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Abstract—Techno-economic analyses of energy storage cur-
rently use constant-efficiency energy flow models. In practice,
charge/discharge efficiency of energy storage varies as a function
of state-of-charge, temperature, charge/discharge power. There-
fore, using the constant-efficiency energy flow models will cause
suboptimal results. This work focuses on incorporating nonlinear
energy flow models based on nonlinear efficiency models in
the revenue maximization problem of energy storage. Dynamic
programming is used to solve the optimization problem. A case
studies is conducted to maximize the revenue of a Vanadium
Redox Flow Battery (VRFB) system in PJM’s energy and
frequency regulation market.

Index Terms—Energy storage, vanadium redox battery, li-
ion battery, energy arbitrage, frequency regulation, dynamic
programming, non-linear battery model.

I. INTRODUCTION

IN the last decade, grid modernization has become an
imperative task due to the aging grid infrastructure, the

rapid growth of renewable energy and the changes in en-
ergy policies. New technologies and development trends have
emerged to transform today’s grid toward a smarter, more
reliable and more distributed grid in the future [1]. Among
the latest development trends, the grid integration of energy
storage systems (ESS) has shown its great potential to provide
multiple benefits to the grid as well as to the customers.
On the grid’s side, energy storage can help grid operators
better manage the variability of the generation and demand
by providing ancillary services such as frequency regulation
and spinning/non-spinning reserve [2]. On the customers’ side,
energy storage can also provide a wide range of applications
such as on-site back-up power, PV utilization, demand charge
reduction or time-of-use management [3].

In order to realize the potential of ESSs for the grid-side
and customer-side services, it is crucial to assess the overall
economic gains of energy storage deployments considering
their technical benefits to the grid as well as their limits in
energy efficiency [4]. In the literature, a number of works have
evaluated the benefits of ESSs for different applications. In [5],
a mathematical framework of planning and control is proposed
to maximize the profit of battery energy storage systems
(BESS) for primary frequency control. In [6–9], potential
revenues of ESSs for energy arbitrage and frequency regulation
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in different market areas are maximized using Linrear Pro-
gramming. A real-time optimal dispatch algorithm is proposed
in [10] to maximize ESS’s revenue from energy arbitrage in
the day-ahead electricity market considering its contribution
to transmission congestion relief. Financial benefits of BESSs
in upgrade deferral of distribution networks were evaluated in
[11]. Optimal operation of BESSs for mitigating PV variability
and minimizing transformers’ losses is studied in [12]. The
optimal demand charge management for TOU customers using
behind-the-meter energy storage is studied in [3, 13, 14].

Although the economic benefits of ESSs for different grid
applications have been comprehensively investigated in the
literature [2, 15, 16], most studies rely on the linear en-
ergy flow model that assumes energy storage efficiencies
are constant. Using the linear models with constant storage
efficiencies will cause suboptimal results because in practice
ESSs’ charge/discharge efficiencies vary as nonlinear func-
tions of state-of-charge, temperature, charge/discharge power.
However, the linear model is very commonly used in techno-
economic studies due to the following reasons:

• The linear model can simplify the optimization problems
to Linear Programming (LP) or Mixed Integer Linear
Programming (MILP) problems which can be efficiently
solved by any linear solvers. On the other hand, using
nonlinear energy storage models introduces nonvexity
into the optimization problems making them much harder
to solve.

• The currently available technology-specific nonlinear
models of energy storage only focus on the fast (milisec-
onds to seconds) dynamics of ESSs which are mostly
used in control [17, 18] or in state estimation (e.g.,
state of charge estimation) [19–24]. However, these types
of models are not suitable for the analyses that often
examine long time periods (minutes to hours).

Therefore, in order to capture the technology-specific nonlin-
ear characteristics in techno-economic analyses, it is essen-
tial to: 1) develop/derive the models that capture the ESSs’
nonlinear behaviors over long periods of time; 2) develop
analytical or numerical approaches that effectively solve the
nonconvex optimization problems when incorporating these
nonlinear models.

