

1 **Energy conversion by parallel electric fields during guide field**
 2 **reconnection in scaled laboratory and space experiments**

3 **W. Fox^{1,2}, F. D. Wilder³, S. Eriksson³, J. Jara-Almonte¹, F. Pucci^{1,4}, J. Yoo¹, H. Ji^{1,2}, M.**
 4 **Yamada¹, R. E. Ergun³, M. Oieroset⁵, and T. D. Phan⁴**

5 ¹Princeton Plasma Physics Laboratory, Princeton, NJ 08543

6 ²Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544

7 ³Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA

8 ⁴National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan

9 ⁵Space Sciences Laboratory, Berkeley, CA

10 **Key Points:**

- 11 • Direct and local comparisons between space and laboratory plasmas of mag-
 12 netic fields, current profiles, outflow jets during magnetic reconnection.
- 13 • During guide-field reconnection the energy conversion is dominated by $J_{||}E_{||}$ in both
 14 experiments.

15 **Abstract**

16 We present direct and scaled comparisons between laboratory and *in situ* space observations
17 of magnetic reconnection with a guide field, comparing results from the Magnetospheric
18 Multiscale Mission (MMS) and the Magnetic Reconnection eXperiment (MRX). While
19 MMS observations obtain high-resolution and fully-kinetic data, MRX observations fully
20 cover the 2-D reconnection plane near the current sheet, removing uncertainties in situating
21 the measurements compared to the reconnection region. Through scaling transformations,
22 we show a quantitative agreement in magnetic field and current density profiles, which agree
23 within a factor of two from each other. The introduction of the guide field causes the energy
24 conversion $\mathbf{J} \cdot \mathbf{E}$ in the current sheet to be dominated by $J_{||}E_{||}$ in both cases. However, parallel
25 electric fields reported by recent spacecraft crossings are significantly (5–10x) larger than
26 values obtained on MRX, highlighting an important issue for understanding energy conver-
27 sion by reconnection.

28 **1 Introduction**

29 Magnetic reconnection is a fundamental process in plasmas which liberates stored
30 magnetic energy, allowing often explosive transfer of this energy to particle flows, heat, and
31 energized particle populations [Yamada *et al.*, 2010]. The energy conversion is mediated
32 through current sheets, where a component of the magnetic field reverses over narrow kinetic
33 plasma scales, accompanied by large inductive electric fields. Energy conversion by recon-
34 nection can be studied experimentally by comparing detailed measurements obtained across
35 a number of environments, including recent *in situ* spacecraft measurements from the Mag-
36 netosphere Multiscale Mission (MMS) [Burch *et al.*, 2016], and detailed and comprehensive
37 measurements from the Magnetic Reconnection eXperiment (MRX) [Yamada *et al.*, 1997;
38 Ren *et al.*, 2005; Ji *et al.*, 2008; Fox *et al.*, 2017], and other laboratory experiments [Egedal
39 *et al.*, 2007; Fox *et al.*, 2008].

40 In its first mission phase, MMS has observed reconnection events during a large num-
41 ber of current sheet crossings at the Earth's magnetopause, in a variety of regimes of guide
42 field strength and at various distances downstream from the diffusion region. Here we fo-
43 cus on recent measurements of strong energy conversion processes by parallel electric fields
44 observed during crossings close to the electron diffusion region, during guide field recon-
45 nection [Ergun *et al.*, 2016; Eriksson *et al.*, 2016; Øieroset *et al.*, 2016; Wilder *et al.*, 2017;
46 Phan *et al.*, 2018]. The parallel electric field is important in diffusion regions, especially

47 with a finite guide field, as it is a primary mechanism of energy conversion which directly
48 accelerates electrons [Kleva *et al.*, 1995; Pritchett, 2004; Swisdak *et al.*, 2005; Egedal *et al.*,
49 2012]. These recent MMS events occurred in a variety of reconnection environments away
50 from the magnetopause proper, including the turbulent region downstream of the Earth's
51 bowshock [Phan *et al.*, 2018], in the magnetosheath [Wilder *et al.*, 2017], or embedded in
52 Kelvin-Helmholtz vortices on the flanks of the magnetopause [Eriksson *et al.*, 2016].

53 Laboratory experiments such as MRX provide valuable complements to spacecraft
54 data. The MRX experiment [Yamada *et al.*, 1997; Ren *et al.*, 2008; Fox *et al.*, 2017] enables
55 large ensemble averages, high accuracy and spatial resolution, and comprehensive measure-
56 ments over the 2-D reconnection plane (the LN plane in the standard LMN reconnection
57 coordinate system). While MMS can obtain high resolution fully-kinetic data, the data are
58 based on the trajectories of four spacecraft through the reconnection region, which requires
59 assumptions to understand how given observations fit in with the global current sheet geom-
60 etry, and uncertainty remains how to untangle the temporal and spatial dependence. In con-
61 trast, MRX experiments document the evolution of all quantities on the full 2-D plane in ev-
62 ery discharge, providing a holistic picture of the reconnection events with well-characterized
63 driving conditions and a large number of repeatable events to obtain statistics.

