote
the general inner product in RY We analyze the convergence
behavior of AAVG with fixed stepsize and batchsize under the
following assumptions.

Assumption 1. The objective function F' : RY — R is
continuously differentiable and the gradient function of F' is
Lipschitz continuous with Lipschitz constant L > 0, i.e.

IVE(w) = VEW®)], < Lilw - w],
for all w, w € R

Assumption 2. The sequence of iterates {w;} is contained in
an open set over which F' is bounded below by a scalar F'™*.

Assumption 3. For any fixed parameter w, the stochastic gra-
dient VF(w; &) is an unbiased estimator of the true gradient
corresponding to the parameter w, namely,

E:VF(w;&) = VF(w).

Assumption 4. There exist scalars M > 0 and My > 0 such
that, for all k € N,

Eel|VE(w; )5~ [BeVE(w: )5 < M+ My | VEW)5.

The average expected squared gradient norm

N
E+ Z_:l |VF (v~vn)H2 has been used as a metric for measuring
convergence. For example, with ASGD, after K updates to

N

the parameter server, the bound on E4 > HVF({Tvn)H2 is
n=1

[14]

CLL*32M2P

1 & 2 Co(F (W) — F*
By Y vFG|f < [P A

where Cy and C) are constants independent of P. As P
increases, the convergence rate guarantee becomes larger
(worse).

The bound on the expected average squared gradient norm
as a convergence guarantee for AAVG with fixed stepsize and
batchsize is given in Theorem 1.

Theorem 1. With a fixed stepsize 7y,
B,, = B for all n € N satisfying

= 7 and a fixed batchsize

_ 1
B > LyMg(LAK + F)'

the expected average squared gradient norm of I for AAVG
satisfy the following bounds for all N € N:

N
Z|VFwn §{

N(K+1)7
PLYK+1
PLy(K—1)+1

Proof. Omitted for brevity. |

2(F(wy)—F7™) 4 LyM (% @)} .
B

Theorem 1 provides some guidelines for deploying AAVG.
The % term in the. bound is primar.ily impacted
by N and goes to zero as N increases. Increasing K and -y
decreases this term. This in part explains why model averaging

may be effective with infrequent synchronizations (large K)
in our experiments with AAVG. The EE}M % + %7 term is
independent of NV, and is impacted by the choice of P, B, and
K. Tt favors large B, large P, and small . If the total amount
of data samples collectively processed by all learners is kept
constant, this term forces some intricate relationships on the
parameters. For example, when p increases, the constant data
samples constraint forces N to decrease and thus increases the
% term. Increasing the batchsize B seems beneficial
without side effects. Yet N decreases when B increases.
Increasing B reduces L%M 5+ LK” but also decreases
N.

The next theorem establishes that frequent synchronization
(e.g., K = 1) is not necessarily beneficial to convergence.




Theorem 2. Let S = N x K be a constant. Suppose AAVG is
run with a fixed stepsize v, = 7 and a fixed batchsize B,, = B
for all n € N satisfying
LEY (1 3K MG

2 TP 2
If 1 > PL#, then the optimal K to choose is K,y = 1. If

1 < PL# then there is a unique optimal K value satisfying
Kopt > 1.

Proof. Under the assumptions S = NxK and LK#%/2 > 1/P,
we can rewrite the bound on the convergence guarantee as
1 N
~ 2
By 2 IV FE;

< [2(F(W1) - F)K L*5°MK
[ SY(K + 1) B ] (

1)

PLAK +1 )
PLy(K —1)+1/°

To move on, we set

aK aK +1
BK) = (K+1 +BK)(CL(K—1)+1)
where
= I ntt 252
a:z(F(le F), :LFY_M, and a = PL#.
S B

To figure out the monotonicity of B(K'), one needs to solve
B'(K) = 0 which is equivalent to solving a quartic equation.
Instead of solving it explicitly, we investigate the solution
analytically. The bound on the convergence guarantee can be
decomposed into two parts:

aK aK +1 aK +1
K+1 (a(K71)+1)’g(K):ﬁK*(a(K71)+1)' @

One can easily get that

fF(K) =

a(2aK +1)(1 —a)
(K +1)?(a(K —1)+1)2
which indicates that if 1 > PL#, then it is increasing with

respect to K. Otherwise, it is decreasing. On the other hand,
we have

F(K) =

B(a*K? +2a(1 —a)K +1—a)
(a(K —1)+1)?

By analyzing the quadratic equation with respect to K, we
conclude: If 1 > a, then g(K) is increasing with respect to
K; if a > 1, then g(K) obtains its minimum when

= a—1++/ala—1)
Ropt = Y .

UsingA the condition @ > 1 and K > 1, one can easily check
that K, € (0,2).

