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Abstract—CORAL, the Collaboration of Oak Ridge, Argonne
and Livermore, is fielding two similar IBM systems, Summit and
Sierra, with NVIDIA GPUs that will replace the existing Titan
and Sequoia systems. Summit and Sierra are currently ranked
No. 1 and No. 3, respectively on the Top500 list. We discuss the
design and key differences of the systems. Our evaluation of the
systems highlights the following. Applications that fit in HBM see
the most benefit and may prefer more GPUs; however, for some
applications, the CPU-GPU bandwidth is more important than
the number of GPUs. The node-local burst buffer scales linearly,
and can achieve a 4X improvement over the parallel file system
for large jobs; smaller jobs, however, may benefit from writing
directly to the PFS. Finally, several CPU, network and memory
bound analytics and GPU-bound deep learning codes achieve up
to a 11X and 79X speedup/node, respectively over Titan.

I. INTRODUCTION

The Collaboration of Oak Ridge, Argonne and Livermore
(CORAL) began in late 2012 with the goal of delivering three
systems that would each improve delivered performance by
4-6X on a range of Department of Energy (DOE) benchmark
applications as compared to the existing 20 PetaFlop DOE
systems - Titan [1] at Oak Ridge National Laboratory (ORNL)
and Sequoia [2] at Lawrence Livermore National Laboratory
(LLNL). After extensive discussions with potential offerors,
including formal responses to a Request for Information (RFI),
the CORAL Request for Proposals (RFP) was released in early
2014. From the RFP responses, ORNL and LLNL selected
IBM systems with a hybrid CPU/GPU architecture for their
pre-exascale systems, Summit, located at the ORNL Leader-
ship Computing Facility (OLCF) and the Livermore Comput-
ing (LC) Sierra system. Each system incorporates POWER9TM

CPUs, NVIDIA VoltaTM V100 GPUs, and Mellanox Enhanced
Data Rate (EDR) InfiniBand (IB) network technologies.

Summit and Sierra are currently ranked No. 1 and No. 3 on
the June 2018 edition of the Top500 list [3] of supercomputers,
with an HPL benchmark performance of 122.3 petaflops and
71.6 petaflops, and a theoretical peak of 200 petaflops and 125
petaflops, respectively.

The Summit and Sierra systems reflect a critical exascale ar-
chitecture path in hybrid computing. While both systems must
answer questions of national importance related to science,
energy, environment, and national security, their mission needs
and the expected usage differ. Specifically, Summit caters to
the DOE Office of Science’s (SC) workload, and will consist
primarily of full-system jobs that expand our knowledge of the
natural world through scientific inquiry and maintain a vibrant
effort in science and engineering as a cornerstone of the
nation’s economic prosperity. While Sierra will also run full-
system jobs, its workload will primarily consist of ensemble
runs that provide uncertainty quantification (UQ) of issues
related to the National Nuclear Security Administration’s
(NNSA) stewardship of the US nuclear stockpile. High-level
differences between the two systems reflect these differences
in their expected workloads.

Since the selection of the systems in late 2014, CORAL
and its vendor partners (IBM, NVIDIA and Mellanox) have
engaged in system co-design activities. Funding for Non-
Recurring Engineering (NRE) has facilitated these activities
that have shaped the design and development of the system
hardware and software. NRE projects have spanned areas
that include the I/O systems, messaging, cluster system man-
agement and the programming environment. Overall, these
activities have greatly enhanced the resulting systems and their
ability to meet key CORAL requirements.

We present the design, development, evaluation and the
lessons learned from acquiring and deploying the pre-exascale
Summit and Sierra systems. Specifically, our contributions are:
• The design and development of the next generation of

GPU-based large-scale systems, including the motivations
for their similarities and differences;

• An evaluation of these architectural designs through mi-
crobenchmarks and both proxy and real applications;

• The lessons learned from the design, deployment, evalu-
ation and procurement strategy of the systems, including:

– Shared fate and the complementary expertise of two



major centers yield better procurements;
– System requirements and design must carefully rec-

oncile performance and transparency;
– GPU memory (High Bandwidth Memory, HBM)

and NVLinkTM bandwidth are critical performance
factors on these systems.

II. CORAL PROCUREMENT PROCESS

The CORAL procurement built upon the process used in
several successful DOE procurements but included the novel
aspect of targeting multiple leadership-class systems with
one RFP. Similar to the LLNL Sequoia and Argonne Mira
procurements, the RFP employed a set of target requirements
that would not be converted into hard requirements until well
after contract signing. This flexible model allows considerable
risk sharing between CORAL and the selected offeror(s),
which enables more aggressive responses that better reflect
the likely technology that will be delivered.

A key aspect of any DOE large-scale system procurement
is its mission need. While scientific computation provides a
predictive tool for the design, analysis, and decision making
for complex systems, current systems still fail to meet key
DOE requirements. In particular, DOE’s SC and NNSA have
several critical mission deliverables, including annual stockpile
certification and safety assurance for NNSA and future energy
generation technologies for SC. Computer simulations play a
key role in meeting these critical mission needs.

The CORAL systems target different mission needs. Sum-
mit will expand the boundaries of our scientific understanding
of critical questions related to fundamental physical pro-
cesses and future energy generation technologies. This mission
requires simulations at unprecedented scales that stress all
aspects of a large-scale system, including network properties
such as bisection bandwidth. Sierra will improve the confi-
dence with which NNSA can certify the nation’s stockpile
through detailed ensemble calculations. These uncertainty
quantification calculations involve several throughput-oriented
jobs. While they stress the overall computational capability of
the system, their network requirements are necessarily lower
than those of scalable science runs. Importantly, while their
primary mission needs will determine the majority of their
workloads, both systems must run both throughput-oriented
and scalable science jobs.

Reflecting the similarities in these mission needs, the
CORAL high-level system requirements placed a particularly
high importance on system performance. To capture the dif-
ferences as well as the similarities, CORAL required offerors
to provide performance results of the projected system for
four scalable science benchmarks (LSMS, QBOX, HACC
and NEKBone) and four throughput benchmarks (CAM-SE,
UMT, AMG and MCB), and included five additional through-
put benchmarks (QMCPACK, NAMD, LULESH, SNAP and
miniFE). The target performance requirement was an at least
4-6X increase compared to performance on Titan or Sequoia.