In this paper, we derive the nonlinear energy flow models
for vanadium redox flow battery (VRFB), lead-acid, and li-
ion battery systems. The models are incorporated into the
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TABLE I
ESS PARAMETERS

Symbol Description

τ Duration of one time period (e.g., one hour)

P̄ Power rating of the inverter [MVA]

S̄ Maximum energy capacity [MWh]

Q̄ Maximum ampere-hour capacity [Ah]

V̄ Rated DC Voltage [V]

S State of charge [kWh]

T Storage cell temperature [K]

γs Calendar efficiency over one period [%]

γc Energy storage charge efficiency [%]

γd Energy storage discharge efficiency [%]

γpcs Inverter efficiency [%]

optimization problem that maximizes the revenue of an ESS
when participating in multiple activities in a market area.
A Dynamic Programming approach is proposed to solve the
nonconvex optimization. In this approach, the possible states
of charge (SOC) at each time step are defined. A forward
search algorithm is developed to find the optimum sequence of
SOCs that generates the maximum revenue given the nonlinear
charge/discharge power of the ESS. In order to improve the
performance of the algorithm, parallel computation is used. To
demonstrate the feasibility and effectiveness of the approach,
a case study is conducted for maximzing the revenue of a
Vanadium Redox Flow Battery system in PJMs energy and
frequency regulation market.

II. ENERGY FLOW MODEL OF ENERGY STORAGE
SYSTEMS

Energy flow models capture ESS’s behaviors over long
periods of time that often corresponds with the market time
interval (e.g., hourly day ahead market for energy). The models
provide insights into the charge/discharge profile, which is
required in techno-economic analysis (e.g., feasibility study,
long term planning, selection of the energy storage technology)
[2].

Assuming the AC input power during charge P c
i (MW ), the

AC output power during discharge P d
i (MW ) are nonnegative,

the charge efficiency γc and discharge efficiency γd are con-
stant, the state of charge (SOC) Si(MWh) at time i can be
expressed as [25]:

Si = γsSi−1 + γcP
c
i τ −

P d
i τ

γd
(1)

which states that the SOC at time i is the sum of the SOC
at time i − 1 and the net charging energy (adjusted with the
storage charge/discharge efficiencies).

In practice, power losses during charge and discharge often
vary as functions of SOC, temperature, and charge/discharge
power [26]. Therefore, the SOC in (1) can be rewritten as:

Si = γsSi−1 + f c(P c
i , Si−1, T )︸ ︷︷ ︸

Total charged power

τ − f d(P d
i , Si−1, T )︸ ︷︷ ︸

Total discharged power

τ (2)

Fig. 1. The power flow of Batteries Energy Storage Systems (BESS)

Given that the temperature of a storage device is often main-
tained within an operating range by the thermal management
system, we assume the temperature T is constant and equal
to 25oC in this paper. Therefore, the total charged power
f c and discharged power f d are simplified as functions of
charge/discharge power and the state of charge. The nonlin-
earity of these functions to the input/output power and the
SOC are very dependent on the energy storage technologies.
In this section, we characterized f c and f d of lead-acid, li-ion,
and vanadium redox flow batteries (VRFB). The power flow
of each battery energy storage system (BESS) is described in
Figure 1. The storage parameters are shown in Table I.

A. Lead-acid and Li-ion battery

The power losses during charging or discharging lead-acid
and li-ion batteries are mainly caused by the heat loss due
to ohmic and polarization effects [27]. The power loss is
approximately equal to the voltage drop (polarization) times
the charge/discharge DC current:

Ploss(W) = ∆V × I (3)

For lead-acid and lithium-ion batteries, the voltage drop is
determined based on the empirical method presented in [21]:
• During discharge:

∆V d = (R+
KS̄

S
)Id +

KQ̄(S̄ − S)

S
(4)

• During charge:

∆V c = (R+
KS̄

S̄ − S
)Ic +

KQ̄(S̄ − S)

S
(5)

where R and K are the model coefficients which can be
calculated from manufacturer’s data.