If 1 > PL#, the bound is always an increasing function with
respect to K. Together with the constraint LK5/2 > 1/P,
we have K, = Lip;y > 2. Thus K = 1 is an optimal
choice in this case. However, when 1 < PL#~, the situation
becomes complicated. As we discussed above, f(K) is a
decreasing function of K with a sublinear decreasing rate.
g(K) is decreasing at first and then grows almost linearly as
K is increasing. If (F(wy) — F™*)/(S7) is large enough such

J(K)=

that f(K) is dominant, the bound (1) decreases if K increases.
Meanwhile, a large enough K can make ¢g(K) dominant,
which eventually makes the bound (1) increase as K increases.
As a consequence, when 1 < PL#, the function value B(K)
can be decreasing at the very beginning and increasing almost
linearly later on. Thus the optimal K value of B(K) in this
case satisfies K,p; > 1. O

Theorem 2 establishes a foundation for explicitly managing
convergence and communication cost that are both impacted
by K. If the optimal K for convergence is not 1, as a lucky
coincidence, K > 1 also reduces communication overhead on
a cluster.

We experiment with different K values and observe their
impact on the validation accuracy. The results are shown in
Figures 2 and 3. In the figures the evolution of validation
accuracy is plotted.
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Fig. 2: AAVG performance relative to K. For clarity, validation
accuracies are shown for every other epoch. K = —1 is for
averaging the models once after an entire epoch

Fig. 2 shows the impact of K on accuracy for the RGB
stream. We experiment with K=1, 2, 4, 8. We also experiment
with model averaging after an entire epoch is done, represented
by the K=-1 line in the figure. The number of batches each
learner processes in an epoch depends on B and P. With
B = 32 and P = 16, the number of batches processed by a
learner in an epoch is bout 18. The optimizer we use is Adam.
For K=1, 2, 4, and 8 there are no clear winners in terms of the
validation accuracy achieved after each epoch. K=-1 achieves
the highest validation accuracy after 100 epochs among all
runs.

Fig. 3 shows the validation accuracies for the flow stream
for K=1, 2, 4, 8, and -1. AAVG is run for 200 epochs. We use
batchsize 64, and the optimizer is Adam. The plots for K =1
and K = 2 almost completely overlap with each other. Again
K = —1 yields the best validation accuracy among all runs.

For both streams, our experiments show that K,,; can be
fairly large. Very sparse communication among the learners
actually helps convergence. We use K = —1 for all our AAVG
implementations. With K = —1, computation dominates
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Fig. 3: AAVG performance relative to K. For clarity, validation
accuracies are shown for every 5! epoch

communication. Ignoring I/O overhead (determined by the
storage type and file system), AAVG with K = —1 achieves
near linear speedup with the UCF101 dataset.

AAVG with constant batchsize achieves 81.6% validation
accuracy for the RGB stream , and 84.1% validation accuracy
for the flow stream.

B. Dynamically adapting batchsizes

The bound on the convergence guarantee in Theorem 1
decreases as the learning rate decreases and/or the batch size
increases. The Adam optimizer adaptively scales the learning
rate for each individual gradient component. We consider
dynamically adapting batchsize for faster convergence.

When the objective function F'(w) is strongly convex, new
developments for efficient SGD computation focus on methods
that construct increasingly accurate estimates of the gradient
using larger sample batches B,, as iterations progress, i.e.
B,, — 00 as n — oo. The intuition behind this ([16]) is that
while gradient estimates from small batches are sufficient at
the beginning of a procedure and make rapid progress, SGD
with increasing batchsize should eventually start to resemble
deterministic algorithms for strongly convex problems via
larger B,, batch sampling (When F' is the empirical loss
function, a natural upper bound on B, is the full dataset).
The batchsize increase schedule can be carefully tuned such
that the overall method enjoys convergence that is linear in
the total computational effort (function evaluations at samples)
expended (see [2] section 5.1). If M, = Zn B,, repre-
sents total effort up to iteration n, then the optimality gap
(F(w,) — F*) = O(M, '), and so one needs to expend
O(e™1) effort to reduce the optimality gap to e. No such
guarantee exists for general non-convex F' formulations.

AAVG increases the batchsize by a factor of by whenever
the validation accuracy does not improve by a margin of b;.
In our implementation, we use by = 1 and by = 2. We keep
the maximum batchsize to 576.

