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Abstract—Energy storage is a unique grid asset in that it is
capable of providing a number of grid services. In market areas,
these grid services are only as valuable as the market prices for
the services provided. This paper formulates the optimization
problem for maximizing energy storage revenue from arbitrage
(day-ahead and real-time markets) in the CAISO market. The op-
timization algorithm was then applied to three years of historical
market data (2014-2016) at 2200 nodes to quantify the locational
and time-varying nature of potential revenue. The optimization
assumed perfect foresight, so it provides an upper bound on
the maximum expected revenue. Since California is starting to
experience negative locational marginal prices (LMPs) because of
increased renewable generation, the optimization includes a duty
cycle constraint to handle negative LMPs. Two additional trading
algorithms were tested that do not require perfect foresight. The
first sets a buy price threshold and a sell price threshold (e.g.,
limit orders) for participation in the real time market, subject
to the constraints of the energy storage system. The second uses
the day-ahead prices as an estimate for the real time prices and
performs an optimization on a rolling time horizon. The simple
threshold algorithm performed the best, but both fell well short of
the potential revenue identified by the optimization with perfect
foresight.

I. INTRODUCTION

Energy storage is a unique grid asset in that it is capable
of providing a number of grid services. These services can
be broken into two categories based on the characteristics of
the charge/discharge profile required to provide the service.
Energy applications typically transpire over long periods of
time, often up to several hours. On the other hand, power
applications happen on a much quicker time scale, seconds to
minutes, and are often aimed at maintaining grid stability. A
summary of energy and power applications appears in Table I.
A detailed description of potential benefits from energy storage
is found in [1].

In market areas, energy storage is only remunerated for
activities associated with market products. The common ser-
vices include energy arbitrage and providing ancillary services.
Arbitrage refers to purchasing energy (charging) when prices
are low, and then selling (discharging) energy when prices are
high. An early study identifying the potential arbitrage benefit
is presented in [2]. While arbitrage is the most well known
service that can be provided by energy storage, it rarely offers
the most potential revenue [3], [4], [5], [6], [7], [8]. A study

TABLE I
SUMMARY OF ENERGY STORAGE APPLICATIONS.

Energy Applications Power Applications
Arbitrage Frequency regulation
Renewable energy time shift Voltage support
Demand charge reduction Small signal stability
Time-of-use charge reduction Frequency droop
T&D upgrade deferral Synthetic inertia
Grid resiliency Renewable capacity firming

which evaluates potential arbitrage revenue in PJM using 2014
data is found in [9]. The study considered arbitrage in the day-
ahead market and arbitrage in the real-time market, but not
arbitrage between the two markets. The conclusion was that
the real time market offered greater arbitrage opportunities
because of the increased price volatility, but that the increased
volatility also created forecasting challenges. A stochastic
optimization formulation of a storage owner’s arbitrage profit
maximization problem under uncertainty in day-ahead and
real-time market prices is presented in [10].

The most common ancillary service is frequency regulation,
which is the second by second adjustment of output power to
maintain system frequency. In some market areas like PJM,
there is a single product for frequency regulation and the de-
vice must have a bidirectional capability. In other markets like
CAISO and ERCOT, there are separate products for regulation
up (inject power to the grid) and regulation down (pull power
from the grid). Pay-for-performance was mandated by FERC
Order 755 [11], [12], so all Independent System Operators
(ISOs) in North America, with the exception of ERCOT,
have adopted pay-for-performance mechanisms. Typically, this
includes some type of mileage measurement combined with
a performance score. The remuneration is a function of the
capacity and mileage price, as well as the performance score.
Potential revenue from frequency regulation is often 2-3 times
the potential revenue from participating in arbitrage in the day-
ahead energy market [3], [4], [5], [6], [7], [8].

This paper outlines a framework for calculating the max-
imum revenue from an electricity storage system that par-
ticipates in the CAISO day-ahead and real-time markets for
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energy arbitrage. The approach is designed to calculate the
best-case scenario using historical data to simulate operation
with perfect day-ahead and real-time energy forecasts. This
best-case scenario calculation is critical because it provides an
upper bound on the revenue that can be collected by a storage
facility and can be used to score other trading strategies.
Hence, it is useful in estimating an upper bound for the
value of a storage facility. Cost data is required to perform
a cost-benefit analysis for a particular system and location.
Information on the capital and operational costs of different
energy storage technologies may be found in [13]. It should
also be noted that this approach is only valid for scenarios
where the size of the storage is such that it does not impact
market prices. For large systems that might impact the market,
a production cost modeling approach must be implemented.