From (4), (5), the power losses (MW ) during charge
and discharge for lead acid and lithium-ion battery can be
calculated as follows:
• During discharge:

P ld = 10−6[(R+
KS̄

S
)(Id)2 +

KQ̄(S̄ − S)

S
Id]

≈ 106

V̄ 2
[(R+

KS̄

S
)(P d/γpcs)

2 +
KS̄(S̄ − S)

S
P d/γpcs]

(6)
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• During charge:

P lc = 10−6[(R+
KS̄

S̄ − S
)Ic +

KQ̄(S̄ − S)

S
]

≈ 106

V̄ 2
[(R+

KS̄

S̄ − S
)(γpcsP

c)2 +
KS̄(S̄ − S)

S
γpcsP

c]

(7)

As a result, the functions f c and f d can be derived as:

f c = γpcsP
c − P lc (8)

f d = P d/γpcs + P ld (9)

B. Vanadium Redox Battery

The power loss of a vanadium redox battery during charge
and discharge includes two components: power for pumping
the electrolytes and stack loss power due to internal resistance
and electrochemical process. The total charged power f c and
discharged power f d can be calculated as follows:

• During discharge:

f d =
P stackd

γd (10)

where P stackd is stack power during discharge that is the
total of terminal power and the pump power; and γd is
the efficiency that accounts for the internal power loss
during discharge. Based on the empirical model proposed
in [28], P stackd and γd can be derived:

P stackd = ad
pP

d/γpcs + bd
pS(S − S̄) + cd

p (11)

γd =
ad

vP
d/γpcs + bd

vS + cd
v

ao
vS + bo

v
(12)

• During charge:

f c = γcP stackc (13)

where P stackc is stack power during charge that is the
total power after subtracting the pump power; and γc is
the efficiency that accounts for the internal power loss
during charge. Based on the empirical model proposed
in [28], P stackc and γc can be derived:

P stackc = (ac
pS + bc

p)γpcsP
c + cc

pS + dc
p (14)

γc =
ao

vS + bo
v

(ac
vS + bc

v)γpcsP c + cc
vS + dc

v
(15)

The model coefficients in (11), (12), (14), and (15) can be
specified using manufacturer’s and testing data. In Table II,
the coefficients are determined based on the testing data of
a 5kW/20kWh VRB given in [28]. In practice VRB systems
are often built by integrating a number of small standardized
VRB modules. Therefore, we assume that the coefficients in
Table II are representative of VRFB performance regardless
of the system size.

TABLE II
VRB MODEL COEFFICIENTS

ax
y bx

y cx
y dx

y

(x,y) = (o,v) 0.236
S̄

−0.9989 - -

(x,y) = (d,v) −0.2833
P̄

0.1325
S̄

0.9861 -

(x,y) = (d,p) 1.0334 0.3454P̄
S̄2 0.1192P̄ -

(x,y) = (c,v) 0.1974
P̄ S̄

0.1617
P̄

0.1421
S̄

0.9748

(x,y) = (c,p) −0.128
S̄

1.05 0.038P̄
S̄

−0.118P̄

TABLE III
NOMENCLATURES

Symbol Description

N The time horizon of the optimization

Nk The number of intra-period time steps

considered in activity k

Me The set of energy related activities

Mp The set of power related activities

ρji The price of energy related activity j at period i [$/MWh]

ρki The price of power related activity k at period i [$/MW]

Pk
i Decision variable: the power reserved for power related

activity k at period i [MW]

P dj
i , P cj

i Decision variables: the discharge and charge power

allocated for energy related activity j at period i [MW]

σdk
i,t, σck

i,t The fraction of Pk
i that is actually called upon

for discharging/charging at time step t of period i

III. OPTIMIZATION PROBLEM FORMULATION

In this paper the optimization is formulated to maximize the
revenue of an ESS when participating in multiple activities in
a market area. This includes the energy related activities like
energy arbitrage and the power related activities like forward
capacity and frequency regulation. The objective function is
formulated as follows with the parameters and variables are
defined in Table III:

max

N∑
i=1

∑
j∈Me

ρji (P
dj
i − P

cj
i )τ +

∑
k∈Mp

ρki P
k
i

 (16)

For example, for energy arbitrage and frequency regulation in
PJM [29], the objective function can be written as:

max

N∑
i=1

[LMPi(P
d
i − P c

i )τ+ (17)

(βM
i RMPCPi + RMCCPi)ηiP

reg
i ] (18)

where LMPi ($/MWh) is the local marginal price at time
i; RMPCPi ($/MW) and RMCCPi ($/MW) are respectively
the regulation performance clearing price and the regulation
capacity clearing price at time i; βM

i is the mileage ratio at
time i; and ηi is the performance score at time i.

