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Abstract

Multimodal chemical imaging simultaneously offers high resolution chemical and physical 

information with nanoscale, and in select cases atomic resolution. By coupling modalities that 

collect physical and chemical information, we can address scientific problems in biological 

systems, battery and fuel cell research, catalysis, pharmaceuticals, photovoltaics, medicine and 

many others. The combined systems enable local correlation of material properties with chemical 

makeup, making fundamental questions in how chemistry and structure drive functionality 

approachable. In this review we present recent progress and offer a perspective for chemical 

imaging used to characterize a variety of samples by a number of platforms. Specifically, we 

present cases in infrared and Raman spectroscopies combined with scanning probe microscopy; 

optical microscopy and mass spectrometry; nonlinear optical microscopy; and finally, ion, electron 

and probe microscopies with mass spectrometry. We also discuss the challenges associated with 

the use of data originated by the combinatorial hardware, analysis, and machine learning as well 

as processing tools necessary for interpretation of multidimensional data acquired from 

multimodal studies. 
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Vocabulary

Multimodal chemical imaging – a number of combined independent characterization modalities 

capable of mapping concentration, or distribution of chemical species.

Functional imaging – characterization techniques for detecting or measuring the distribution of 

physical parameters.

Generative model - a model of the conditional probability of the observable X, given the target y.



Co-registration – transforming data from multiple sources onto a single common coordinate 

system.

Data velocity – the speed of data processing.



Acronyms

AFM – Atomic force microscopy

APCI - Atmospheric pressure chemical ionization

ATR - Attenuated total reflection

BE – Band excitation

BE SSPFM - band excitation piezoresponse force microscopy

BF-TEM – Bright field transmission electron microscopy

BMAA - β-N-methylamino-L-alanine

BSE – Backscattered electrons

CARS - Coherent Anti-Stokes Raman Scattering

CNT – Carbon nanotubes

EELS - Electron energy loss spectroscopy

ESI - electrospray ionization

FLIM - Fluorescence Lifetime Imaging Microscopy

FORC - First-order reversal curve

FTIR - Fourier-transform infrared spectroscopy

GCIB - Gas cluster ion beam

GFIS - Gas field ion sources

HIM – Helium ion microscopy

HIPP - High-impact polypropylene

IR - Infrared

IR s-SNOM - Infrared vibrational scattering scanning near-field optical microscopy

LC-MS/MS - Liquid chromatography-tandem mass spectrometry experiments

LMIG - Liquid metal ion guns

MALDI - Matrix-assisted laser desorption/ionization  



MALDI-MS - Matrix-assisted laser desorption/ionization mass spectrometry

MALDI-ToF-MSI - Matrix-assisted laser desorption/ionization time of flight mass spectrometry 
imaging

MCP – Multichannel plate

MRSI - Magnetic resonance spectroscopic imaging

MS – Mass spectrometry

MSI - Mass spectrometry imaging

nc-AFM – Noncontact atomic force microscopy

NP-LDI MS - Nanoparticle assisted laser desorption ionization mass spectrometry

P2VP - Poly(2-vinylpyridine)

P3HT - Poly(3-hexylthiophene-2,5-diyl)

PC – Phosphocholine

PEDOT - Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

PL – Photoluminescence

PMMA - Poly(methyl methacrylate

PS - Polystyrene

PTIR - Photo-thermal induced resonance

SEM – Scanning electron microscopy

SFG - Sum-frequency Generation

SHG - Second Harmonic Generation

SIMS - Secondary ion mass spectrometry

SNOM - Scanning near-field optical microscopy

SPM – Scanning probe microscopy

SPM – MS - Scanning probe microscopy mass spectrometry

SRS - Stimulated Raman Scattering



SSPFM - Switching spectroscopy piezoresponse force microscopy

STEM – Scanning transmission electron microscopy

STM – Scanning tunneling microscopy

TAM - Transient absorption microscopy

TEM - Transmission electron microscopy

TERS - Tip-enhanced Raman scattering

TR BE - Time resolved band excitation

TR-PFM - Time resolved piezoresponse force microscopy



The functionality of materials and biological systems from batteries, fuel cells, catalysts, 

photovoltaics to biological tissues and cells is traditionally studied with macroscopic 