The approach in this paper formulates the revenue max-
imization problem as a linear program. The energy storage
model and optimization formulation builds on the results in
[14], where the authors present a stochastic framework for the
valuation of electricity storage. Previous results using a similar
approach (without pay-for-performance) were presented in [3],
[4], [5]. The algorithm, results for CAISO data (including a
sensitivity analysis for each parameter), and results for several
implementable trading algorithms appear in [3]. ERCOT re-
sults for a single node, two years of data, and implementable
trading algorithms are presented in [4]. All nodes in ERCOT
were analyzed over a three year period to look at the impact
of location and to identify longer term trends in [5]. The pay-
for-performance optimization for PJM, along with results for
a representative flywheel plant are found in [5]. The pay-for-
performance optimization for MISO is presented in [8]. The
optimization formulation for the ISO-NE market along with
expected results for a 2 MW, 3.9 MWh system deployed by
the Sterling Municipal Light Department (SMLD) are found
in [6]. This paper extends the optimization approach to include
arbitrage accross the day-ahead and real time energy markets.
Results are presented for three years of historical data at
2200 nodes to provide insight into the impact of location on
potential revenue.

This report is organized as follows: Section II provides an
overview of the CAISO energy markets. Section III presents
the energy storage model that is used throughout this paper
as well as the revenue maximization problem formulation.
Section IV presents results for 2200 CAISO nodes for the
2014-2016 period. Concluding remarks are found in Section
V.

II. CAISO ENERGY MARKETS

CAISO employs a day-ahead and a real-time energy market.
The day-ahead market is composed of three market processes
that run sequentially. The three steps are listed below [15]:

1) The ISO runs a market power mitigation test. Bids that
fail the test are revised to predetermined limits.

2) The integrated forward market establishes the generation
needed to meet forecast demand.

3) The residual unit commitment process designates addi-
tional power plants that will be needed for the next day
and must be ready to generate electricity. Market prices
set are based on bids.

The CAISO market utilizes a full network model, which con-
siders active transmission and generation resources to identify
the lowest cost energy to meet load. The model produces prices
that show the cost of producing and delivering energy from
individual nodes. The locational marginal price at each bus has
three components: the marginal cost at the reference bus; the
marginal cost of transmission losses from the reference bus to
bus i; and the marginal cost of transmission congestion due to
binding constraints. The day-ahead market opens for bids and
schedules seven days before and closes the day prior to the
trade date. Results are published at 1:00 p.m. the day prior. A
description of the mixed integer programming (MIP) security
constrained unit commitment is found in [16].

The real-time energy market is a spot market in which load
serving entities can buy power to meet the last few increments
of demand not covered in their day ahead schedules [15]. The
market opens at 1:00 p.m. prior to the trading day and closes
75 minutes before the start of the trading hour. The results are
published about 45 minutes prior to the start of the trading
hour. The hour-ahead scheduling process (HASP) generates
nodal prices on a 15-minute interval.

III. ENERGY STORAGE MODEL

The key parameters that characterize a storage device are
[17]:

• Power Rating [MW]: the maximum rated power of the
storage device (charge and discharge). It is possible to
have a different power rating for charging and discharg-
ing.

• Energy Capacity [MWh]: the amount of energy that can
be stored.

• Efficiency [percent]: the ratio of the energy discharged by
the storage system divided by the energy input into the
storage system. Efficiency can be broken down into two
components: conversion efficiency and storage efficiency.
Conversion efficiency describes the losses encountered
when input energy is stored in the system. Storage
efficiency describes the time-based losses in a storage
system.

• Ramp Rate [MW/min or percent nameplate power/min]:
the ramp rate describes how quickly a storage system can
change its input/output power level.

An energy flow model is often employed to model market
interactions. The simplest formulation is a discrete linear time
invariant model given by [14]:

St = St−1γs + qRt γc − qDt (1)

where St is the state of charge at time t, γs is the storage
efficiency over one time period, γc is the conversion efficiency,
qRt is the quantity of energy charged over one period, and qDt is
the quantity of energy discharged over one period. This model
assumes constant storage and conversion efficiencies.



For the analysis in this paper, we are concerned with the
quantity of energy charged or discharged during each time
period for each potential activity (e.g., buying and selling
energy in the day-ahead and real-time markets).