In practice, an ESS can participate in multiple market
activities at one time period such as energy arbitrage together
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with frequency regulation. However, stacking up activities
at one time period might complicate the intra-period energy
management of the ESS. Therefore, in this paper we assume
the ESS is only allowed to participate in at most one market’s
activity at each time period i. The corresponding constraint is
as follows: ∑

j∈Me

(αdj
i + αcj

i ) +
∑
k∈Mp

αk
i ≤ 1 ∀i (19)

where αx
i is a binary variable that activates activity x:

αx
i =

{
1 if P x

i ≥ 0
0 if P x

i = 0
(20)

The condition in (20) can be represented by the following
constraint:

0 ≤ P x
i ≤ αx

i P̄ (21)

The other constraints for SOC management are also con-
sidered:

Smin ≤ Si ≤ Smax (22)
S0 = SN (23)

The state of charge Si can be calculated based on (2):

Si =γsSi−1 + τ
∑
j∈Me

[f c(P cj
i , Si−1)− f d(P dj

i , Si−1)]

+ τ
∑
k∈Mp

1

Nk

Nk∑
t=1

[f c(σck
i,tP

k
i , Si−1)− f d(σdk

i,tP
k
i , Si−1)]

(24)

For energy arbitrage and frequency regulation, Si can be
calculated as follows:

Si =γsSi−1 + τ [f c(P c
i , Si−1)− f d(P d

i , Si−1)]

+
τ

Nr

Nr∑
t=1

[f c(σRD
i,t P

reg
i , Si−1)− f d(σRU

i,t P
reg
i , Si−1)]︸ ︷︷ ︸

f reg
i (P reg

i ,Si−1)

(25)

where τ = 1hr and Nr is the number of intra-hour time steps
given for frequency regulation; σRD

i,t and σRU
i,t are the regulation

up and regulation down signals given at time step t of hour
i. For example, in PJM, the fast regulation signal (RegD) is
sent to a regulation resource every 2 seconds; therefore, Nr =
1800, σRU

i,t is the positive RegD, and σRD
i,t is absolute value of

the negative RegD. It should be noted that while f c and fd
are time-independent, f reg

i is associated with each time period
due to the temporal nature of the AGC signal.

IV. DYNAMIC PROGRAMMING APPROACH

The above optimization has linear objective function. The
ESS’s constant-efficiency model in (1) is often used [9, 29, 30]
with given maximum efficiencies and perfect-foresight data
to estimate the maximum revenue of ESS in the best case
scenario. The constant-efficiency model makes the constraints
in (22) and (23) linear; therefore, the optimization problem
can be formulated as a Linear Programming (LP) problem.

However, this model ignores the underlying the dynamics of
the energy storage device that makes the results less accurate.

The ESS’s non-linear energy flow model in (2) can better
capture the technology-specific characteristics of the energy
storage devices; however, incorporating it into the optimization
problem introduces the following challenges:

• Non-convexity: the constraints in (22) and (23) now
become non-linear and non-convex that makes the op-
timization non-convex.

• Complex dynamics: the state of charge at time i is non-
linear to both charge/discharge power and the state of
charge at time i− 1.

The above challenges make the problem become a sequen-
tial decision problem for which Dynamic Programming (DP) is
well known. A DP-based method often finds the optimal path
to the destination by breaking it down to a sequence of steps
overtime. At each time step, the optimal subsequence to each
feasible state can be found based on the optimal subsequences
to the previous step. Finally, the optimal sequence can be
found by repeating the above process until the time horizon
is reached. The main advantage of DP is that it can find the
global optimum by finding and memorizing the optimal sub-
sequences.

In this paper, forward DP algorithm is applied. The algo-
rithm is described in details in IV-A. Parallel computing, as
described in IV-B, is used to improve the performance of the
algorithm.