characterization techniques. However, the underlying functionality is defined by the chemical 

organization, with characteristic length scales on the order of microns to nanometers. The push 

towards studying materials and systems at the nanoscale addresses challenges like developing 

lighter, more energy efficient, economical structural energy materials; as well as understanding 

biological complexity in a wide range of applications.1-5 Current techniques capable of spatially 

resolving nano- to meso- scale features are limited by the amount of chemical information they 

offer. For instance, techniques like atomic force microscopy (AFM) with spatial imaging 

resolution as low as 1 nm provide almost no chemical information.6, 7 In contrast, chemical imaging 

approaches can supply chemical information on the molecular level but are not capable of imaging 

physical properties with high resolution. Therefore, by coupling modalities that collect physical 

and chemical information, one can begin to address scientific problems using methods tailored to 

studying systems that require both: nanoscale spatial resolution as well as high chemical specificity. 

The combined multimodal platforms enable local correlation of material properties with chemical 

makeup, allowing one to answer fundamental questions in how chemistry and structure of the 

material drive functionality and physical properties observed on the macroscale. 

Here, we review recent progress and offer a perspective for multimodal chemical imaging in 

characterization of a rich sample spectrum in a correlated manner. We discuss the use of data 

combinatorial hardware platforms, analysis, as well as machine learning and processing tools that 

are becoming necessary for interpretation of the multidimensional data acquired from multimodal 

studies. 

Why multimodal imaging?

Understanding the complex functionality of inorganics and ceramics, soft and polymeric materials, 

and especially biological systems necessitates multiple sources of information, placed in the 

context of sample history (preparation conditions, medical history, etc.) that are related to 

properties; and likely future behaviors. Correspondingly, published and exploratory studies 

include multiple characterization and imaging modalities. For example, in solid state chemistry 



and materials science the classical characterization approach will include X-Ray, optical and 

electron microscopy, techniques often performed on the same, or similar sample.8-14 The question 

then arises as to what constitutes multimodal imaging and what are the challenges and benefits of 

such an approach. Here, we offer a classification of the levels at which multimodal studies can be 

performed.

As a first class of problems, we consider the case when macroscopic measurements are available 

along with the imaging data, i.e. datasets of the type R(w) and A(x, y), where w is a parameter (e.g. 

wavelength or temperature), and A is the image data. A typical example of these data sets can be 

X-ray scattering data and optical microscopy. Here, it may be possible to establish the relationship 

between the data, for example quantify the fraction and number of constituent phases form 

microscopy, and then use this information to determine identity from scattering. This analysis is 

generally simple when R(w) is a linear combination of the component spectra and classical linear 

unmixing methods with known (multiple regression) or unknown endmembers are applicable. For 

these cases, the statistical methods can establish the uncertainties in the recovered signal, and hence 

material characteristics. In cases when the signal R(w) has a complex dependence on 

microstructure (e.g. conductivity or dielectric properties), more complex microstructural methods 

are required and in general this approach is rarely used. Note, that the former problems can be 

considered as a special class of multimodal imaging for the case where one of the imaging modes 

has zero resolution.

In the second class of problems we consider the case where the two or more imaging data sets 

corresponding to dissimilar imaging modalities, A(x, y) and B(x’, y’) are available, and the spatial 

grids (x, y) and (x’, y’) are unrelated. In other words, the imaging is performed at different regions. 

Where the properties of the sample can be assumed (or are known) to be spatially uniform, the 

information from A(x, y) and B(x’, y’) can be compared. For example, observations of the atomic 

species and point defects at the atomic level can be performed using scanning transmission electron 

microscopy (STEM), and directly compared to the information on the atomic structure and valence 

states via electron energy loss spectroscopy (EELS). Similar studies can be performed via scanning 

tunneling (STM) and non-contact atomic force microscopy (nc-AFM). However, for bulk 

materials this approach is more difficult, since STEM visualizes atomic columns (i.e. projection 

of atomic structure on the image plane), whereas STM and nc-AFM are surface sensitive 



techniques. Moreover, even for 2D materials such as graphene or layered chalcogenides, 

simultaneous (or even sequential) imaging of the same region is a very complex problem, due to 

the difficulties in finding the same area, or possible changes of the surface, and/or the material 

during sample handling. However, if a sufficiently large body of imaging data on the atomic 

configurations in both modalities are available, equivalence between the two can be established 

based on a statistical distribution. Additionally, high-veracity identifiers (e.g. defect size) that do 

not define structure unambiguously, but significantly reduce the number of possible variants can 

be used. Similarly, for mesoscopic imaging, the average comparison can be performed assuming 

that readily identifiable characteristics can be used for validation and classification of the structural 

elements. 