The following parameters capture the storage system con-
straints:

t time period (e.g. one hour)
q̄ maximum discharged/recharged en-

ergy in one period (MWh)
S̄ maximum storage capacity (MWh)
S minimum storage capacity (MWh)

For a storage device that provides only one service, e.g.
arbitrage in one market, there are two decision variables: qDt
and qRt , where qDt is the amount of energy discharged at
time interval i and qRt is the amount of energy procured at
time interval i. The decision variables are assumed to be non-
negative quantities. Additional constraints include:

S ≤ St ≤ S̄,∀t (2)

0 ≤ qDt + qRt ≤ q̄,∀t (3)

Note that the constraint in Equation (3) is required if nega-
tive LMPs are present to guarantee that simultaneous charg-
ing/discharging is within the constraints of the system. For
a device that is participating in arbitrage and the regulation
market, a few additional quantities must be incorporated into
the storage device model.

Since we are concerned with both the day-ahead and real-
time energy markets, we will define the following decsision
variables:

qD−DA
t energy sold in the day-ahead market

at interval i (MWh)
qD−RT
t energy sold in the real-time market

at interval i (MWh)
qR−DA
t energy purchased in the day-ahead

market at interval i (MWh)
qR−RT
t energy purchased in the real-time

market at interval i (MWh)

The state of charge model can then be expressed as

St = St−1γs +(qR−DA
t +qR−RT

t )γc−qD−DA
t −qD−RT

t (4)

subject to the following constraint

0 ≤ qD−DA
t + qD−RT

t + qR−DA
t + qR−RT

t ≤ q̄,∀t (5)

For CAISO, the objective function that maximizes potential
revenue from participating in the day-ahead energy and real-
time energy markets is given by

max

T∑
t=1

[
(PDA

t − Cd)qD−DA
t +

(PRT
t − Cd)qD−RT

t −
(PDA

t + Cr)qR−DA
t −

(PRT
t + Cr)qR−RT

t

]
e−rt

(6)

where PDA
t represents the day-ahead price for energy

($/MWh) in interval i, PRT
t represents the real-time price for

energy ($/MWh) in interval i, Cd is the cost associated with
discharging ($/MWh), Cr is the cost associated with charging,
and r is the discount rate assuming continuous compounding.

IV. CAISO RESULTS

For this study, three years (2014-2016) of CAISO day-
ahead and real-time energy market data was analyzed for 2200
node locations. A notional 1 MW, 4 MWh system with the
following parameters was employed for the analysis. Potential

TABLE II
ENERGY STORAGE SYSTEM PARAMETERS

parameter value
γc 0.80
γs 1.0
q̄ 1.0 MWh
S̄ 4.0 MWh
S 0.0 MWh

revenue was estimated for the following scenarios: day-ahead
energy market arbitrage with perfect foresight; day-ahead and
real-time arbitrage with perfect foresight; real-time arbitrage
with preset buy/sell thresholds and no foresight; and real-
time arbitrage using the day-ahead prices as a forecast of real
prices, optimization over a sliding 24 hour time horizon, and
no foresight. The results for each case are presented in the
following sections.

A. Day-Ahead Arbitrage with Perfect Foresight

First, an optimization was performed using only day-ahead
energy prices. The optimization was run on hourly market
data for each node assuming perfect foresight one month
at a time over the three year period. The arbitrage results
are summarized in Figure 1. The distribution of potential
arbitrage revenue is shown in Figure 2. The monthly revenue
profile for the minimum node, the median node, and the
maximum node are found in Figure 3. The highest/lowest ten
revenue nodes are listed in Table III. The maximum potential
3-year total arbitrage revenue ranges from $53.87K (SYL-
MARDC 2 N501 node) to $145.87K (ELCAPTN 1 N001
node), with an average of $81.05K. There are relatively few
“high revenue” nodes, as noted in the distribution and heat
map. The majority of the difference between the maximum
node and the median node can be attributed to a few months
with extremely high potential revenue opportunities.

B. Day-Ahead and Real-Time Arbitrage with Perfect Foresight

Next, an optimization was performed assuming participation
in the day-ahead and real-time energy markets. The optimiza-
tion was run on 15-minute data (hourly day-ahead market data
was upsampled to create 15-minute data, the real-time market
data is 15-minute data) assuming perfect foresight, one month
at a time over the three year period. The arbitrage results
are summarized in Figure 4. Note that the potential revenue
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Fig. 1. Maximum potential day-ahead arbitrage revenue 2014-2016 ($K).