A. Forward DP algorithm

The algorithm is described in Fig. 3. The main procedures
of the algorithm include:

1) Define the state space: The state space at each time step
i, denoted as Si, is defined as follows:

Si = {Si | Smin ≤ Si ≤ Smax} ∀i < N (26)
SN = {SN} (27)

with Si is a possible state of charge of the ESS that satisfies
constraints (22) and (23). This state space is an uncountably
infinite set, which is not manageable by DP. Therefore, we
discretize this state space by considering a finite number of
the states that represent the space. For example, each element
of Si can represent an integer percentage of the state of charge:

Si =
{
Su
i =

u

100
S̄ | u ∈ N and Smin ≤ Su

i ≤ Smax

}
(28)

2) Run forward to find the maximum revenue to each state:
The maximum revenue if reaching state Su

i at time i can be
expressed as:

R(Su
i ) = max

Sv
i−1∈Si−1

{
R(Sv

i−1 → Su
i ) +R(Sv

i−1)
}

(29)

where R(Sv
i−1) is the maximum revenue if going to state

Sv
i−1, which is solved at the previous time period i − 1.
R(Sv

i−1 → Su
i ) is the maximum revenue that can be generated
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Fig. 2. State space of DP algorithm

by going from state Sv
i−1 to state Su

i ; and it is the solution of
the following optimization problem:

R(Sv
i−1 → Su

i ) = max

∑
j∈Me

ρji (P
dj
i − P

cj
i )τ +

∑
k∈Mp

ρki P
k
i


(30)

s.t. (19), (21), and the following equality constraint:

Su
i − γsS

v
i−1 = τ

∑
j∈Me

[f c(P cj
i , S

v
i−1)− f d(P dj

i , Sv
i−1)]+

τ
∑
k∈Mp

1

Nk

Nk∑
t=1

[f c(σck
i,tP

k
i , S

v
i−1)− f d(σdk

i,tP
k
i , S

v
i−1)]

(31)

This is a nonconvex optimization because of the nonlinear
equality constraint (31). This problem can be converted to a
Mixed Integer Lear Programming (MILP) problem by piece-
wise linearizing f c(P c

i ) and fd(P d
i ). The advantage of this

method is that the global solution can always be found by an
MIP solver. However, the piecewise linearization introduces a
large amount of binaries and segment variables into the prob-
lem, which will significantly increase the computation burden
of the overall dynamic programming algorithm. Therefore, we
propose to numerically solve equation (31) for each market
activity and then find the activity that generates the maximum
revenue. The problem is reformulated as follows:

R(Sv
i−1 → Su

i ) = max
{
ρj
∗

i P
dj∗

i τ,−ρj
†

i P
cj†

i τ, ρk∗i P k∗
i

}
(32)

in which

P dj∗

i = argmax
j∈Me

{
ρjiP

dj
i |S

u
i − γsS

v
i−1 = −τf d(P dj

i , Sv
i−1)

}
(33)

P cj†

i = argmax
j∈Me

{
−ρjiP

cj
i |S

u
i − γsS

v
i−1 = τf c(P cj

i , S
v
i−1)

}
(34)

Fig. 3. Forward dynamic programming algorithm

P k∗
i = argmax

k∈Mp

{
ρki P

k
i |Su

i − γsS
v
i−1 =

τ

Nk

Nk∑
t=1

[f c(σck
i,tP

k
i , S

v
i−1)

− f d(σdk
i,tP

k
i , S

v
i−1)]

}
(35)

Since Sv
i−1 is known when solving (32), fd and f c are

single-variable functions of the discharge and charge powers.
Therefore, the equality constraints in (33), (34), and (35) can
be solved using an iterative method. In this paper, we use
Newton-Raphson iteration method which exhibits quadratic
convergence.