In addition to directly capturing the mission needs through
benchmark performance, the CORAL RFP included several
other target requirements. These requirements, such as a total

of 4 PB of memory available for direct application use to
enable running larger problem sizes, would improve the extent
to which the systems could meet their mission needs or
their total cost of ownership, such as limiting system power
consumption to at most 20 MW. Others reflect the anticipated
evolution of the mission needs, such as performance on a set of
data-centric benchmarks (Graph500, Hash, and Integer Sort),
or anticipated system limitations, such as burst buffers that can
enable smoothing of the file system workload and also serve
as a small file system for short-lived files.

III. MOTIVATIONS FOR SYSTEM SELECTION

From the responses to the CORAL RFP, OLCF and LC
selected IBM systems with NVIDIA GPUs for Summit and
Sierra since, in our assessment, the proposed system would
provide the best value in meeting the mission needs for
those systems. The single largest factor in that assessment
was the projected benchmark performance of the systems and
the supporting documentation that indicated the performance
would extend to the intended system workloads. Modifications
to benchmark source code convincingly showed that real
applications could attain most of that performance through a
directive-based approach for using the GPUs. Further, the sys-
tem architecture reflects several design principles that support
that conclusion, as this section details.

The lessons [4] of the Cray-1 [5] and CDC Star-100 [6]
motivate one the most significant aspects of the system archi-
tecture design. The systems feature powerful IBM POWER9
CPUs in addition to the NVIDIA Volta GPUs that provide over
95% of the floating point capability of the systems. GPUs have
many similarities to vector processors and the computations
that run well on them reflect those similarities. However, also
like vector processors, not all portions of scientific applications
exhibit the characteristics that allow the performance potential
of those GPUs to be realized. Thus, the availability of strong
sequential performance in a highly capable CPU is essential
to realizing high overall performance.

The memory system reflects several key design motivations.
Many MPI applications, particularly DOE SC and NNSA
multiphysics applications, require at least 2 GB of memory
per MPI process. Thus, the system design must include enough
main memory to fit the data of multiple physics packages of
several MPI processes. However, experience with Titan and
its 6 GB of GDDR memory per GPU has proven that high
application performance requires that the application working
set must fit into fast GPU memory. Thus, each GPU should
have a large capacity of HBM that has a high bandwidth
path to the node’s main memory. Further, while explicitly
staging large data structures between those two memories can
support overlap of data movement with computation, hardware
coherence between the memory systems and the GPUs and
CPUs that access them simplifies code correctness. Thus,
the architecture features sixteen DDR4 DIMMs, 16 GB of
HBM2 per GPU and a second generation NVLink protocol
that provides the desired coherence support.

The system architecture centers around fat nodes with dual
CPU sockets, each with multiple NVLink-connected GPUs,



which reduces the number of system interconnect endpoints.
Applications can then use fewer, larger memory footprint, MPI
processes to reduce scaling difficulty. Further, the reduced
node count allows the use of a fat-tree network topology at
a reasonable cost. This topology provides several application
benefits, including lower runtime variability and performance
that is largely independent of the placement of MPI processes.

Each compute node includes an NVMe-device that provides
high bandwidth local storage. These SSDs provide a burst
buffer solution that significantly reduces the time for file I/O.
Local storage, as part of a multi-level solution [7] allows
checkpoints to be written locally and discarded once the next
checkpoint is completed. This solution is ideal for applications
that perform N-N [8] (i.e., file per process) I/O, which analysis
of OLCF workloads indicates accounts for more than 90%
of application runs. While the portion of SC and NNSA
applications that use N-1 (i.e., N processes writing to a single,
shared file) traffic patterns require more complex software
to exploit this node-local storage, the partitioned, phased
nature (i.e., write-only epochs during checkpointing and read-
only during restart) of that access pattern can still benefit
substantially from it.

IV. A MODERN GPU-BASED HPC ARCHITECTURE

Table I summarizes the key aspects of the Summit and Sierra
system architectures. The compute nodes of both systems have
two IBM POWER9 (P9) CPUs and several NVIDIA Volta
V100 GPUs and are connected with a Mellanox EDR IB
network. Differences in GPU count per compute node (six
on Summit and four on Sierra), network topology and system
budgets lead to different node counts on Summit (4,608)
and Sierra (4,320). Summit’s 256 racks provide a system
peak of around 200 petaflops at approximately 13MW while
Sierra’s 240 racks achieve a system peak of over 125 petaflops
at approximately 12MW. While both systems employ a fat-
tree network topology, Sierra has approximately two-to-one
tapering after the top-of-rack (TOR) switches. The following
subsections detail the node, interconnect and I/O designs.

A. Node Design
The compute nodes of both Summit and Sierra have two

IBM 3.07 GHz POWER9 CPUs, each with 22 cores. As
discussed in Section III, the powerful CPU cores reduce
the impact of inherently sequential code regions and smooth
application transitions from homogeneous architectures. The
sockets are connected by IBM’s X-BusTM, which provides 64
GB/s of coherent access between the sockets. Each socket has
eight memory channels connecting 256 GB DDR4 on Summit
and 128 GB DDR4 on Sierra, both providing 340 GB/s of peak
memory bandwidth per node. Each node also includes a 1.6
TB Samsung NVMe SSD for use as a write cache (i.e., burst
buffer) that can also be used for local-scratch storage, cached
libraries, or extended memory via mmap.

Each node has four (Sierra) or six (Summit) NVIDIA
Volta V100 GPUs that each has eighty 1.333 GHz Streaming
Multiprocessors (SM) for approximate total peak performance
of 7 TF double-precision and 14 TF single-precision. The

TABLE I: Summit, Sierra, and Titan System Characteristics

Overall System Characteristics
Summit Sierra Titan

Node Count 4,608 4,320 18,688
Peak
Performance

200 PF 125 PF 27 PF

Total GPU
Memory

442 TB HBM2 277 TB HBM2 112 TB GDDR

Total DDR
Memory

2.4 PB 1.1 PB 598 TB

Total
Combined
Memory

2.8 PB 1.4 PB 710 TB

Interconnect
Bi-Section BW

EDR IB 115
TB/s

EDR IB 54
TB/s

Gemini 112
TB/s

Topology 1:1 Fat Tree 2:1 Fat Tree 3D Torus
Burst Buffer
Capacity

7.4 PB 6.9 PB NA

Burst Buffer
Bandwidth

9.7 TB/s 9.1 TB/s NA

File System
Capacity

250 PB 150 PB 30 PB

File System
Bandwidth

2.5 TB/s 1.5 TB/s 1.0 TB/s

GPUs also include 112 TF TensorCores that perform a 4X4
matrix multiply on half-precision inputs with single-precision
accumulations. Each POWER9 has 150 GB/s of NVLink con-
nectivity [9], shared by three (Summit) or two (Sierra) GPUs.
The design also provides NVLink between GPUs connected
to the same CPU socket at 50 GB/s for Summit and 75 GB/s
for Sierra. In either case, NVLink enables faster intranode
data movement, which will benefit GPU-enabled applications
compared to the limited PCIe bandwidth on Titan.