Fig. 4 shows the impact of dynamically adapting batchsize
on the validation accuracy for the RGB stream. Adaptive B
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Fig. 4: Validation accuracy with adaptive batchsize

(starting at 32) brings significant improvement of accuracy
over constant B=32. The best validation accuracy achieved
with constant B is at 81.6 %, while the best validation
accuracy achieved with adaptive B is at 83.7%. In the figure
batchsize adaption first occurs after 5 epochs. After 20 epochs,
the validation accuracy with batchsize adaptation is much
higher than without.
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Fig. 5: Validation accuracy with adaptive batchsize

The impact of dynamically adapting batchsize on the valida-
tion accuracy for the flow stream can be found in Fig. 5. Again
we notice adaptive B brings improvement of accuracy over
constant B, although the improvement is not as dramatic as
that for the RGB stream. The best validation accuracy achieved
with constant B is at 84.1 %, while the best validation
accuracy achieved with adaptive B is at 84.5%.

IV. CUSTOMIZING THE OPTIMIZER FOR AAVG

AAVG averages the weights from all learners after each K
steps and adapts the batchsize. To avoid manually tuning the
learning rates, we use the Adam optimizer to manage them
n our experiments. Adam maintains two quantities, m, the
weighted average of historical gradients, and v, the weighted
average of the historical squared gradients. The learning rate



of each component in the gradient is scaled by % From the
perspective of each Adam optimizer, model averaging disrupts
its internal state, that is, m and v, as the model weights have
changed. We adjust m and v in the Adam optimizer for AAVG.

The ResNet model used in our two-stream training employs
batch normalization [9]. Batch normalization has been shown
to significantly boost neural network performance. During
validation batch normalization maintains a running mean and
variance of the input for the specific layer and rescaling these
inputs according to the mean and variance. After averaging
in AAVG, the current mean and variance may no longer be a
good fit for the next batch, and need to be adjusted.

Alg. 2 implements the customization of Adam and batch
normalization for AAVG. Alg. 2 takes 4 inputs, {m;}, {v;},
{mb}, and {v%}, 1 < j < P. Among them, {m;} and {v;}
are the internal states for the Adam optimizer. They are first
summed in reductions (line 2) and each optimizer updates its
local m; and v; as the average (line 5).

After model averaging, the running mean and variance
for batch normalization at each learner are re-computed by
combining the mean and variance from other learners (line 6).

Algorithm 2 Adjust-optimizer({m;}, {v;}, {m?}, {v}},

P)
I zj v? + (mg’-)2
2: set m = Zf mj, v = Zf v;
3 set mb = Zf mb, set z = Zf Zj
4: for j =1,..., P in parallel do
5. mj < m/P,vj < v/P
6 mb < mb/P, v} z/P— (mh)?
7: end for

For the RGB stream the impact of customizing the optimizer
for AAVG on the validation accuracy is illustrated in Fig. 6.
In the figure, AAVG with customized Adam consistently
outperforms AAVG after 20 epochs. The highest accuracy
achieved with optimizer customization is 85.06 %, while the
highest accuracy achieved with AAVG is 83.7%. It takes
AAVG with customized Adam 61 minutes to train the RGB
stream with 16 GPUs, while it takes the base-line single-GPU
SGD implementation 2067 minutes to train to achieve similar
validation accuracy.

Fig. 7 shows for the flow stream the impact of customizing
the optimizer for AAVG on the validation accuracy. In the
figure, the highest accuracy achieved by AAVG with cus-
tomized Adam is 84.7 %, while the highest accuracy achieved
with AAVG is 84.5%. It takes AAVG with customized Adam
439 minutes to train the flow stream on 16 GPUs. It takes a
few days for the single-GPU implementation to train the flow
stream.

The accuracy after combining results from the two streams
is 91.4%.
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Fig. 6: Improvement with adjusting the optimizer for AAVG
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Fig. 7: Improvement with adjusting the optimizer for AAVG

V. TRANSFER LEARNING FOR TRAINING THE FLOW
STREAM

Two factors contribute to the slower training of the flow
stream compared to the RGB stream. The first is that the
pretrained ResNet was trained with RGB images not flow
inputs. The second is that the input layer of the modified
ResNet used in the flow stream has significantly more channels
and thus more weights to train.

To further accelerate training for the flow stream, one
option is to use more GPUs. This is not always attractive
as it demands more computing resources. In addition, our
analysis of the convergence guarantee in Theorem 1 indicates
convergence challenges with large P.

Instead of using ResNet with weights trained on ImageNet,
we use the network trained for the RGB stream. For the input
layer, we populate the filter weights for each channel with the
mean of the weights of the 3 RGB channels in the ResNet for
the RGB stream.