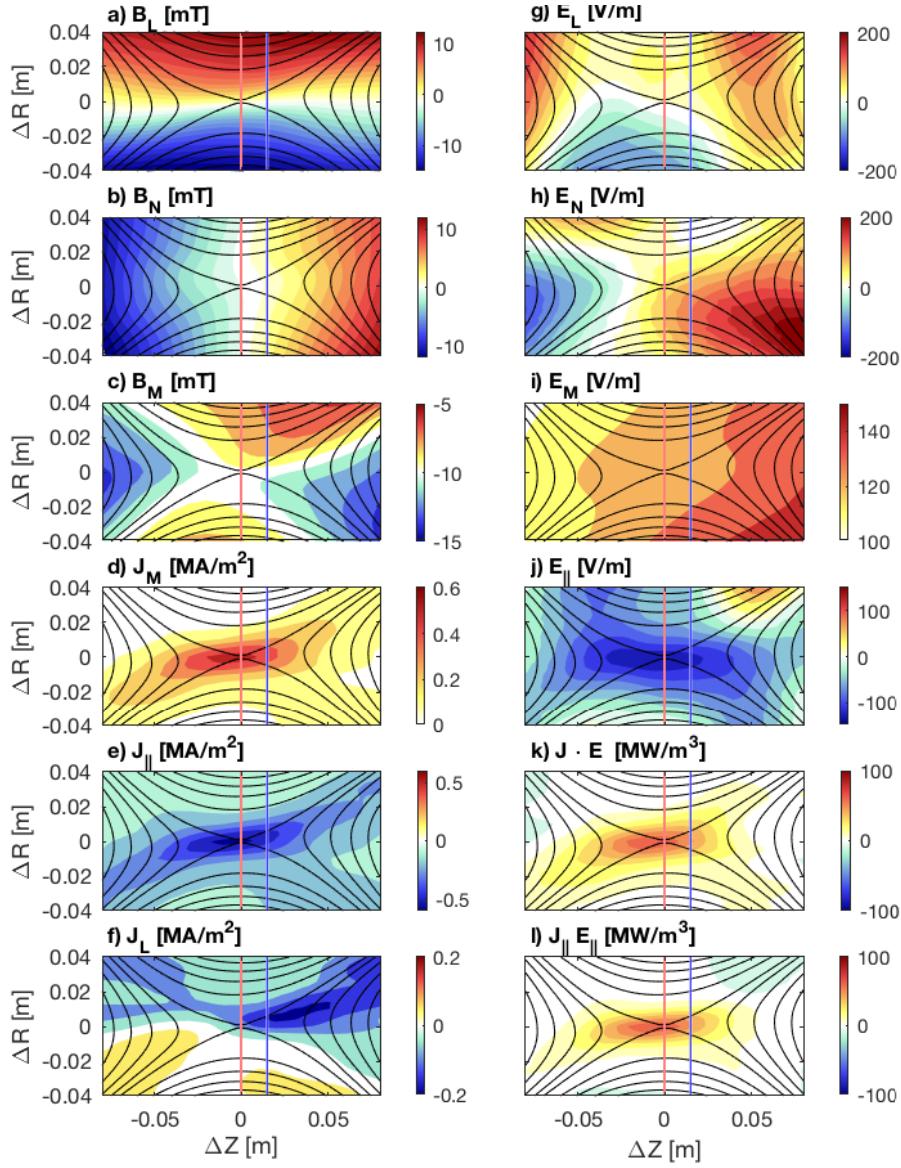
64 In this Letter we report new insights obtained through a detailed, scaled comparison of
65 MRX and MMS data. Quantitative agreement is obtained on the magnetic field and current
66 density structures, including the current sheet width and magnitude of the current density,
67 and presence of electron outflow jets. Both experiments observe that energy conversion $\mathbf{J} \cdot \mathbf{E}$
68 becomes dominated by the $J_{||}E_{||}$ component during guide field reconnection, in contrast to
69 the zero-guide field case where dissipation is dominated by $\mathbf{J}_{\perp} \cdot \mathbf{E}_{\perp}$ [Yamada *et al.*, 2014].
70 This last point of agreement is only qualitative, however, because significant differences are
71 observed in the magnitude of the parallel and reconnection electric fields, and correspond-
72 ingly the overall dissipation rates. We find on MRX that typically $E_{||} = 0.3 V_{A,up} B_{up}$ during
73 steady reconnection. Scaling to space plasma parameters, this value is close to or below the
74 detection limit for MMS. However, parallel and out-of-plane electric field components signif-
75 icantly *above* ($\sim 10x$) the detection limit have been reported for recent MMS events [Burch
76 *et al.*, 2016; Eriksson *et al.*, 2016; Wilder *et al.*, 2017; Phan *et al.*, 2018]. This difference
77 highlights a significant issue for understanding energy conversion by reconnection in space
78 and laboratory plasmas, and we discuss several hypotheses and avenues for follow-up investi-
79 gation.

80 **2 MRX Observations**

81 For this comparison, we use data from recent experiments on MRX studying the role
82 of two-fluid effects during guide field reconnection [Fox *et al.*, 2017]. Through comprehen-
83 sive 2D profile measurements, obtained over ~ 1000 reproducible discharges, these experi-
84 ments observed the characteristic quadrupolar electron pressure variation and demonstrated
85 how the parallel gradient of electron pressure balances $E_{||}$ over the ion diffusion region, an
86 effect originally predicted in two-fluid simulations [Aydemir, 1992; Wang and Bhattacharjee,
87 1993; Kleva *et al.*, 1995] and particle simulations [Ricci *et al.*, 2004; Swisdak *et al.*, 2005].

88 Figure 1 shows a comprehensive set of 2-D profiles which serve as the basis for the
89 comparisons below. Some of these profiles were published by Fox *et al.* [2017], but are pre-
90 sented in their entirety here for comparison with MMS. Quantities are plotted first in terms
91 of physical units, but will be plotted in normalized units below when comparisons are made
92 with MMS data. In MRX coordinates, measurements are obtained in the Z - R plane rela-
93 tive to the location of the x-point, where R is the radial direction in MRX which goes across
94 the current sheet, and Z goes along the sheet. This corresponds to the L - N reconnection
95 plane commonly used for interpreting spacecraft measurements. The conversion to LMN
96 coordinates for MRX is based on the known magnetic geometry and does not require the
97 maximum-variance analysis to determine the transformation. The MRX measurement area
98 is about 16×10 cm, which corresponds to $4 \times 2.5 \rho_s$, using the characteristic sound ion-
99 gyroradius $\rho_s = \sqrt{T_e/m_i} \cdot (m_i/eB_{tot}) \approx 3.8$ cm.

100 Starting in the top left, we plot the upstream reconnecting component B_L (a), the down-
101 stream reconnected component B_N (b), and the out-of-plane component B_M (c), which con-
102 sists of an overall guide field with a quadrupolar variation [Tharp *et al.*, 2012; Fox *et al.*,
103 2017]. Note that we have offset the color axis around the average value of -8 mT to illus-
104 trate the quadrupolar variation of B_M near the reconnection layer. The next panels show the
105 plasma current structure near the x-point, including the out-of-plane current J_M (d), in-plane
106 current J_L (f), which shows a strong electron-outflow-jet structure ejected to the right from
107 the x-point, and $J_{||}$ (e). ($J_{||}$ has the opposite sign from J_M due to the negative guide field in
108 this coordinate system.)