In addition to improved latency and bandwidth with NVLink
2, the nodes provide a single coherent address space that
includes system memory and the GPU HBM2 memory. Ap-
plications (or the OpenMP runtime) can explicitly manage
memory by using cudaMalloc() and cudaMemcpy() to
move data between system memory and GPU memory or
they can use cudaMallocManaged() to let the CUDATM

runtime manage the copies. The single address space allows
applications to use malloc() and then pass the pointer to a
GPU kernel, which greatly eases application porting.

Table II summarizes key features of the Summit, Sierra,
and Titan nodes. The block diagram in Figure 1 shows half
of the Summit node on the left and half of the Sierra node on
the right (both systems include the NVM device connected to
socket 0 shown on the right). The key differences are that the
Summit node has twice the system memory and 3 GPUs per
POWER9 while the Sierra node has two. Both sockets in both
systems connect directly to the Mellanox InfiniBand HCA.

The differences in GPUs per node reflect the maturity
in the transition to heterogeneous architectures between the
workloads of the two facilities and an expectation that NNSA
multiphysics applications will achieve better performance with
more system memory bandwidth per GPU. Code porting at
LLNL while preparing for Sierra showed that some NNSA ap-
plications (e.g., Quicksilver and the setup phase of AMG [10])
run better or as well on the CPU as the GPU. Further, multiple



TABLE II: Node Characteristics of Summit, Sierra, and Titan

Node Characteristics
Summit Sierra Titan

CPU 2 POWER9 2 POWER9 1 AMD
Opteron
Interlagos

Cores 44 (22 per P9) 44 (22 per P9) 16
Memory 512 GB 256 GB 32 GB
Memory Band-
width

340 GB/s 340 GB/s 51.2 GB/s

SMP Bus X-Bus 64 GB/s X-Bus 64 GB/s NA
CPUs:GPUs 2:6 2:4 1:1
GPU 6 Volta V100 4 Volta V100 1 Tesla K20x
SM 480 320 14
GPU DP Flops 42 TF 28 TF 1.31 TF
GPU Memory 96 GB HBM2 64 GB HBM2 6 GB GDDR
GPU Memory
Bandwidth

5.4 TB/s 3.6 TB/s 250 GB/s

NVLink BW 50 GB/s/GPU 75 GB/s/GPU NA
SSD Capacity 1.6 TB 1.6 TB NA
SSD Write BW 2.1 GB/s 2.1 GB/s NA
Interconnect
Injection BW

2x 12.5 GB/s
EDR

2x 12.5 GB/s
EDR

1x 5.5 GB/s
Gemini
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Fig. 1: Block Diagram of Summit and Sierra Half Nodes

NNSA applications, such as, UMT [10] are NVLink bound so
additional GPUs do not result in additional performance. The
POWER9 processor has a fixed number of bricks (i.e., bundles
of NVLink lanes) that are divided between the GPUs. Thus,
the Summit node provides 50 GB/s from the CPU to each
GPU while the Sierra node provides 75 GB/s.

Figure 2 shows the block diagram for the simpler Titan
node. Although a Titan node has 32 GB of system memory,
most applications only use 6 GB per node (i.e., the capacity
of the GPU’s GDDR memory), probably because the PCIe
bandwidth is too low. The ratio of GDDR memory bandwidth
to system memory bandwidth is approximately 5:1. However,
the PCIe bandwidth raises that ratio to about 39:1 by restricting
the realizable memory bandwidth to 6.4 GB/s. Summit’s six
GPUs have an aggregate of 5.4 TB/s of HBM2 bandwidth, for

DRAM
32 GB

GDDR/DRAM Bus (aggregate B/W)
PCIe Gen2

6.4 GB/s
x86

51 GB/s

GDDR
6 GB

GPU
1.3 TF

250   GB/s

Fig. 2: Block Diagram of Titan Node (Omits NIC Links)

a ratio of 18:1, given the 340 GB/s of peak system memory
bandwidth and the 300 GB/s of NVLink bandwidth. Sierra’s
four GPUs have an aggregate of 3.6 TB/s of HBM2 bandwidth
for a ratio of 12:1.

Between contract signing and system delivery, the cost of
memory doubled. OLCF chose to pay the increased cost while
LC chose to reduce capacity to 256 GB per node rather than
reduce overall node count. LC’s choice reflects estimates of
the total memory footprint of multiphysics applications based
on the number of physics packages and the HBM2 capacity.

B. Interconnect Design
The Mellanox EDR fat-tree network topologies use Switch-

IBTM 2 switches and ConnectXTM-5 host channel adapters
(HCAs). The compute racks have 18 compute nodes that each
has one dual-port Mellanox ConnectX-5 HCA. Each node’s
HCA ports connect to a separate TOR switch (two per compute
rack) and provide non-blocking connectivity within each com-
pute rack. All TORs connect into one set of core switches thus
creating a single InfiniBand subnet. Summit’s fabric is fully
non-blocking between TORs and core switches, while Sierra’s
fabric is 2:1 tapered at this level. LLNL’s system tradeoff
analysis between nodes and networking resources indicated
that the tapered network produced the best overall cost neutral
system architecture for the projected Sierra workload.

With support from NRE funding, Mellanox, IBM, and
NVIDIA have significantly enhanced network performance.
New or improved features include, adaptive routing, switch-
based collective offload (SHARPTM), Dynamic Connected
Transport (DCT), tag-matching in the HCAs, Verbs-bypass,
additional remote atomics, and GPU DirectTM. These features
combine to provide maximum traffic throughput, lower la-
tency communication, enhanced collective performance, and
improved GPU to GPU communication.