The third class of the problems correspond to the case where the data sets A(x, y) and B(x’, y’) are 

obtained from the same spatial region, and the grids (x, y) and (x’, y’) overlap. In this case, the 

functional properties A and B are explored from (roughly) the same location. In general, the 

primary initial task of the image analysis workflow becomes the co-registration between the spatial 

grids, potentially augmented by interpolation, or pan-sharpening to extrapolate the data to a single 

spatial grid yielding a compound object [A, B](x’’, y’’). Once such data are available, 

fundamentally different opportunities to explore and to derive knowledge from the material data 

open. This can be considered as a full quantifier of dissimilar properties A and B of material, 

allowing the establishment of a correlative relationship between A and B within the material class. 

For example, the optical properties can be directly correlated with mass-spectrometric traces, 

providing the information that can be used to decipher optical measurements. 

Finally, the fourth class of the multimodal imaging problems corresponds to a case where the two 

measurements A and B are spatially incongruent. For example, measurements A are taken on the 

surface, A(x, y), whereas the measurements B are taken on volume, B(x, y, z). In this case, the 

natural question is whether the information can be combined. Specifically, can A offer a boundary 

condition that allows the reconstruction of material properties within the volume B. This class of 

problems are becoming very common due to the broad propagation of 3D structural mapping 

tomography tools, and the fact that many physical phenomena including mechanical and 

ferroelectric are extremely long range and are affected by the boundary conditions as a 

consequence of generative physics models. 



Infrared and Raman Spectroscopies with Scanning Probe Microscopy

Infrared (IR) spectroscopy is commonly used to characterize bulk chemical composition, based on 

the infrared light interaction with matter via absorption or emission. Raman spectroscopy, which 

is based on inelastic scattering of monochromatic light in visible, near infrared or near ultraviolet 

range, is another powerful optical technique used for chemical mapping of materials. Raman and 

IR spectroscopies offer information on chemical bonds and local chemical environments based on 

the spectroscopic signatures recorded. While powerful, these conventional instruments are 

averaged over an ensemble of molecular species, thus providing an average description of local 

chemistry. Adaptation of these approaches to microscopic platforms provides an avenue to map 

chemical signatures in a spatially resolved manner, but are intrinsically limited by the diffraction 

limit to modest spatial resolutions of  ~2.5-75 μm and ~0.25-1 μm for IR and Raman microscopes, 

respectively.15, 16

However, collecting infrared spectra with high spatial resolution and visualizing the spatial 

distribution of chemical properties, or functional groups would provide useful insights hitherto 

inaccessible with a classical set-up. This type of a study can be based on the absorption of light by 

matter, and the local excitation of molecular vibrations. The vibrational frequencies of these types 

of transitions are defined by the chemical surroundings, allowing to match the experimentally 

observed peaks with certain chemical regions. Large volumes of the peak-group assignments have 

been tabulated, making infrared spectroscopy a reliable technique for chemical analysis in a variety 

of areas such as organic chemistry,17 inorganic chemistry,18 industrial process control19 and 

sensors.20 Moreover, the peak shape can indicate changes in the molecular conformation and 

orientation,21 to reveal thermodynamic properties,22 as well as the defect formation.23 Thus, 

tracking specific peaks, or collecting spectra on a spatially dense grid can image chemical 

properties in areas of interest and surroundings. One of the most promising ways to overcome the 

diffraction limit in spatial mapping, and obtain high-resolution local chemical maps, is to combine 

atomic force microscopy (AFM) with optical spectroscopy.24 Adhesion and elastic modulus can 

be overlaid with chemical maps highlighting interplay between crystallinity, composition, and 

intermolecular interaction between and within single domains. Combined infrared vibrational 

scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy 



can also be used for simultaneous characterization of both nanoscale optical and nanomechanical 

molecular properties.25 (Figure 1).