Fig. 2. Distribution of maximum potential day-ahead arbitrage revenue 2014-
2016 ($K).

TABLE III
HIGHEST AND LOWEST POTENTIAL DAY-AHEAD ARBITRAGE REVENUE

NODES.

Node Revenue Node Revenue
SYLMARDC 2 N501 $53.87K ELNIDO 1 N004 $155.05K
JBBLACK1 7 B1 $54.42K ELNIDO 1 N001 $155.05K
JBBLACK2 7 B1 $54.65K CRESSEY 1 N003 $147.44K
PIT3 7 N001 $55.83K CRESSEY 1 N001 $147.44K
PIT6U2 7 B1 $56.02K LIVNGSTN 1 N001 $146.52K
PIT5 7 N001 $56.22K ELCAPTN 1 N004 $146.38K
PIT5 7 B1 $56.22K ATWATER 1 N001 $146.28K
PIT6U1 7 B1 $56.34K ATWATER 1 B2 $146.28K
PIT3 2 B1 $56.41K MERCED 1 N001 $146.12K
PIT1U1 7 B2 $56.65K ELCAPTN 1 N001 $145.87K

from arbitrage in the day-ahead plus real-time markets is sig-
nificantly higher than potential revenue from participating in

Monthly Arbitrage Revenue 2014-2016
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Fig. 3. Monthly day-ahead arbitrage revenue profile for the minimum node,
the median node, and the maximum node 2014-2016.

only the day-ahead market. Figure 5 illustrates the distribution
of potential arbitrage revenue. The average potential revenue
from participating in day-ahead and real-time arbitrage is
$229,767.82, or $76,589.27/year for the three year period. This
is almost three times the potential revenue from participating
in only the day-ahead market. The distribution of the ratio of
potential revenue, day-ahead plus real-time compared to day-
ahead only, is found in Figure 6. The average improvement
factor is 2.83. The node with the highest potential revenue is
INDNFLT 6 N001, with a maximum potential total revenue
of $541,035.85 over the three year period. Some statistics that
characterize the optimal behavior for the maximum revenue
node are summarized in Table V. The majority of the charging
occurred through the real-time market, which takes advantage
of negative prices when they occur. About 5.87% of the time,
the system simultaneously charged in the real-time market and
discharged in the day-ahead market, subject to the constraints
of the system. This type of behavior would be very hard to
replicate without perfect foresight because it would involve
entering into the day-ahead market to discharge assuming
some confidence of negative prices in the period of interest.

C. Optimal Dispatch Using Day-Ahead Prices as a Forecast
for the Real-Time Market

Focusing on the market data from the maximum potential
revenue node, INDNFLT 6 N001, two different trading algo-
rithms were tested that did not require perfect foresight. The
first algorithm uses the day-ahead market prices as a forecast
for the real-time prices, and is described in Algorithm 1. Using
data from node INDNFLT 6 N001, this algorithm resulted in
a total revenue of $113K for the three year period, which
is substantially less than the $541,035.85 maximum potential
revenue with perfect foresight.
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Fig. 4. Maximum potential day-ahead and real-time arbitrage revenue 2014-
2016 ($K).

Fig. 5. Distribution of maximum potential day-ahead and real-time arbitrage
revenue 2014-2016 ($K).

D. Price Thresholds for Buying/Selling Energy in the Real-
Time Market

The second algorithm tested that did not require perfect
foresight was buying/selling in the real-time market based on a
price threshold (e.g., a limit order). Once again, data from node

Algorithm 1 Optimal dispatch using day-ahead market prices
as a forecast for real-time prices

for Each market day do
1. Run optimization for 24-hour period using day-ahead
prices
2. Trade the quantities identified by the optimization in
the real-time market

end for

Fig. 6. Distribution of the ratio of maximum potential revenue, (day-ahead
and real-time)/(day-ahead), 2014-2016.

TABLE IV
HIGHEST AND LOWEST POTENTIAL DAY-AHEAD PLUS REAL-TIME

REVENUE NODES, RELATIVE TO DAY-AHEAD ONLY.