C. I/O Design
The Summit and Sierra system architectures include a two-

tiered I/O subsystem that consists of on-node burst buffers
(BBs) [11] and a parallel file system (PFS) in order to meet
the system I/O requirements. These tiers are presented as two
separate name spaces. OLCF and LLNL worked with IBM
to improve the I/O subsystem design through several NRE
activities. These activities include the implementation of a



data movement mechanism across the BB and capacity tiers
(BB-API), and a purpose-built distributed file system (BSCFS)
that is layered on top of node-local SSDs to support N-1 I/O
access patterns. Other NRE activities increased PFS file system
scaling and single directory shared metadata performance.

While other systems, including Cori at NERSC [12], have
previously deployed BBs, the IBM system architecture will
be the first at an extensive scale to use node-local devices.
Compared to a shared BB tier, the node-local option requires
less infrastructure (e.g., servers, network), and can reduce
data movement (drain only every nth checkpoint) and increase
performance for the N-N use case. While shared BBs simplify
the N-1 use case, node-local software can exploit phased
parallel I/O access patterns to supply similar functionality.

As already discussed, each compute node includes a 1.6 TB
NVMe drive that provides up to 2.1 GB/s write and 5.8 GB/s
read I/O performance. Thus, Summit has an aggregate capacity
of 7.4 PB (2.5X total system memory) and a write performance
of 9.7 TB/s while Sierra has 6.9 PB (5X total system memory)
and write performance of 9 TB/s. Each SSD has an endurance
characteristic of 5 drive writes per day (DWD), which an
analysis of I/O patterns on current systems and the compute
capabilities of the systems indicates is sufficient.

Applications can interface with the BB tier at different
levels of abstraction and ease of use: an XFS file-system built
on the node-local SSDs, created at job allocation; directly
through the BB-API or through BSCFS (for shared files); or
through SCR [7] or other libraries that are built on top of
BB-API. Hardware assisted NVMe over Fabrics (NVMeoF)
enables the Mellanox HCA to move data to or from the
BB directly without compute-node CPU overhead. QoS and
throttling mitigate network impact. Applications can pre-stage
data on to the BB prior to job dispatch. They can checkpoint
to it and immediately resume computation while the data is
asynchronously drained to the PFS.

Checkpoints are typically written as multiple files (i.e., N-
N) or as one shared file (i.e., N-1). While the file-per-process
I/O maps directly to the node-local BB, the shared file use
case is more challenging. BSCFS is a per-job, distributed log-
structured file system that supports N-1 checkpoints. BSCFS
caches the shared files in the SSDs and then reconstitutes them
in the PFS without further intervention from the application.

The capacity tier uses IBM’s SpectrumScale GPFSTM prod-
uct with NRE enhancements such as larger file system block
sizes, more file system sub-blocks, reduced GPFS lock con-
tention and also improved scalability of file system tools
such as parallel fsck. Spectrum Scale single-directory shared-
metadata create performance has been increased 10X to 50,000
metadata operations per second. Further, use of its “scatter”
mode, which randomizes block allocations, improves random
I/O performance, which better reflects application I/O patterns,
and reduces performance degradation as the PFS ages.

Each PFS uses IBM’s new GL4TM Elastic Storage Server
(ESS) (two per GL4), which achieves high storage density
through 10 TB hard drives in 106-drive enclosures. Thus,
Sierra has 150 PB of usable capacity in 56 GL4 units that

TABLE III: Summit, Sierra, and Titan System Balance Ratios

System Balance Ratios
Summit Sierra Titan

Memory subsystem to Intra-node connectivity ratios
HBM BW:DDR BW 15.8 10.6 4.9
HBM BW:CPU-GPU BW 18 12 39
Per HBM BW:GPU-GPU BW 18 12 -
DDR BW:CPU-GPU BW 1.13 1.13 8
DDR:HBM (capacity) 5.3 4 5.3
HBM capacity:GPU-GPU BW (GB/GB/s) 0.32 0.43 -

Memory subsystem to FLOPS ratios
Memory capacity:FLOPS (GiB/Gflops) 0.01 0.01 0.03
Memory BW:FLOPS (GB/s/Gflops) 0.13 0.13 0.17

Interconnect subsystem to FLOPS ratios
Injection BW:FLOPS (GB/s/Gflops) 0.0006 0.0009 0.004
Bisection BW:FLOPS (GB/s/Gflops) 0.0006 0.0004 0.004

Other ratios
FS:Memory capacity 89 107 42
FLOPS:Power (Pflops/MW) 15.4 10.4 3

provide 1.5 TB/s of I/O bandwidth while Summit has 250
PB usable capacity in 77 GL4 units that provide 2.5 TB/s of
I/O bandwidth. In both systems, each ESS has two dual port
Mellanox IB EDR cards that connect to TORs. At OLCF, two
of these connections serve Summit while the other two serve
other systems to provide a center-wide file system. At LLNL,
all PFS links connect directly into Sierra’s compute fabric;
gateway servers provide access to other LC systems.

D. Balance Ratios
Table III compares the balance ratios of Summit, Sierra

and Titan for a variety of categories including: memory
subsystem to intra-node connectivity; memory subsystem to
FLOPS; interconnect subsystem to FLOPS; file system to
memory capacity; and FLOPS to power. Section IV-A already
highlighted the significance of the HBM BW:DDR BW and
HBM BW:CPU-GPU BW ratios for the two systems. The Per
HBM BW:GPU-GPU BW ratio indicates that Sierra has a better
ratio when it comes to accessing a peer GPU’s memory
due to its 75 GB/s of NVLink BW compared to Summit’s
50 GB/s. The DDR BW:CPU-GPU BW ratio indicates that
the CPU-GPU BW has improved significantly for both the
systems, compared to Titan (6.4 GB/s in Figure 2), and is not
a significant bottleneck in accessing DDR. In fact, it is much
close to the ideal balance ratio of 1 for both systems. The
DDR:HBM capacity ratio has remained constant between
Titan and Summit at a 5.3:1 ratio and is at 4:1 for Sierra.
Both these ratios are healthy (with Summit being slightly
higher) as applications have indicated a desire for at least a
2:1 ratio, most likely for double buffering the data. When it
comes to HBM capacity:GPU-GPU BW ratio, both Sum-
mit and Sierra have sufficient GPU-GPU BW to manipulate the
available GPU memory. Sierra has a slightly higher ratio as
it has fewer GPUs. Both the Memory capacity:FLOPS
and Memory BW:FLOPS have dropped from Titan (from
0.03 to 0.01 and 0.17 to 0.13), indicating a downward trend
as we approach exascale. In terms of the interconnect to
FLOPS balance, both systems offer a higher Injection
BW:FLOPS and Bisection BW:FLOPS ratios compared to



Titan. While Sierra offers a higher Injection BW:FLOPS
ratio, Summit offers a higher Bisection BW:FLOPS. For
the FS:Memory capacity, Summit and Sierra offer ratios
of 89:1 and 107:1, respectively, which is more than sufficient
to handle the checkpoints, output data and other center-wide
I/O load (in case of Summit). Finally, Summit offers a 1.5X
higher FLOPS:Power ratio compared to Sierra and a 5X
increase over Titan. The increase over Titan indicates the
power efficiency of the Volta GPUs.