Figure 8 compares the convergence behavior of AAVG
(with customized Adam) and AAVG with transfer learning in
addition to customized Adam for the flow stream. In the figure,
the validation accuracy with transfer learning is significantly



higher than AAVG without transfer learning for the first 100
epochs. Eventually the highest validation accuracies achieved
by the two approaches are similar, but with transfer learning
the highest accuracy is achieved at around epoch 150, while
without transfer learning the highest accuracy is achieved at
around epoch 185.
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Fig. 8: Impact of transfer learning on the flow stream

In addition to accelerating the training of the flow stream,
the accuracy from combining the two streams is also improved
with transfer learning. Tab. I shows the accuracies achieved
by the four AAVG implementations with the RGB stream, the
flow stream, and the combined two streams for the UCF101
and the HMDBS1 datasets. In the table, AAV Gy imple-
ments AAV G with constant batchsize; AAV G5 implements
AAV G with adaptive batchsize; AAV G5 implements AAVG
with both adaptive batchsize and customized optimizer; and
AAV G, is AAV Gs with weights transferring from the RGB
stream to the flow stream. For the HMDBS51 dataset, we
show only results for AAVG3 and AAV G4 due to limited
machine time available on the cluster to run experiments. For
the UCF101 dataset, from AAV G4 to AAV G4, the combined
two-stream accuracy consistently increases. Note that the RGB
stream of AAV Gy is exactly the same as the RGB stream
of AAV (3. Although transfer learning does not improve the
validation accuracy of the flow stream, it does significantly
increases the accuracy of the two streams combined.

UCF101 HMDB51
RGB | Flow | 2stream RGB | Flow | 2stream
AAV Gy 81.6 84.1 88.3 - - -
AAV G 83.7 84.5 89.7 - - -
AAVGs 85.6 84.7 91.4 61.4 55.9 67.0
AAVGy 85.6 84.7 93.04 61.4 56.0 67.9

TABLE I: Comparison of different AAVG implementations

VI. DISCUSSION ON SPEEDUPS

In training deep neural networks, the additional accuracy
dimension makes comparing speedup results less straight-
forward. It is extremely rare that training with different
implementations results in the same model with the same

training/validation accuracy. Moreover, a slight increase in
accuracy may require many epochs of additional training.

AAVG achieves superlinear speedup over the base-line
single-GPU implementation for similar accuracies achieved
due in part to the fact that the single-GPU SGD implemen-
tation runs for more epochs. Note that AAVG uses Adam
as the optimizer. It is entirely possible that extensive hyper-
parameter search may yield a better learning rate adaptation
schedule with which SGD may converge with fewer epochs.
Yet hyper-parameter search itself is extremely time consuming.
As AAVG uses Adam, it does not rely on hyper-parameter
search to find the right learning rate adaptation schedule. In
our analysis of AAVG, we establish that sparse communication
actually results in better convergence behavior. Thus ignoring
I/0 overhead, we expect close to linear speedup if we compare
the time spent on one epoch by AAVG and the single-GPU
SGD implementation. The performance of the algorithm in
terms of both accuracy achieved and time spent on training
depends almost entirely on its convergence property.

It is therefore interesting to compare the convergence be-
havior of AAVG with single-GPU Adam. We run AAVG with
16 GPUs and Adam with a single GPU. The evolution of
validation accuracies are shown in Fig. 9.

RGB

Accuracy

20 AAVG —+— 1
10 ) ) ) ) ) ) _Adam —%—
10 20 30 40 50 60 70 80 90 100
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Fig. 9: AAVG vs. Adam

In Fig. 9, in the first a few epochs, Adam reaches higher val-
idation accuracy than AAVG. After 5 epochs, AAVG catches
up, and maintains higher validation accuracy than Adam. The
best accuracy achieved with Adam is 67.5%.

VII. CONCLUSION AND FUTURE WORK

Training deep neural networks for action recognition is time
consuming. AAVG is an efficient distributed training algorithm
with adaptive batchsize that explicitly manages the impact of
model averaging frequency on both convergence and commu-
nication overhead. According to our analysis and experimental
evaluation, AAVG with very sparse synchronization (i.e. once
per epoch), shows very good convergence behavior. As a
happy conincidence, the communication overhead is very low.
Customizing the Adam optimizer and its batch normalization
for AAVG improves training time and accuracy. For the



two-stream action recognition approach, we employ transfer-
learning from the spatial stream to the temporal stream that
further reduces training time for the flow stream with improved
validation accuracy.

In its best convergence results, AAVG shows super-linear
speedups on 16 GPUs over the base-line single-GPU SGD
implementation while improving accuracy. For the UCF101
dataset, our validation accuracy is 93.1%. As far as we know,
this is the highest accuracy achieved with the two-stream
approach that does not involve 3D convolution or pretraining
on much larger datasets. For the HMDBS51 dataset, AAVG
achieves a validation accuracy of 67.9%.

In our future work, we plan to evaluate our algorithm on
even larger datasets.
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