Node DA ($) DA+RT ($) Ratio
EBMUDGRY 1 N001 $94,235.10 $224,593.29 2.38
CALISTGA 6 N001 $88,691.72 $212,577.50 2.40
GUALALA 6 N001 $91,374.96 $219,734.66 2.40
SOUTHBAS 1 N001 $90,819.80 $218,607.46 2.41
LAKEWOOD 1 N009 $92,159.73 $222,571.35 2.42
SEGS2G 7 B1 $87,360.28 $211,968.66 2.43
CLAYTN 1 N030 $87,982.69 $214,220.14 2.43
CLAYTN 1 N001 $87,982.69 $214,220.14 2.43
CLAYTN 1 N029 $87,982.98 $214,221.15 2.43
MEDWLNE 1 N001 $91,738.45 $223,629.49 2.44
MERCEDFL 7 N002 $124,710.46 $516,831.58 4.14
MERCEDFL 7 N001 $124,710.46 $517,638.12 4.15
INDNFLT 6 N001 $129,071.10 $541,035.85 4.19
MARIPOS2 6 N003 $128,469.67 $539,897.66 4.20
MARIPOS2 6 N001 $128,462.06 $540,021.40 4.20
BERVLLY 6 N001 $125,862.96 $535,814.84 4.26
EXCHQRTP 7 B1 $121,978.50 $533,175.58 4.37
EXCHQUER 7 B1 $121,525.31 $532,702.53 4.38
CRAGVIEW 1 N101 $61,458.74 $281,385.47 4.58
SYLMARDC 2 N501 $53,869.57 $280,612.88 5.21
MONA 3 N501 $65,793.67 $355,897.56 5.41

INDNFLT 6 N001, was employed for the analysis. A sweep
of buy/sell thresholds generated the surface shown in Figure
7. The maximum revenue was generated with a buy threshold
of $70/MWh and a sell threshold of $80/MWh (approximately
$230K). There is a range of buy/sell thresholds that resulted in
revenue greater than $200K for the three year period. While
disappointing relative to the maximum potential revenue of
$541,035.85, this relatively simple algorithm handily beats the
maximum potential revenue from participating in only the day-
ahead market ($129K).



TABLE V
CHARACTERISTICS OF OPTIMAL CHARGE/DISCHARGE PROFILE FOR
INDNFLT 6 N001 NODE, DAY-AHEAD PLUS REAL-TIME MARKET

ARBITRAGE, 2014-2016.

Statistic Value
Percentage of DAM discharging, qD−DA 18.49%
Percentage of RTM discharging, qD−RT 17.39%
Percentage of DAM charging, qR−DA 9.23%
Percentage of RTM charging, qR−RT 35.69%
Periods recharge RT, discharge DA, (6175/105216) 5.87%
Periods recharge DA, discharge RT, (1254/105216) 1.19%
Periods recharge RT alone, (34474/105216) 32.76%
Periods discharge RT alone, (17781/105216) 16.90%
Periods recharge DA alone, (9224/105216) 8.77%
Periods discharge DA alone, (16721/105216) 15.89%
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Fig. 7. Total real-time arbitrage revenue as a function of buy/sell price, 2014-
2016.

V. CONCLUSION

This paper formulates the revenue maximization problem
for energy storage participating in the CAISO day-ahead
and real-time energy markets. Then, three years of historical
market data for 2200 nodes was analyzed to identify the impact
of location on potential revenue. The analysis considered
participation in the day-ahead market as well as participation
in the day-ahead and real-time markets. Two heuristic trading
algorithms that did not require prefect foresight were also
evaluated. The main takeaways are:

• Potential arbitrage revenue is highly location dependent
in CAISO

• Participation in the day-ahead and real-time energy mar-
kets offers significantly more potential revenue than the
day ahead market (2.83 times better on average)

• Using the day-ahead prices for a forecast of real-time
prices did not perform well for the three year period
(2014-2016)

• A relatively simple trading algorithm of buy/sell thresh-
olds for the real-time market easily outperforms the
maximum potential revenue from the day-ahead market,
but falls well short of the maximum potential revenue
from the day-ahead and real-time energy markets

Future research will focus on developing more sophisticated
algorithms to participate in arbitrage in the day-ahead and
real-time markets, as well as providing the newly introduced
flexible ramping product.

ACKNOWLEDGMENT

Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energys National Nuclear Security Administration under
contract DE-NA-0003525. The authors would like to thank the
U.S. DOE Office of Electricity Delivery and Energy Reliability
Energy Storage Program for supporting this research.