E. Software Ecosystem
The Summit and Sierra systems are equipped with the stan-

dard suite of HPC software systems and tools such as the Clus-
ter Systems Management (CSM), Spectrum MPI, compilers,
profilers, and debuggers. The systems provide the following
compilers: IBM XL; LLVM; PGI; GNU; and NVCC CUDA C
Compiler. These compilers support a variety of programming
languages: C, C++; Fortran; OpenMP; OpenACC; and CUDA.
Available debuggers include RogueWave TotalView, ARM
DDT, VALGRIND and GDB, while profilers include NVPROF
for CUDA codes, VAMPIR and SCORE-P for profiling C,
C++, Fortran with accelerators CUDA, OpenMP, OpenCL and
OpenACC. OLCF has traditionally used OpenACC and LLNL
OpenMP. We have already highlighted other file system, burst
buffer and interconnect software features in Section IV.

The CORAL systems will also provide a novel federated
telemetry infrastructure, the Big Data Store, to collect, to
federate and to analyze the wealth of logs from the various
subsystems including RAS, CSM, GPFS, and burst buffer. The
logs are aggregated into the Elasticsearch Cluster (ELK) [13]
through a Telegraf service [14], and maintained therein for
analysis and visualization (via Kibana [15]). The logs are
also forwarded to a Hadoop [16] cluster that has sufficient
storage to maintain the data for long-term analysis. Overall,
this architecture will allow Summit and Sierra to obtain a
window into system operations, to help optimize applications,
to resolve performance bottlenecks and to analyze and to mine
the data for trends and correlations.

V. EARLY EVALUATIONS

Our experiments compare Summit and Sierra, or alterna-
tively Peak and Butte, architecturally identical 18-node 1-
cabinet test and development systems. Where possible we use
matching software versions; unfortunately the early deploy-
ment status of the systems often leads to small software dif-
ferences that complicate analysis of performance differences.

A. Memory Interconnect Evaluation
We first present results for several memory microbench-

marks. The stream code, compiled with GCC measures CPU
memory bandwidth under OpenMP threading. Table IV shows
the best result in 1,000 trials for Peak with core isolation
(ci) (its normal operating mode), and Peak and Sierra without
core isolation. Performance is similar for both systems and
slight differences between Peak and Sierra may be partly
due to slightly different system memory configurations [17]
or inherent performance variability. Multiple benchmark trials

TABLE IV: CPU stream rates on Peak and Sierra (GB/s)

system Peak/ci Peak/ci Peak Peak Sierra Sierra
cores 40 42 40 44 40 44
Copy 272.9 273.5 273.1 274.6 277.3 278.3
Scale 269.6 270.6 269.5 271.4 274.4 275.7
Add 268.8 269.8 268.7 270.6 273.5 274.9
Triad 273.0 273.9 273.5 275.3 277.7 279.0

TABLE V: Single Node Single GPU NVLink Rates (GB/s)

GPU 0 1 2 3 4 5 (peak)
Peak htod 45.93 45.92 45.92 40.63 40.59 40.64 50
Peak dtoh 45.95 45.95 45.95 36.60 36.52 35.00 50
Peak bidir 86.27 85.83 77.36 66.14 65.84 64.76 100
GPU 0 1 2 3 (peak)
Butte htod 68.64 68.47 — 40.44 40.47 — 75
Butte dtoh 68.33 68.69 — 36.85 35.63 — 75
Butte bidir 128.98 114.99 — 64.79 64.60 — 150

reveal runtime variation as high as 9%. Also, performance was
up to 4% higher if the benchmark was run after the POWER9
was idle for several minutes prior to the experiment. While
we are investigating this issue, one possible explanation is
aggressive frequency throttling.

We use a variant [18] of stream to measure GPU HBM2
bandwidth on all GPUs of 15 Peak and Butte nodes. Best
values for Peak were 789 (Copy), 788 (Mul) and 831 (Add
and Triad) GB/s; values for Butte differed by less than 1%,
confirming the expected result that node architecture differ-
ences do not impact GPU memory performance. These figures
represent 88% and 92% of the 900 GB/s peak, a much higher
fraction of peak than Titan GDDR memory. Most trials in
1,000 vary in performance less than 10%, although a few
outliers were up to 16X slower than the best case.

We measure achieved CPU-GPU NVLink rates with a
modified bandwidthTest from NVIDIA CUDA Samples. As
stated earlier, peak NVLink rates are 50 GB/s (Summit, Peak)
and 75 GB/s (Sierra, Butte). Table V shows host to device
(htod), device to host (dtoh) and bidirectional (bidir) transfer
rates between core 0 and each GPU. Multiple trials show little
variability. On-socket (Peak GPUs 0, 1 and 2; Butte GPUs 0
and 1) unidirectional and bidirectional bandwidths are 92%
and 86% of theoretical peak, although bidirectional bandwidth
to the final GPU of the socket is unexpectedly about 10%
lower compared to the other on-socket GPUs when accessed
from core 0. We are currently investigating possible affinities
between cores and each GPU. Unsurprisingly, off-socket band-
widths are significantly lower, due to the intervening X-Bus.
Thus, we expect users to avoid off-socket GPU access.