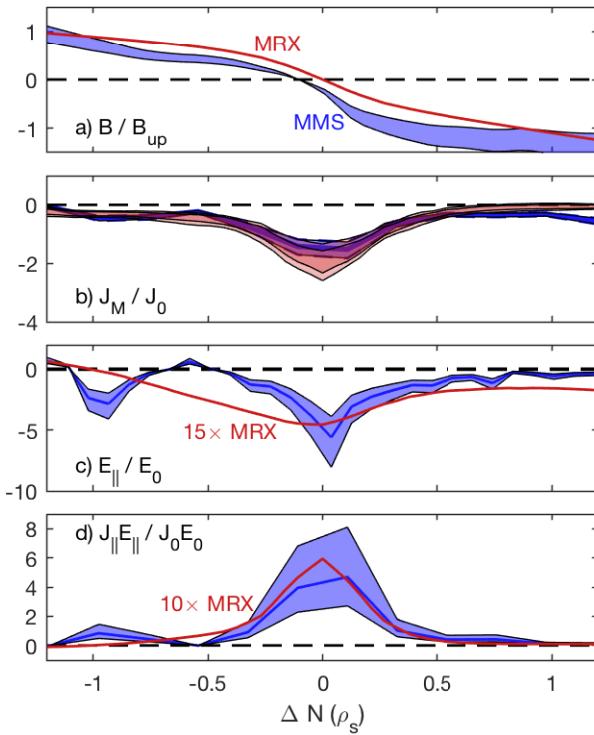

109 The top-right of the figure continues with electric field observations. The electric fields
110 observed in MRX result from both out-of-plane, inductive electric fields E_M associated with
111 reconnection, and in-plane components E_N and E_L . (The electric field measurement tech-

112 niques are briefly reviewed in the Supplementary.) The out-of-plane component E_M is uni-
 113 form within 20% over the measurement region, consistent with quasi-steady reconnection.
 114 The in-plane components E_N and E_L show much more structure and result from plasma re-
 115 sponse throughout the current sheet. $E_{||}$ is calculated from all components using the knowl-
 116 edge of the magnetic geometry. Like $J_{||}$, $E_{||}$ is negative due to the negative guide field in this
 117 coordinate system. The magnitude of $E_{||}$ is observed to peak at the reconnection x-point,
 118 and to decrease going away from the reconnection layer, consistent with a trend to reach an
 119 “MHD” outer region where $E_{||} \sim 0$.

120 Finally, magnetic field energy conversion is measured through $\mathbf{J} \cdot \mathbf{E}$, for which all vec-
 121 tor components are measured. We directly observe that almost all dissipation is accounted
 122 through $J_{||}E_{||}$, which results because the out-of-page current J_M is dominant and co-aligns
 123 with the guide field over most of region. Previous MRX results demonstrated that at zero
 124 guide field the primary energy dissipation is $\mathbf{J}_\perp \cdot \mathbf{E}_\perp$ [Yamada *et al.*, 2014], and this compari-
 125 son therefore shows that the dissipation physics shifts nearly completely to the $J_{||}E_{||}$ channel
 126 by the present guide field of $B_g/B_{up} = 0.8$. The peak dissipation occurs near the recon-
 127 nection x-point and over a current layer which extends approximately $1 \rho_s$ downstream from
 128 the x-point in either direction. A similar trend toward dissipation dominated by $J_{||}E_{||}$ during
 129 guide-field reconnection has also been observed in recent statistical analysis of MMS events
 130 [Wilder *et al.*, 2018], electron-scale reconnection events in turbulent plasmas [Phan *et al.*,
 131 2018], and recent particle simulations [Pucci *et al.*, 2018].

136 3 Comparison with MMS observations

137 MRX results are compared one-to-one against two recent *in situ* MMS reconnection
 138 observations [Eriksson *et al.*, 2016; Wilder *et al.*, 2017] at finite guide fields $B_g/B_{up} = 0.5$
 139 and 4. To compare the MMS and MRX observations, we use the following scaling trans-
 140 formations: Magnetic fields are normalized to the upstream magnetic field B_{up} , and length
 141 scales are normalized to the ion sound gyroradius $\rho_s = \sqrt{T_{e0}/m_i} \cdot (m_i/eB_{tot})$, where
 142 $B_{tot} = (B_{up}^2 + B_g^2)^{1/2}$, and using the electron temperature in the current sheet T_{e0} . Here B_g
 143 is the out-of-plane guide magnetic field (B_M) evaluated at the reconnection layer. We con-
 144 vert the MMS spacecraft measurements, which are functions of time, to functions of space
 145 in the sheet-normal direction using the normal component of the ion-velocity (V_{Ni} , typically
 146 100 km/s) averaged over the crossing, assuming that the profiles are otherwise stationary dur-
 147 ing the crossing time. Currents are then normalized to $J_0 = B_{up}/\mu_0\rho_s$, and electric fields are