REFERENCES

[1] J. Eyer and G. Corey, “Energy storage for the electricity grid: Benefits
and market potential assessment guide,” Sandia National Laboratories,
Albuquerque, NM, Tech. Rep. SAND2010-0815, February 2010.

[2] F. Graves, T. Jenkin, and D. Murphy, “Opportunities for electricity
storage in deregulating markets,” The Electricity Journal, vol. 12, no. 8,
pp. 46–56, 1999.

[3] R. H. Byrne and C. A. Silva-Monroy, “Estimating the maximum
potential revenue for grid connected electricity storage: Arbitrage and
the regulation market,” Sandia National Laboratories, Albuquerque, NM,
Tech. Rep. SAND2012-3863, December 2012.

[4] R. H. Byrne and C. A. Silva-Monroy, “Potential revenue from electrical
energy storage in the electricity reliability council of Texas (ERCOT),”
in Proceedings of the 2014 IEEE Power and Energy Society (PES)
General Meeting, Washington, DC, July 2014, pp. 1–5.

[5] R. H. Byrne and C. A. Silva-Monroy, “Potential revenue from electrical
energy storage in ERCOT: The impact of location and recent trends,” in
Proceedings of the 2015 IEEE Power and Energy Society (PES) General
Meeting, Denver, CO, July 2015, pp. 1–5.

[6] R. H. Byrne, R. Concepcion, and C. A. Silva-Monroy, “Potential revenue
from electrical energy storage in PJM,” in Proceedings of the 2016 IEEE
Power and Energy Society (PES) General Meeting, Boston, MA, July
2016, pp. 1–5.

[7] R. H. Byrne, S. Hamilton, D. R. Borneo, T. Olinsky-Paul, and I. Gyuk,
“The value proposition for energy storage at the Sterling Municipal
Light Department,” in Proceedings of the 2017 IEEE Power and Energy
Society (PES) General Meeting, Chicago, IL, July 2017, pp. 1–5.

[8] T. A. Nguyen, R. H. Byrne, R. J. Conception, and I. Gyuk, “Maximizing
revenue from electrical energy storage in MISO energy & frequency
regulation markets,” in Proceedings of the 2017 IEEE Power Energy
Society (PES) General Meeting, Chicago, IL, July 2017, pp. 1–5.

[9] M. B. C. Salles, M. J. Aziz, and W. W. Hogan, “Potential arbitrage
revenue of energy storage systems in pjm during 2014,” in Proceedings
of the 2016 IEEE Power and Energy Society (PES) General Meeting,
Boston, MA, July 2016, pp. 1–5.

[10] D. Krishnamurthy, C. Uckun, Z. Zhou, P. R. Thimmapuram, and
A. Botterud, “Energy storage arbitrage under day-ahead and real-time
price uncertainty,” IEEE Transactions on Power Systems, vol. 33, no. 1,
pp. 84–93, Jan 2018.

[11] Final Rule Order No. 755: Frequency Regulation Compensation in the
Organized Wholesale Power Markets, U.S. Federal Energy Regulatory
Commission, October 20, 2011, 137 FERC 61,064.

[12] M. Kintner-Meyer, “Regulatory policy and markets for energy storage
in North America,” Proceedings of the IEEE, vol. 102, no. 7, pp. 1065–
1072, July 2014.

[13] A. A. Akhil, G. Huff, A. B. Currier, B. C. Kaun, D. M. Rastler,
S. B. Chen, A. L. Cotter, D. T. Bradshaw, and W. D. Gauntlett,
“DOE/EPRI 2013 electricity storage handbook in collaboration with
NRECA,” Sandia National Laboratories, Tech. Rep. SAND2013-5131,
July 2013.

[14] P. Mokrian and M. Stephen, “A stochastic programming framework
for the valuation of electricity storage,” in 26th USAEE/IAEE North
American Conference, 2006, pp. 24–27.



[15] California Independent System Operator (CAISO), “Market processes
and products,” www.caiso.com, 2017.

[16] P. Ristanovic and J. Waight, “Caiso market redesign and technology
update,” in Proceedings of the 2005 IEEE Power Engineering Society
(PES) General Meeting, San Francisco, CA, June 2005, pp. 2636–2637
Vol. 3.

[17] H. Ibrahim, A. Ilinca, and J. Perron, “Energy storage systems - charac-
teristics and comparisons,” Renewable and Sustainable Energy Reviews,
vol. 12, no. 5, pp. 1221–1250, 2008.