Table VI shows the more typical use case of multiple
MPI processes evenly spread between CPU sockets each
simultaneously using one GPU. Multiple trials exhibit run-
to-run variability under about 3%. For a saturated node with
the largest MPI process count, for the unidirectional case the
expected NVLink rate (300 GB/s peak, 6 × 46 = 276 GB/s
actual on Peak, 4 × 69 = 276 GB/s actual on Butte) nearly
matches the CPU stream performance of about 275 GB/s, thus
CPU memory bandwidth does not limit the transfers. How-
ever, attainable bidirectional bandwidth is reduced by 46%



TABLE VI: NVLink Rates with MPI Processes (GB/s)

MPI Process Count 1 2 3 4 5 6
Peak htod 45.93 91.85 137.69 183.54 229.18 274.82
Peak dtoh 45.95 91.90 137.85 183.80 225.64 268.05
Peak bidir 85.70 172.59 223.54 276.34 277.39 278.07
Butte htod 68.66 137.39 206.05 275.47 — —
Butte dtoh 68.91 137.48 203.80 271.12 — —
Butte bidir 126.06 255.47 270.72 283.08 — —

TABLE VII: NVLink Rates for GPU-GPU Transfers (GB/s)

no P2P P2P
(peak)socket socket cross- socket socket cross-

0 1 socket 0 1 socket
Peak unidir 33.18 25.84 30.32 46.33 46.55 25.89 50
Peak bidir 54.48 27.91 49.02 93.02 93.11 21.63 100
Butte unidir 41.27 24.72 31.04 69.49 69.49 31.05 75
Butte bidir 58.63 25.55 49.17 139.15 124.30 49.15 150

compared to the sum of rates for individual GPUs (600 GB/s
peak, 6×86 = 516 GB/s actual on Peak, 4×129 = 516 GB/s
actual on Butte), due to bandwidth limits of CPU memory.
Thus, overlapped host-device and device-host transfers (as
opposed to in sequence) will provide little performance benefit
in some cases. In either case, since attainable NVLink speeds
for a saturated node are roughly the same for both systems,
Summit’s additional GPUs may provide little performance
benefit for applications highly bound by NVLink bandwidth.

Table VII shows NVLink transfer rates between
GPUs (within a socket and across them), using
p2pBandwidthLatencyTest from CUDA Samples. We
show the average of ten trials on a single node; the maximum
deviation across different trials and GPU-GPU connections
was 8.7%. The peer-to-peer (P2P) access feature yields
performance that approaches NVLink theoretical peak
bandwidth; results are much lower without it (no P2P).
Predictably, cross-socket bandwidth is much lower than that
between GPUs attached to the same CPU socket. GPUs on
socket 1 without peer-to-peer access underperform compared
to socket 0, possibly due to the benchmark running on socket
0 controlling GPUs attached to socket 1. Socket 1 peer-to-peer
bidirectional performance on Butte is also lower by about
12%. Otherwise, on-socket performance with peer-to-peer
access enabled is roughly 93% of theoretical peak.

B. EDR Interconnect Performance Evaluation
We evaluate MPI bisection bandwidth, collectives, and

messaging rate performance at scales up to 2,048 nodes on
the pre-GA Sierra and Summit systems. In addition to baseline
performance, we explore the impact of hardware support for
adaptive routing (AR) and collective offload.

The Sequoia Messaging Rate (SQMR) benchmark measures
the MPI messages per second. We scale these tests from 2-17
nodes, increasing the processes per node (Figure 3). Careful
placement using mpibind yields rates on the actual systems
that outperform the original target rates. We found that the use
of Reliable Connected (RC) queue pairs over Dynamic Con-
nected Transport (DCT) improves messaging rate significantly.
DCT is a new transport type added by Mellanox to reduce the
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Fig. 3: SQMR Target vs. Measured Rates on Sierra

memory footprint when communicating with many partners.
Large applications that benefit from DCT’s reduced memory
use need to consider RC’s potential performance benefit.

CORAL’s bisection bandwidth benchmark, based on mpi-
Graph [19], explores the bandwidth between possible MPI
process pairs. Figure 4 shows Summit mpiGraph results using
one of the two HCA ports with AR and with the commonly
used single-path static routing. Lighter colors represent less
variation and congestion, and uniform color is better than
patterned results. The histogram next to each image depicts
the measured bandwidth distribution. In the historgrams, the
single cluster with AR indicates that all pairs achieve nearly
maximum bandwidth while single-path static routing has nine
clusters as congestion limits bandwidth, negatively impacting
overall application performance. The single-port AR results
demonstrate an average performance of 11.8 TB/s or 96% of
the maximum bandwidth measured. In contrast, the single-
path static routing results achieve an average bandwidth of
10.2 TB/s or only 80% of the maximum measured bandwidth.
Results on Summit in Figure 5 confirm that adaptive routing
achieves higher overall bandwidth.

The Mellanox EDR network also includes support for
Mellanox Scalable Hierarchical Aggregation and Reduction
Protocol (SHARP) collectives. We use one MPI process per
node to evaluate SHARP with the OSU benchmarks [20]. We
focus on MPI Allreduce, which SHARP is designed to opti-
mize, in Figure 6. Our results use Mellanox’s Fabric Collective
Accelerator (FCATM) software, IBM’s software optimized
collectives and SHARP. IBM’s software based collectives scale
better than FCA. However, while the FCA results are relatively
smooth across node scales, the IBM results have a sawtooth
behavior, which may indicate that the library alternates be-
tween two algorithms. SHARP performs even better with an
average performance of 74% faster than IBM’s. SHARP also
shows a relatively flat performance profile from 8 to 2,048
nodes. Thus, SHARP collectives can significantly improve the
performance of applications that use MPI Allreduce. SHARP
barriers demonstrate the same scaling and performance benefit.
At 2,048 nodes the OSU Barrier test shows ∼8µs for SHARP
compared to ∼35µs for Spectrum MPITM.
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Fig. 4: Summit’s MpiGraph Output
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C. I/O Subsystem Evaluation

We evaluate a single GPFS GL4 unit (with two ESS
servers) using multiple clients with the IOR benchmark for
file I/O performance and mdtest for metadata performance.
The Summit and Sierra systems (including their PFS) are in

deployment and acceptance phases, which prevented running
large scaling tests. The Summit PFS is formatted with a 16
MiB block size. IOR tests use 12 client nodes, 8 MPI processes
per client and a single GL4 unit in the file-per-process (N-N)
mode with a 4 GiB block size and a 32 MiB transfer size
for a test duration of 20 minutes. The total amount of data
written was 40 TB. For sequential I/O workloads, a single
GL4 unit performs writes at 36 GB/s and reads at 40 GB/s. For
random I/O, we observe 36 GB/s and 42 GB/s for writes and
reads, which is consistent with the sequential rates. An early
scaling result with 16 GL4s on the Sierra PFS yielded 370
GB/s for sequential writes. These results suggest that further
optimization and scaling will allow the Summit and Sierra
PFSs to attain their 2.5 TB/s and 1.5 TB/s of I/O rates.