3) Memorize optimal sub-paths and trace backward to find
the optimal path: For each state Su

i at time period i, the
solutions of (29) and (32) are memorized:

Di(S
u
i ) = Sv∗

i−1 = argmax
Sv
i−1∈Si−1

{
R(Sv

i−1 → Su
i ) +R(Sv

i−1)
}

(36)

R(Su
i ) = R(Sv∗

i−1 → Su
i ) +R(Sv∗

i−1) (37)

When the forward running process completes (i = N ),
backward tracing is performed to find the optimal path that
creates the maximum revenue:

S∗N = SN , S
∗
i−1 = Di(S

∗
i ), S∗0 = S0 (38)

B. The “curse of dimensionality” and parallel computation

Dynamic programming is a very powerful method to find the
global optimum of a sequential decision problem. However,
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Fig. 4. Partial parallelization of the forward dynamic programming algorithm

the method suffers from the notorious curse of dimensionality
if the state space is high-dimensional. Asumming there are
mi feasible states at each time i and the time horizon is N ,
the total number of possible links between two consecutive

periods is
N∑
i=1

mimi−1. The computation time of the above

forward dynamic programming algorithm can be estimated as
follows:

TΣ ≈
N∑
i=1

(T32mimi−1 + T29mi) (39)

where T32 and T29 are respectively the time for solving Eq.
(32) and Eq. (29). It can be seen from (39) that if N and mi

are large the computation burden can be overwhelming. For
example, if mi = 101 (state of charge ={0%, ..., 100%}), N =
744 (744 hours of a 31-day month), and T29 = T32 = 0.01sec
then TΣ ≈ 21hr which is very significant for an analysis of
one month.

In order to reduce the computation time, we parallelize the
computation of the forward running process. In theory, Eq.
(32) can be solved in parallel for each link; similarly, Eq. (29)
can be solved in parallel for each state after all the links are
solved. Therefore, the theoretical computation time after a full
parallelization (Fig. 4) is T fp

Σ ≈ (T32 +T29)N . However, due
to the computers’ physical limits, full parallelization might be
impossible or ineffective in reducing computation time. In this
work, we partially parallel the computation process (Fig. 4) by
solving Eq. (32) in parallel for each link but solving Eq. (29)
in series for each state. The theoretical computation time after

a partial parallelization is T pp
Σ ≈

N∑
i=1

(T32 + T29)mi.

V. A CASE STUDY

In this section, we evaluate the maximum revenue of a
Vanadium Redox Flow Battery (VRFB) System in PJM market
area using nonlinear VRFB model and compare the results
with the ones calculated using linear model. The market
activities considered in this case study are day-ahead energy
arbitrage and frequency regulation. The following inputs are
considered:

Fig. 5. Full parallelization of the forward dynamic programming algorithm

• A VRFB system of 20MW/5MWh is considered: S̄ =
5MWh, P̄ = 20MW

• PJM historical price data from June 2016 to May 2017
are used.

• Hourly day-ahead LMP for node 51298 and Dynamic 2-
second AGC signals (RegD signals) are used.

• The performance scores are assumed to be 1 at all time
periods: ηi = 1 ∀i.

• The mileage ratios βi are calculated based on the histor-
ical regulation data.

• The efficiency of the PCS is approximated as: γpcs =
0.95.

• The integer-percentage SOCs are considered at each time
period i: Si = {0%S̄, 1%S̄, ..., 100%S̄}

• The SOC is maintained at 50% at the beginning and the
end of each month: S0 = SN = 50%S̄.

• The coefficients of the VRFB nonlinear model are calcu-
lated based on Table II.

• 70% round trip efficiency is used in the linear model.

The f d (in Eq. (10)) , f c (in Eq. (13)) and one example of
f reg
i (Eq. (in 25)) with i is the first hour of June are plotted in

Fig. 6. The figures show the nonlinearity of f d, f c, and f reg
i

to the power output and the state of charge. It should be noted
that, when then discharge power is close to zero, the VRFB
is discharging some amount of power just to supply its own
pumps. Similarly, when the charge power is small (less than
about 5% of the rated power), the VRFB is also discharging
a small amount of power consumed by its pumps. When
doing energy arbitrage, these low-efficiency working regions
can be avoided by reducing the pumps’ speed to minimum if
the charge/discharge power is low. However, when providing
frequency regulation, the battery system has to follow a
regulation signal as close as possible. This is because failing
to comply the regulation signal could reduce the performance
score and disqualify the system for the regulation market. In
this case, variable speed control of the pumps is not effective
in following the very fast regulation signal. Therefore, even
though the output of the VRFB system can almost perfectly
follow the regulation signals, its efficiency is low when the
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call-upon amount of regulation (in either direction) is low.
After calculating f d, f c, and f reg