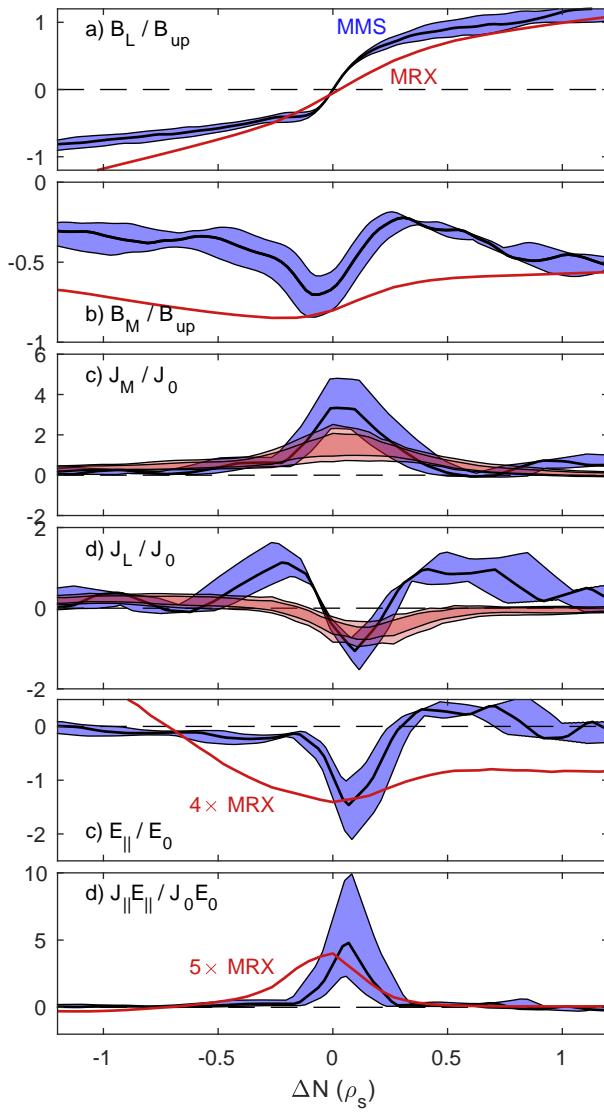

132 **Figure 1.** 2-D profiles of magnetic fields (a-c), plasma current (d-f), electric fields (g-j) and energy conver-
 133 sion rates (k-l) from MRX guide-field experiments. The red line and blue lines show locations of cuts across
 134 the x-line and about $+0.3 \rho_s$ downstream which are used for comparison with MMS. See text for further
 135 descriptions of individual panels.

155 **Table 1.** Dimensional scaling parameters for comparison of laboratory and space magnetic reconnection
 156 data, and a comparison of observations in dimensionless form below

Quantity	MRX [Fox <i>et al.</i> , 2017]	MMS [Wilder <i>et al.</i> , 2017]	MMS [Eriksson <i>et al.</i> , 2016]
ions	He^+	H^+	H^+
n_0	$2 \cdot 10^{13} \text{ cm}^{-3}$	20 cm^{-3}	14 cm^{-3}
T_{e0}	8 eV	80 eV	80 eV
B_{up}	13 mT	22 nT	20 nT
B_g	8 mT	10 nT	70 nT
B_{tot}	15 mT	25 nT	75 nT
ρ_s	3.8 cm	32 km	12 km
d_i	10 cm	51 km	61 km
$V_{A,up}$	32 km/s	110 km/s	120 km/s
$E_0 = V_{A,up} B_{up}$	400 V/m	2.4 mV/m	2.4 mV/m
$J_0 = B_{up} / \mu_0 \rho_s$	0.28 MA/m ²	0.56 $\mu\text{A}/\text{m}^2$	1.3 $\mu\text{A}/\text{m}^2$
$\beta_{up} = \frac{2\mu_0 n_0 T_{e0}}{B_{up}^2}$	0.4	1.3	1.1
$\overline{E_M} / E_0$	0.3 ± 0.1	0.15	0.2
$\max(E_{ }) / E_0$	0.3 ± 0.1	1.5 ± 0.5	6 ± 2
$\max(J_M) / J_0$	2 ± 0.4	3 ± 1	1.5 ± 0.3
current sheet width w/ρ_s	0.55 ± 0.1	$0.3 \pm .06$	$0.65 \pm .15$

148 normalized to the Alfvénic rate $E_0 = V_{A,up} B_{up}$, where $V_{A,up}$ is evaluated using B_{up} and the
 149 density at the x-point. Table 1 shows a summary of the scaling parameters, as well as com-
 150 parison measurements in dimensionless form which are discussed below. The present MRX
 151 and MMS experiments find comparable current sheet layer widths, in units of ρ_s . This is im-
 152 portant as it provides a basis for a comparison between these experiments. Furthermore it
 153 contributes data toward understanding the broader question of the scaling of the current sheet
 154 width, which is not yet known experimentally.

160 Figure 2 shows comparisons of MRX (red traces and bands) against the large guide
 161 field event of Eriksson *et al.* [2016] (blue), which had $B_g/B_{up} \sim 4$, whereas the MRX event
 162 had $B_g/B_{up} = 0.8$. Recent MRX observations has shown that the reconnection rate de-
 163 creases as a function of guide field [Tharp *et al.*, 2012; A. v. Stechow *et al.*, 2018] but has
 164 largely saturated its decrease by 0.8, supporting such a comparison. In this event, MMS3



157 **Figure 2.** Scaled comparison of MRX (red curves and bands) and MMS (blue bands) data from the event
158 of [Eriksson *et al.*, 2016], for cuts of the reconnecting magnetic field (B_L , a), current density (J_M , b), electric
159 field ($E_{||}$, c), and energy dissipation rate ($\mathbf{J} \cdot \mathbf{E}$, d).

165 and MMS4 are believed to have crossed the current sheet within the electron diffusion re-
166 gion. Accordingly, we cut the MRX data directly across the x-point, along the red line of
167 Fig. 1. Figure 2a compares the reconnecting components B_L , which show a good agreement
168 of overall shape, though with a slight spatial offset (the sets are aligned based on the peak
169 of the current density). The error bands on the MMS data in all the plots indicate a $\pm 20\%$
170 uncertainty in defining B_{up} for the scaling transformation, which is propagated to the other
171 quantities. Figure 2b compares the out-of-plane current J_M . Error bands on the MRX data
172 shows range of variation at the 67% and 90% intervals over the entire data set, showing the
173 high reproducibility of MRX. The current profile is in agreement within error bands, with the
174 peak MMS current density about 40% lower than MRX. The current sheet widths range from
175 $0.55\text{--}0.65\rho_s$ are in good agreement and coincide within error bars.

176 Qualitatively, both experiments observe a peak of $E_{||}$ at the x-line, which is dominated
177 by E_M owing to the strong guide field. However, the experiments show significantly different
178 magnitude in E_M and $E_{||}$, and therefore the energy conversion rate $\mathbf{J} \cdot \mathbf{E}$. We note that even
179 though the *magnitudes* of $\mathbf{J} \cdot \mathbf{E}$ disagree, in both cases the dissipation is dominated by $J_{||}E_{||}$.
180 In MRX, $E_{||} \sim 0.3V_{A,up}B_{up}$, which is approximately 1/10 the MMS value for this event. The
181 MMS observations also show a localized spike of E_M localized near the x-point. The spike
182 magnitude ranged from $-6 \text{ mV/m} \sim 2.5V_{A,up}B_{up}$ when averaged over 30 ms, up to peak
183 values of -16 mV/m at high time resolution (8196 samples/s). In contrast, in MRX E_M is
184 fairly constant to within $\sim 20\%$ over the whole measurement region.