We also evaluate a single client’s performance against a
single GL4 with IOR and observe that a single client can
perform read or write file I/O at about 18 GB/s.

Next, we measure the interactive metadata performance of
a GL4, using mdtest, 12 clients and 48 processes. Each
process creates 524,288 files in unique directories, writes 32
kiB into each file and closes the file. The GL4 performs
around 21,000 file creates per second. Based on this result,
we expect the overall interactive metadata performance for
Summit system to meet its target of 1.05 Million file creates
per second over 77 GL4 units.

D. Burst Buffer Performance
The BB tests provide an understanding of the impact of

the BB resources to applications. Our first experiments use
the GTC fusion application, which uses the N-N checkpoint
model. In these tests, we modify GTC input parameters to
weak-scale the problem size to exploit power of 2 node-count
increments, and we contrast performance on Summit with the
linearly scaling BB bandwidth to that with the PFS. Figure 7
shows that checkpoints to the BB are significantly faster, and
achieve nearly constant scaling.

The BB benefits GTC despite its relatively small check-
points that likely hit in the compute-node PFS page-caches
because a node-local file system also reduces metadata costs.
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Fig. 8: FIO Synthetic Checkpoint Test

Applications that write larger checkpoints will benefit from
constant BB bandwidth scaling, as shown by synthetic FIO
checkpoint tests with 6 processes per node that each write
10 GB files, directly to the BB with DirectIO. This data size
exceeds the PFS page-cache so writes are flushed. We use
a 1 MB block size to mimic large application checkpoints.
Figure 8 shows the BB devices achieve 2.1 GB/s and scale
linearly, which will reduce the checkpoint cost of a full system
job on Summit by 4X compared to the PFS. The PFS provides
better write performance for both tests at low node counts.

E. Application and Miniapplication Performance

We now present results for applications and miniapplica-
tions that represent aspects of the Summit and Sierra work-
loads. The NUCCOR kernels (scalable science) model the
dense matrix triple product D = AT ·B ·C of the NUCCOR
nuclear physics application [21]. Figure 9 compares average
performance across ten trials on a single node of Peak and
of Sierra with one MPI process per GPU, using the PGITM

compiler 17.10 and CUDA 9.1.85. We vary the (square) matrix
size, ensuring that it fits in GPU memory. Each run consists
of two cuBLAS DGEMM operations and four explicit matrix
transfers with no overlap; more recent NUCCOR versions
overlap some transfers with computation. For smaller matrices

Fig. 9: Peak/Sierra Execution Time per Flop on NUCCOR
Kernels

TABLE VIII: Fixed Node Count and GPU Count GTC Results

Peak Peak Butte Butte
min max min max

1 node 5.08 5.17 5.11 5.30
2 nodes 8.89 9.14 9.09 9.47
4 nodes 13.13 13.46 13.86 14.28
8 nodes 15.50 15.92 15.97 16.56

12 nodes 17.74 17.94 18.19 18.59
12 GPUs 12.92 13.23 13.35 13.70
24 GPUs 14.02 14.35 14.75 15.02
48 GPUs 18.16 18.49 18.21 18.59

for which NVLink transfer costs dominate, compute time for
Peak is 15-20% higher than Sierra, compared to a 50% runtime
increase due to their different NVLink rates if transfer costs
fully dominate. However, computation dominates transfers for
larger matrices and per-GPU performance of the two systems
is nearly equal as computation amortizes transfer costs.

GTC is a scalable science application, that models fusion
reactors [22]. We use the PGITM compiler 17.10 and CUDA
9.1.85, and SMT4 mode. The systems use Spectrum MPI ver-
sion 10.02.00.00 PRPQ 2017.11.17-4-g78dfc805 release date
180110 but different CUDA driver versions (Peak 390.31,
Butte, 387.25). Peak nodes have core isolation enabled (42
cores per node available); Butte does not. We first run identical
cases at the same node count with four GPUs per node.
Second, we run identical cases on the same number of GPUs,
using all GPUs on a node (i.e., more Butte nodes for a
given GPU count) for execution regimes typically used in
production. Table VIII shows similar results over ten trials on
both systems, which are single-cabinet systems with identical
interconnects (results omit initialization and I/O). NVLink
costs are low since GTC leaves its data on the GPU during
the run. Previous efforts to optimize CPU-GPU transfer costs
for applications on PCIe-2 based systems such as Titan will
still provide benefits with newer NVLink-based systems.

AMG2013, a CORAL throughput benchmark [10], is a
parallel algebraic multigrid solver for linear systems. For
AMG2013, the XL C/C++ 13.1.6 compiler (Beta 20171127),
CUDA 9.1.85, and Spectrum MPI version 10.02.00.00 PRPQ
2017.11.17-4-g78dfc805 release date 180110 were used. All
experiments were run under SMT4 mode. Figure 10 shows the
Figures of Merit (FOMs) [23] from single node experiments
executed on Summit, Sierra, and Peak (average of ten trials).
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AMG2013 has two primary phases: setup and solve. The setup
phase runs exclusively on the CPU while the solve phase uses
the GPUs. Our experiments use 4 GPUs per node with 4
MPI processes per GPU and use one or six OpenMP threads
per process. Core-isolation was disabled on Peak to match
the Sierra environment while it is enabled on Summit. Single
node tests show that, for this case, the setup phase on Sierra
results in a higher FOM value than on Summit, possibly due to
differences in thread placement. Figure 11 shows the average
of ten trials of a multi-node case on both Summit and Sierra
that uses 72 GPUs. On Summit, we use two layouts; one with
18 nodes and 4 GPUs per node, and another with 12 nodes
with 6 GPUs per node. The former layout results in a setup
FOM approximately 12% higher than the latter because more
OpenMP threads can be used per GPU.