i functions, the dynamic
programming algorithm is set up with 1-hour time period
(τ = 1) and 1-month time horizon. The maximum revenue for
energy arbitrage and frequency regulation is solved for each
month from June 2016 to May 2017. The monthly revenues
calculated using nonlinear (so-called nonlinear revenues) and
using linear storage models (so-called linear revenues) are
shown in Fig. 7. The revenues from each market activity
are given in Table IV for the nonlinear case and in Table
V for the linear case. An example of 24-hr output powers of
the VRFB calculated using nonlinear and linear models are
plotted in Fig. 8. As seen in the results, the total nonlinear
revenue is about one third lower than the linear one. The
nonlinear regulation revenues are approximately 80% of the
linear regulation revenues. On the other hand, the nonlinear
arbitrage revenues are much more negative than the linear
ones, which means more charging is required to balance the
state of charge. This is because the nonlinear model captures
more precisely the low-efficiency working operations when
following regulation signals.

The computation for this analysis is performed by an Intel
Xeon CPU E5-2687 (4-core) processor. The average time for
an 1-month analysis by the DP algorithm is approximately
2.25hr if partial paralellization is used. This shows the feasi-
bility of the proposed DP-based approach in dealing with the
non-linear storage model.
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Fig. 8. Power output of the VRFB on the June 1st 2016

VI. CONCLUSIONS

In this paper, the nonlinear energy flow models for vana-
dium redox flow battery (VRFB), lead-acid, and li-ion battery
systems have been derived. Incorporating the nonlinear storage
models introduces more complex dynamics and nonconvex-
ity into the optimization problem. A DP-based approach is
proposed to solve the nonconvex optimization, in which a
forward search algorithm is developed to find the optimum
sequence of SOCs that generates the maximum revenue given
the nonlinear charge/discharge power of the ESS. A case
study is conducted for maximzing the revenue of a Vanadium
Redox Flow Battery system in PJMs energy and frequency
regulation market. The results show the nonlinear models can
capture more precisely the low-efficiency working regions of
the VRFB thereby improving the accuracy of the calculated
revenues. The proposed DP-based algorithm has also shown
its feasibility in solving the nonconvex optimization problems.
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TABLE IV
ARBITRAGE AND REGULATION REVENUES (USING NONLINEAR MODEL)

Month Regulation ($) Arbitrage ($) Total ($)
2016 − 6 174, 263 −29, 996 144, 268

2016 − 7 225, 020 −35, 180 189, 840

2016 − 8 224, 442 −31, 672 192, 770

2016 − 9 226, 713 −38, 404 188, 309

2016 − 10 209, 263 −43, 552 165, 711

2016 − 11 175, 695 −34, 715 140, 980

2016 − 12 138, 373 −35, 224 103, 148

2017 − 1 179, 565 −25, 957 153, 608

2017 − 2 146, 097 −19, 621 126, 476

2017 − 3 275, 352 −23, 654 251, 698

2017 − 4 318, 409 −29, 277 289, 132

2017 − 5 273, 902 −33, 510 240, 393

Total 2, 567, 095 −380, 761 2, 186, 333

TABLE V
ARBITRAGE AND REGULATION REVENUES (USING LINEAR MODEL)

Month Regulation ($) Arbitrage ($) Total ($)
2016 − 6 200, 834 −5, 118 195, 715

2016 − 7 267, 493 −5, 532 261, 961

2016 − 8 257, 765 −4, 099 253, 666

2016 − 9 260, 900 −8, 919 251, 981

2016 − 10 244, 238 −11, 010 233, 228

2016 − 11 206, 793 −8, 801 197, 992

2016 − 12 170, 349 −10, 559 159, 790

2017 − 1 229, 958 −8, 117 221, 842

2017 − 2 196, 703 −10, 157 186, 546

2017 − 3 361, 181 −7, 229 353, 952

2017 − 4 422, 557 −16, 192 406, 365

2017 − 5 381, 241 −22, 023 359, 218

Total 3, 200, 014 −117, 756 3, 082, 258
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