188 We next compare MRX results against recent MMS observations by Wilder *et al.* [2017]
189 at a lower guide field value $B_g/B_{up} \sim 0.5$. The MMS spacecraft were believed to cross
190 the current sheet slightly downstream of the electron diffusion region, such that a signifi-
191 cant electron outflow jet was observed. The outflow jet was associated with a large-scale $E_{||}$
192 region denoted as an electron acceleration channel. Interestingly, downstream from the chan-
193 nel, electron holes were observed, which have been observed in previous laboratory guide-
194 field reconnection experiments [Fox *et al.*, 2008, 2012]. MRX observes a comparable elec-
195 tron outflow jet, shown in Fig. 1f, where the strongest electron outflow jet propagates from
196 the x-point toward the $+\Delta Z$ direction. The MRX jet is deflected toward the high-density sep-
197 aratrix which is the upper-right separatrix relative to the x-point (Fig. 1g), in agreement with
198 these MMS observations Wilder *et al.* [2017], as well as guide-field simulations [Pritchett,
199 2004].

185 **Figure 3.** Scaled comparison of MRX (red curves and bands) and MMS (blue bands) data from the [Wilder
 186 *et al.*, 2017] event, for cuts of the reconnecting magnetic field (B_L , a), out-of-plane field (B_M , b), current
 187 density (J_M , c), electron outflow jet (J_L , d), electric field ($E_{||}$, e), and energy dissipation rate ($\mathbf{J} \cdot \mathbf{E}$, f).

200 For comparison with MRX, we take a cut a short distance ($\sim 0.3 \rho_s$) downstream of
 201 the x-point (Fig. 1, blue trace), which crosses both the peak out-of-plane current (J_M) and
 202 the beginning of the outflow jet (J_L). Figure 3 shows the detailed one-to-one comparison
 203 along these cuts. The overall current sheet width over which the magnetic field reverses (B_L ,
 204 Fig. 3a), and the associated current density (J_M , c), are in reasonable agreement, though we
 205 observe that the MMS current sheet is “sharper” by about a factor of 2, resulting in a nar-
 206 rrower current sheet and stronger current density. The MMS observations show a larger and
 207 sharper variation of B_M and the associated outflow-jet current J_L . The MMS traces also
 208 show a pronounced “return” current ($J_L > 0$) on either side of the jet ($J_L < 0$) which is
 209 not apparent in the present MRX data in the guide field regime, though has been observed
 210 previously at zero guide field [Ren *et al.*, 2008]. Finally, as before $E_{||}$ and dissipation are
 211 compared, and indicate significantly larger $E_{||}$ and $\mathbf{J} \cdot \mathbf{E}$ on MMS than MRX. In this case, the
 212 peak $E_{||}$ for MMS is 1–2 $V_{A,up} B_{up}$, a factor 3–5 above the MRX values.

213 To help understand these large local MMS electric fields, we also estimate and com-
 214 pare a “global” reconnection electric field $\overline{E_M}$ for these MMS crossings based on considera-
 215 tion of inflow of magnetic flux by plasma flow into the sheet. On longer timescales (several
 216 ω_{ci}^{-1}) one expects that the reconnection of flux (corresponding to $\overline{E_M}$) balances the inflow of
 217 flux into the layer ($V_{in} \times B_{up}$). This balance is routinely confirmed on MRX; for MMS, by
 218 examining averaged inflows for several ω_{ci}^{-1} upstream on either side, an estimate can be made
 219 of $V_{in} \times B_{up}$ over a larger scale than just the current sheet. The Wilder *et al.* [2017] results
 220 show an ion inflow reversal of $V_{in} \sim \Delta V_{Ni}/2 \sim 20$ km/s across the sheet, and an upstream
 221 field $B_{up} \sim 20$ nT, which imply a global $\overline{E_M} \sim V_{in} B_{up} \sim 0.4$ mV/m $\sim 0.15 V_{A,up} B_{up}$. While
 222 this is a somewhat crude estimate, it is worth noting that this value is much smaller than the
 223 peak E_M and $E_{||}$ observed in the reconnection layer, and much more in line with the MRX
 224 values for E_M and $E_{||}$. A comparable estimate is also possible for the event of Eriksson *et al.*
 225 [2016], again finding upstream $V_{in} \times B_{up}$ much smaller than the peak $E_{||}$ and E_M (Table
 226 1). We conclude that “global” reconnection rates $\overline{E_M}$ are in agreement between MRX and
 227 MMS, but that MMS can observe a significant enhancement of $E_{||}$ and E_M in the reconne-
 228 tion layer itself.

229 Finally, in comparing electric fields, it is important to pay attention to commensurate
 230 measurement timescales for the two experiments. In general, MMS spacecraft traverse re-
 231 connection current sheets very quickly based on the fast relative speed of the plasma and
 232 spacecraft and so make “snapshot” measurements of the current sheet. In the events re-

233 ported by Wilder *et al.* [2017], the large $E_{||}$ structures were observed on all 4 MMS space-
234 craft, implying these structures persisted for at least $\tau_{\text{MMS}} \gtrsim 0.2$ s [Wilder *et al.*, 2017],
235 which corresponds to $\gtrsim 0.4\omega_{ci}^{-1}$ in scaled ion units. The events observed by Eriksson *et al.*
236 [2016] similarly were observed by two spacecraft separated by 0.4 s. To achieve a compara-
237 ble time resolution for MRX, we modified the MRX analysis pipeline to decrease the soft-
238 ware time-filtering. Notably, changing the bandwidth did not change the observed E_M values
239 $\sim 0.3 B_{up} V_{A,up}$ significantly: the magnitudes were still far different from the large $E_{||}$ and
240 E_M fields observed by MMS, nor were any outliers obtained over 300 analyzed discharges
241 that reached the MMS values. The resulting averaging time, including the finite bandwidth
242 of the coils and digitizers, is $\tau_{\text{MRX}} = 2.2 \mu\text{s} = 0.75 \omega_{ci}^{-1}$, which is within a factor of 2 of the
243 MMS “measurement time.” We conclude it is a significant difference in plasma physics be-
244 tween the systems that leads to the different observations of E_M and $E_{||}$, rather than a mea-
245 surement effect.