The UMT2013 throughput mini-application models deter-
ministic radiation transport on unstructured meshes. The large
benchmark problem size requires full use of the system mem-
ory and an overlapped batching strategy to move data on and
off the GPU [24]. NVLink bandwidth bounds approximately
60% of the runtime, with the rest being CPU and network
bound. We conduct multi-node and single node benchmark
runs on Summit (with 4 or 6 GPUs per node) and on Sierra,
Figure 12 compares the average FOM [25] per GPU using
SMT4 and 40 threads/GPU with 4 GPUs and 28 threads/GPU
with 6 GPUs. For these experiments, the PGI 17.10 compiler,
CUDA 9.1.85, and Spectrum MPI version 10.02.00.00 PRPQ
2017.11.17-4-g78dfc805 release date 180110 were used. Be-
cause Sierra has 50% higher CPU to GPU NVLink bandwidth,
UMT achieves a 32% higher FOM per GPU on Sierra than
on Summit. The comparison showcases that for applications
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Fig. 12: UMT2013 FOM per GPU

TABLE IX: UMT FOM on 1 Node

Configuration Average FOM Ave. FOM / GPU
4 GPUs, 1 thread 8.47E+08 2.117E+08
4 GPUs, 7 threads 2.40E+09 5.992E+08
4 GPUs, 10 threads 2.64E+09 6.609E+08
6 GPUs, 7 threads 3.36E+09 5.602E+08

with a significant NVLink dependence, such as those with a
large memory footprint and low data reuse, Sierra can provide
similar per node performance to Summit while using fewer
GPUs per node. We also ran single node tests on Summit using
one MPI process per each of 4 GPUs and varying the thread
count. Table IX shows the average FOM from 10 trials for each
thread count (SMT off). As expected, more OpenMP threads
per process increases the FOM per GPU, partly because UMT
is about 40% CPU bound.

F. Machine Learning on the CORAL Node

The CORAL2 data science benchmarks [26] capture data
analytics workloads, focusing on CPU, memory and intercon-
nect performance, and deep learning workloads, focusing on
GPU, interconnect and I/O performance. The CPU-only data
analytics implementations include principle component analy-
sis (PCA), K-Means and support vector machines (SVMs).
The chosen input sizes and algorithms yield one memory
bound technique (PCA), one CPU bound (SVM), and one
network bound (K-Means). In contrast, the deep learning suite,
which includes recurrent neural network (RNN), convolutional
neural network (CNN), and application benchmarks from the
Cancer Distributed Learning Environment (CANDLE) [27]
project, uses GPUs extensively. The data analytics tests use
randomly generated, in-memory data to weak-scale to arbi-
trary node counts while the deep learning benchmarks use a
combination of random, in-memory data and data from disk,
and include a strong scaling benchmark on ImageNet data.

Figure 13 shows that Summit achieves speedups compared
to all Titan baseline runs. The compute-bound benchmarks like
SVM (on POWER9s) and CNN (on GPUs) achieve 11X and
up to 79X speedup per node (13.2X/GPU x 6GPUs). Multi-
node runs of K-Means achieve an additional 1.8X speedup
improvement on Summit, as a result of its high performance
EDR interconnect. PCA achieves the lowest speedup among
these benchmarks as its gain is consistent with the memory



Fig. 13: Data Science Speedups (Titan baseline)

Fig. 14: Resnet-50 Scaling on Summit

performance improvement. The RNN benchmark, which uses
synthetic, in-memory inputs, achieves an 18X speedup com-
pared to Titan (3X x 6GPUs). The CANDLE benchmarks,
which load input data from the PFS, achieve near perfect
throughput speedups since they greatly benefit from NVLink.
For distributed training on ImageNet [28] data with ResNet-
50 [29] based on Keras [30] (Tensorflow [31] backend) and
Horovod [32], which stress the GPUs, intra- and inter-node
interconnects, and node-local SSDs, an ideal scaling efficiency
in terms of seconds per epoch is achieved on 64 nodes (384
Volta GPUs) of Summit (see Figure 14). These results are
for the reference code [26] with default settings and are not
optimized to the Summit architecture.

VI. LESSONS LEARNED

Guidance for future procurements: From a procurement
standpoint, CORAL has proven to be an extremely valuable
partnership for all parties—the laboratories as well as the
system providers. For the laboratories, CORAL has provided
collective, often complementary, technical expertise at both
sites, that improves the RFP and NRE co-design activities,
as well as improving system deployment through shared fate.
The broad commonalities in the chosen systems has enabled
leveraged NRE investments that provide more capable sys-
tems. However, joint NRE investment requires compromises—
as the big customer, a laboratory may have wielded more
influence on some specific topics. Finally, while aligning the
I/O subsystem acquisition with that of the system may provide
a more integrated solution and mitigate risks associated with

site integration, site-specific contract modifications proved
necessary to meet diverse requirements.

Guidance for systems designers: The compute-node design
and evaluation show that GPU memory (HBM) bandwidth
remains a critical performance factor but CPU-GPU inter-
connect (NVLink) bandwidth can be equally important for
applications with large memory footprints. System memory
capacity and bandwidth can also limit performance despite the
huge percentage of overall capability represented by GPUs.
Further, steep memory pricing (DDR and HBM) can limit the
ability to handle the emerging class of ML applications.

While the laboratories knew that the BB must support
the N-1 access pattern, IBM did not initially. Thus, BSCFS
was added to the planned system software and may not
fully meet the requirement. Further, while a node-local BB
offers substantial performance benefits, the lack of a single
mount point to the BB remains a concern for use cases
other than checkpoints. To facilitate transparent BB use while
still maintaining performance, the laboratories must develop
software on top of BSCFS. In addition, a transparent interface
atop the BB and PFS might be useful for easy adoption of
the BB for some applications. Future procurements will better
reflect these requirements. More generally, any system design
must carefully reconcile performance and transparency.

The telemetry infrastructure can be a powerful vehicle to
glean insights from logs and to optimize system and applica-
tion performance. System architects should carefully plan log
collection from every layer of the system.

Guidance for users: The compute node evaluation shows
that applications that can fit their working sets in HBM will
see the most performance. These applications will benefit from
Summit’s configuration of higher HBM capacity and number
of GPUs. For applications that perform more intra-node data
movement, Sierra will provide better performance due to a
balanced ratio of HBM to NVlink bandwidth. On both systems
applications exhibiting high inter-node data movement will
benefit from reduced congestion with adaptive routing and
improved collective scalability using SHARP. BB and PFS
results indicate that the BB can achieve linear scaling and a
4X speedup over the PFS for large jobs. Smaller jobs, however,
benefit by writing directly to the PFS. While that choice might
reduce overall system performance, the observation implies a
need for considered use of BB resources.
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