246 4 Discussion and Outlook

247 This Letter has presented scaled one-to-one comparisons of laboratory and spacecraft
248 observations of guide-field magnetic reconnection. A set of scaling laws was presented,
249 which allows the two experiments to be compared despite 12 orders of magnitude differ-
250 ence in density, and 6 orders of magnitude in magnetic fields. The basic agreement results
251 from the current sheet thinning to close to the ion scale in both systems, to approximately
252 $0.5 \rho_s$. Quantities such as the width of the current sheet and magnitude of the current den-
253 sity are within a factor of two agreement between MRX and both MMS events analyzed.
254 The experiments demonstrate the dominance of reconnection dissipation by $J_{||}E_{||}$ during
255 guide field reconnection. Both experiments find current sheets slightly below the ρ_s scale.
256 This provides valuable data toward understanding the scaling of the current sheet width
257 with plasma parameters, which is an important constraint for reconnection models [Ji *et al.*,
258 2008]. However, the identification of other events with widths as low as $0.1 \rho_s$ (in non-ion-
259 coupled regimes by Phan *et al.* [2018]) argues that broader data is warranted. Future analy-
260 sis utilizing more events (for MMS) or experiments over a wide range of plasma parameters
261 (MRX) will be valuable to determine what sets the scaling for the current sheet thickness
262 during guide field reconnection.

263 Extremely strong local $E_{||}$ and E_M , up to $\sim 5 V_{A,up} B_{up}$, coincident with the reconne-
264 cion crossing have been documented in several MMS crossing events including those com-

pared here. In contrast, MRX generally observes much smaller $E_{||}$ and $E_M = 0.3 V_{A,up} B_{up}$, which however appear consistent with estimates for the “global” reconnection rates by MMS. These differences raise significant questions for understanding these strong electric fields during reconnection, whether they are transient or steady, how they are driven, and what role they play in reconnection layers. Even if transient, these large electric fields could be important for the overall energy balance during reconnection, if $\langle \mathbf{J} \cdot \mathbf{E} \rangle$ is larger than $\langle \mathbf{J} \rangle \cdot \langle \mathbf{E} \rangle$, where the latter indicate the values associated with the average behavior of the current sheet. We now explore some possible hypotheses for these different observations.

We first note the possible effect of residual plasma parameter differences between the systems. The plasma β in MRX is smaller by a factor of ~ 3 . In the event where the outflow jet could be compared [Wilder *et al.*, 2017], the guide field in MRX is stronger by a factor of 2. This may explain the difference in the jet structure observed: by pressure balance, the variation in the scaled Hall field $\delta B_M / B_{up}$ should scale like $\beta_{up} \times (B_{up} / B_g)$, which indicates that at lower pressure and at stronger guide field, the jets should become weaker, which is the correct trend. However, it is not known how the plasma β would affect the electric fields. A second difference is that MRX is at a finite collisionality, with the electron mean-free-path of order $10 \text{ cm} \sim 2\rho_s$. However, the collisionality is sufficiently low so that the collisional resistivity does not play a role in determining the reconnection electric field in Ohm’s law, $E_M \gg \eta J_M$, and for this reason it is not clear how this difference would explain the very significant differences in observed E_M or $E_{||}$.

A second hypothesis to explain the large observed electric fields and energy conversion is that MMS is observing a transient or bursty reconnection driven by large-scale waves or the dynamics of flux ropes or plasmoids in the current sheet. The present MRX observations were obtained in a well-controlled and steady regime [Fox *et al.*, 2017] (to obtain clean measurements of the structure of guide-field current sheets), and unfortunately this limits the ability to make predictions of non-steady reconnection dynamics with a guide field. However, previous MRX observations at zero-guide-field have observed non-steady, impulsive reconnection, resulting from sudden current sheet disruptions and flux rope ejection [Dorfman *et al.*, 2013]. These non-steady current dynamics drove a strong time-dependence of the magnetic field and enhanced peak reconnection rates up to $E_M \sim 1V_{A,up} B_{up}$. Notably the disruption occurred on a timescale $\tau \sim 3 \mu\text{s} = 2-3 \omega_{ci}^{-1}$ which could still appear quasi-constant during a spacecraft crossing. (e.g. $\tau \sim 0.4\omega_{ci}^{-1}$ for Wilder *et al.* [2017]). Reconnection events driven by KH waves in the magnetopause flank have been proposed to contain

298 multiple flux ropes which might support such dynamics [Eriksson *et al.*, 2009; Nakamura
299 *et al.*, 2017; Sturner *et al.*, 2018]. Recent observations in sub-ion scale current sheets have
300 also observed very large parallel electric fields $E_{||} \sim 5E_0$ [Phan *et al.*, 2018]; this presents
301 a second idea that large reconnection rates may be linked to reconnection at small spatial
302 scales. Future experiments at MRX will be valuable to study the structure and magnitude of
303 $E_{||}$ and E_M during impulsive guide-field reconnection events and at various scale sizes, for
304 comparison against these MMS results.

305 To conclude, these results provide a scaled one-to-one comparison between laboratory
306 and space plasmas undergoing guide field magnetic reconnection. Beyond showing a ba-
307 sic agreement, this first quantitative comparison raises interesting questions for future work,
308 including understanding the scaling of the current sheet with plasma parameters, the magni-
309 tude and structure of outflow jets, and the nature of large electric fields observed by MMS.
310 While this work has focused on a physics comparison between *experiments*, particle simula-
311 tions will undoubtably provide insights into the issues identified here.

312 Acknowledgments

313 This work was supported by the Max-Planck Princeton Center for Plasma Physics,
314 funded by the U.S. Department of Energy under Contract No. DE-AC0204CH11466 and
315 NASA under Agreements No. NNH15AB29I and No. NNH14AX631. MRX digital data is
316 available from <http://arks.princeton.edu/ark:/88435/dsp01x920g025r>. MMS data is available
317 from the MMS Science Data Center.

318 References

319 A. v. Stechow, W. Fox, J. Jara-Almonte, J. Yoo, H. Ji, and M. Yamada (2018), Electromag-
320 netic fluctuations during guide field reconnection in a laboratory plasma, *Phys. Plasmas*,
321 25(5), 052,120, doi:10.1063/1.5025827.

322 Aydemir, A. Y. (1992), Nonlinear studies of $m=1$ modes in high-temperature plasmas, *Phys.*
323 *Fluids B: Plasma Phys. (1989-1993)*, 4(11), 3469–3472, doi:10.1063/1.860355.

324 Burch, J. L., R. B. Torbert, T. D. Phan, L. J. Chen, T. E. Moore, R. E. Ergun, J. P. East-
325 wood, D. J. Gershman, P. A. Cassak, M. R. Argall, S. Wang, M. Hesse, C. J. Pollock,
326 B. L. Giles, R. Nakamura, B. H. Mauk, S. A. Fuselier, C. T. Russell, R. J. Strangeway,
327 J. F. Drake, M. A. Shay, Y. Khotyaintsev, P. A. Lindqvist, G. Marklund, F. D. Wilder,

328 D. T. Young, K. Torkar, J. Goldstein, J. C. Dorelli, L. A. Avanov, M. Oka, D. N. Baker,
329 A. N. Jaynes, K. A. Goodrich, I. J. Cohen, D. L. Turner, J. F. Fennell, J. B. Blake, J. Clem-
330 mons, M. Goldman, D. Newman, S. M. Petrinec, K. J. Trattner, B. Lavraud, P. H. Reiff,
331 W. Baumjohann, W. Magnes, M. Steller, W. Lewis, Y. Saito, V. Coffey, and M. Chan-
332 dler (2016), Electron-scale measurements of magnetic reconnection in space, *Science*,
333 352(6290), aaf2939.

334 Dorfman, S., H. Ji, M. Yamada, J. Yoo, E. Lawrence, C. Myers, and T. D. Tharp (2013),
335 Three-dimensional, impulsive magnetic reconnection in a laboratory plasma, *Geophys.*
336 *Res. Lett.*, 40(2), 233–238, doi:10.1029/2012gl054574.

337 Egedal, J., W. Fox, N. Katz, M. Porkolab, K. Reim, and E. Zhang (2007), Laboratory Obser-
338 vations of Spontaneous Magnetic Reconnection, *Phys. Rev. Lett.*, 98(1), 015,003.

339 Egedal, J., W. Daughton, and A. Le (2012), Large-scale electron acceleration by parallel
340 electric fields during magnetic reconnection, *Nature Phys.*, 8(4), 321–324.

341 Ergun, R. . E., K. . A. Goodrich, F. . D. Wilder, J. . C. Holmes, J. . E. Stawarz, S. Eriks-
342 son, A. . P. Sturner, D. . M. Malaspina, M. . E. Usanova, R. . B. Torbert, P. A. Lindqvist,
343 Y. Khotyaintsev, J. . L. Burch, R. . J. Strangeway, C. . T. Russell, C. . J. Pollock, B. . L.
344 Giles, M. Hesse, L. . J. Chen, G. Lapenta, M. . V. Goldman, D. . L. Newman, S. . J.
345 Schwartz, J. . P. Eastwood, T. . D. Phan, F. . S. Mozer, J. Drake, M. . A. Shay, P. . A. Cas-
346 sak, R. Nakamura, and G. Marklund (2016), Magnetospheric Multiscale Satellites Ob-
347 servations of Parallel Electric Fields Associated with Magnetic Reconnection, *Phys. Rev.*
348 *Lett.* 116(23), 235102.

349 Eriksson, S., H. Hasegawa, W. L. Teh, B. U. O. Sonnerup, J. P. McFadden, K. H. Glassmeier,
350 O. Le Contel, V. Angelopoulos, C. M. Cully, D. E. Larson, R. E. Ergun, A. Roux, and
351 C. W. Carlson (2009), Magnetic island formation between large-scale flow vortices at an
352 undulating postnoon magnetopause for northward interplanetary magnetic field, *J. Geo-*
353 *phys. Res.*, 114, A00C17.

354 Eriksson, S., F. D. Wilder, R. E. Ergun, S. J. Schwartz, P. A. Cassak, J. L. Burch, L. J. Chen,
355 R. B. Torbert, T. D. Phan, B. Lavraud, K. A. Goodrich, J. C. Holmes, J. E. Stawarz, A. P.
356 Sturner, D. M. Malaspina, M. E. Usanova, K. J. Trattner, R. J. Strangeway, C. T. Russell,
357 C. J. Pollock, B. L. Giles, M. Hesse, P. A. Lindqvist, J. F. Drake, M. A. Shay, R. Nak-
358 mura, and G. T. Marklund (2016), Magnetospheric Multiscale Observations of the Elec-
359 tron Diffusion Region of Large Guide Field Magnetic Reconnection, *Phys. Rev. Lett.*, 117,
360 015001.

361 Fox, W., M. Porkolab, J. Egedal, N. Katz, and A. Le (2008), Laboratory Observation of Elec-
362 tron Phase-Space Holes during Magnetic Reconnection, *Phys. Rev. Lett.*, *101*(25), 255003.

363 Fox, W., M. Porkolab, J. Egedal, N. Katz, and A. Le (2012), Observations of electron phase-
364 space holes driven during magnetic reconnection in a laboratory plasma, *Phys. Plasmas*,
365 *19*(3), 032118.

366 Fox, W., F. Sciortino, A. v. Stechow, J. Jara-Almonte, J. Yoo, H. Ji, and M. Yamada (2017),
367 Experimental Verification of the Role of Electron Pressure in Fast Magnetic Reconnection
368 with a Guide Field, *Phys. Rev. Letters*, *118*(12), 125002.

369 Ji, H., Y. Ren, M. Yamada, S. Dorfman, W. Daughton, and S. P. Gerhardt (2008), New in-
370 sights into dissipation in the electron layer during magnetic reconnection, *Geophys. Res.*
371 *Lett.*, *35*(13), L13,106.

372 Kleva, R. G., J. F. Drake, and F. L. Waelbroeck (1995), Fast reconnection in high temperature
373 plasmas, *Phys. Plasmas* , *2*(1), 23.

374 Nakamura, T. K. M., H. Hasegawa, W. Daughton, S. Eriksson, W. Y. Li, and R. Nakamura
375 (2017), Turbulent mass transfer caused by vortex induced reconnection in collisionless
376 magnetospheric plasmas, *Nature Comm.*, *8*(1).

377 Øieroset, M., T. D. Phan, C. Haggerty, M. A. Shay, J. P. Eastwood, D. J. Gershman, J. F.
378 Drake, M. Fujimoto, R. E. Ergun, F. S. Mozer, M. Oka, R. B. Torbert, J. L. Burch,
379 S. Wang, L. J. Chen, M. Swisdak, C. Pollock, J. C. Dorelli, S. A. Fuselier, B. Lavraud,
380 B. L. Giles, T. E. Moore, Y. Saito, L. A. Avanov, W. Paterson, R. J. Strangeway, C. T. Rus-
381 sell, Y. Khotyaintsev, P. A. Lindqvist, and K. Malakit (2016), MMS observations of large
382 guide field symmetric reconnection between colliding reconnection jets at the center of a
383 magnetic flux rope at the magnetopause, *Geophys. Res. Lett.*, *43*(11), 5536–5544.

384 Phan, T. D., J. P. Eastwood, M. A. Shay, J. F. Drake, B. U. O. Sonnerup, M. Fujimoto, P. A.
385 Cassak, M. Øieroset, J. L. Burch, R. B. Torbert, A. C. Rager, J. C. Dorelli, D. J. Gersh-
386 man, C. Pollock, P. S. Pyakurel, C. C. Haggerty, Y. Khotyaintsev, B. Lavraud, Y. Saito,
387 M. Oka, R. E. Ergun, A. Retino, O. Le Contel, M. R. Argall, B. L. Giles, T. E. Moore,
388 F. D. Wilder, R. J. Strangeway, C. T. Russell, P. A. Lindqvist, and W. Magnes (2018),
389 Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath,
390 *Nature*, *557*(7704).

391 Pritchett, P. L. (2004), Three-dimensional collisionless magnetic reconnection in the pres-
392 ence of a guide field, *J. Geophys. Res.*, *109*(A1), A01220.

393 Pucci, F., S. Usami, H. Ji, X. Guo, R. Horiuchi, S. Okamura, W. Fox, J. Jara-Almonte, M. Ya-
394 mada, , and J. Yoo (2018), Energy transfer and electron energization in collisionless mag-
395 netic reconnection for different guide-field intensities, *submitted to Phys. Plasmas*.

396 Ren, Y., M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, and A. Kuritsyn (2005), Experimental
397 verification of the Hall effect during magnetic reconnection in a laboratory plasma, *Phys.*
398 *Rev. Lett.*, 95(5), 055003.

399 Ren, Y., M. Yamada, H. Ji, S. P. Gerhardt, and R. Kulsrud (2008), Identification of the
400 Electron-Diffusion Region during Magnetic Reconnection in a Laboratory Plasma, *Phys.*
401 *Rev. Lett.*, 101(8).

402 Ricci, P., J. U. Brackbill, W. Daughton, and G. Lapenta (2004), Collisionless magnetic recon-
403 nection in the presence of a guide field, *Phys. Plasmas*, 11(8), 4102–4114.

404 Sturner, A. P., S. Eriksson, T. Nakamura, D. J. Gershman, F. Plaschke, R. E. Ergun, F. D.
405 Wilder, B. Giles, C. Pollock, W. R. Paterson, R. J. Strangeway, W. Baumjohann, and J. L.
406 Burch (2018), On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic
407 Field Perturbations During Kelvin-Helmholtz Waves, *J. Geophys. Res.*, 123(2), 1305.

408 Swisdak, M., J. F. Drake, and M. A. Shay (2005), Transition from antiparallel to component
409 magnetic reconnection, *J. Geophys. Res.*, 110(A5).

410 Tharp, T. D., M. Yamada, H. Ji, E. Lawrence, S. Dorfman, C. E. Myers, and J. Yoo (2012),
411 Quantitative Study of Guide-Field Effects on Hall Reconnection in a Laboratory Plasma,
412 *Phys. Rev. Lett.*, 109, 165002.

413 Wang, X., and A. Bhattacharjee (1993), Nonlinear dynamics of the $m = 1$ instability and fast
414 sawtooth collapse in high-temperature plasmas, *Phys. Rev. Lett.*, 70, 1627.

415 Wang, X., A. Bhattacharjee, and Z. W. Ma (2000), Collisionless reconnection: Effects of
416 Hall current and electron pressure gradient, *J. Geophys. Res.*, 105(A12), 27,633–27,648.

417 Wilder, F. D., R. E. Ergun, S. Eriksson, T. . D. Phan, J. . L. Burch, N. Ahmadi, K. . A.
418 Goodrich, D. . L. Newman, K. . J. Trattner, R. . B. Torbert, B. . L. Giles, R. J. Strangeway,
419 W. Magnes, P. A. Lindqvist, and Y.-V. Khotyaintsev (2017), Multipoint Measurements of
420 the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field, *Phys.*
421 *Rev. Lett.*, 118(26).

422 Wilder, F. D., R. E. Ergun, J. L. Burch, N. Ahmadi, S. Eriksson, T. D. Phan, K. A. Goodrich,
423 J. Shuster, A. C. Rager, R. B. Torbert, B. L. Giles, R. J. Strangeway, F. Plaschke,
424 W. Magnes, P. A. Lindqvist, and Y. V. Khotyaintsev (2018), The role of the parallel elec-
425 tric field in electron-scale dissipation at reconnecting currents in the magnetosheath, *J.*

426 *Geophys. Res..*

427 Yamada, M., H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bretz, F. Jobes, Y. Ono, and F. Perkins

428 (1997), Study of driven magnetic reconnection in a laboratory plasma, *Phys. Plasmas* ,

429 4(5).

430 Yamada, M., R. Kulsrud, and H. Ji (2010), Magnetic reconnection, *Rev. Mod. Phys.*, 82(1),

431 603.

432 Yamada, M., J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud, and C. E. Myers (2014), Conver-

433 sion of magnetic energy in the magnetic reconnection layer of a laboratory plasma, *Nature*

434 *Comm.*, 5(1).