Figure 1. Multidimensional dataset showing maps of PS and PMMA microdomains. Adopted with permission from 

25 under the Creative Commons Attribution License subject to the Beilstein Journal of Nanotechnology terms and 

conditions 2018.

Additionally, the AFM probe can be used as a detector and capture light interactions with matter 

down to ~10 nanometers. Using near-field effects, scanning near-field optical microscopes 

(SNOM) have become popular; with aperture- and aperture-less versions commercially available. 

Raman26 and Nanoscale IR27, 28 with signal amplified by the scanning probe have demonstrated 

the potential of nanoscale chemical signal acquisition. In tip-enhanced Raman scattering (TERS)29 

the intrinsically low intensity of Raman scattering is successfully overcome30 with near-field 

amplification by plasmonic and chemical enhancements. As a result, TERS finds31 its applications 

in imaging of graphene,32 polymers,33, 34 silicon-based structures,35 semiconductors36, 37 as well as 

biological systems.38 Sub-nanometer resolution chemical images have been demonstrated 

recently39 (Figure 2). However experimental parameters may alter the Raman spectra qualitatively 

and quantitatively by e.g. the pressure applied to the tip, and distance to the species being probed 



which complicates the analysis of the data.40 

Figure 2. TERS imaging of molecular domains adsorbed at silver terraces. (a) Schematic of STM-controlled TERS. 

The molecular structures of the porphyrin molecules under study (ZnTPP and H2TBPP) are shown in the upper-right 

corner. (b) STM image of two adjacent porphyrin molecular domains (–1 V, 5 pA). (c) STM image simultaneously 

acquired during TERS imaging of the area denoted by the dashed square in b (–0.1 V, 1 nA, 7 × 7 nm2, 32 × 32 pixels, 

1 s per pixel). The boundary between the molecular domains is highlighted by a yellow line. (d) TERS spectra, 

averaged over the blue and green squares (3 × 3 pixels) shown in c, extracted from the datacube for ZnTPP and 

H2TBPP molecules, respectively. (e, f) TERS images reconstructed based on single-peak analysis for the Raman 

peaks at ~701 cm-1(e, integrated over 687–736 cm-1) and ~918 cm-1 (f, integrated over 890–959 cm-1). Adopted with 

permission from 39 under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, 

Nature 2018.

By tuning an IR laser across a spectral region and measuring the deflection of the cantilever, one 

can generate a vibrational spectrum that matches those measured by conventional attenuated total 

reflection (ATR) Fourier-transform infrared spectroscopy (FTIR) instruments but is spatially 

resolved. This approach can also be used more generally with light outside of IR region which is 

referred to as photo-thermal induced resonance (PTIR). Traditionally, the IR evanescent field in a 



total internal reflection geometry has been used to induce thermal expansion of the sample. In 

practice this is limited by the availability of the ATR crystals as substrates. To resolve this issue, 

in more modern set-ups infrared light is introduced from the side, which allows the any thermally 

conductive substrate for sample to be used. Next major improvement was in the resonant signal 

enhancement.41 Here, the excitation rate of the quantum cascade laser is tuned to match the contact 

resonance of the scanning probe. Deposits as thin as 4 nm can be analyzed using this approach. 

With AFM cantilever resonance enhancement, it is possible to conduct IR measurement in liquid 

environment as contact resonances of higher cantilever modes are less dampened.42 In addition, 

tapping mode AFM-IR has been developed by Anasys to for characterization of soft matter, which 

suffer from the physical contact between the sample and scanning probe. Another intriguing 

approach involving substitution of the conventional AFM tip with microscale optical transducers 

has been recently demonstrated43 offering drastic improvement of the signal-to-noise ratio. 

Additional improvements also include light polarization control.44 



Figure 3. Two samples of high-impact polypropylene (HIPP): AFM phase images of (a, d), AFM-IR absorption maps 

at 974 cm−1 (b, e), where warmer color stands for stronger absorption and higher polypropylene content. Left column 

(a, b) for HIPP-1, and right column (d, e) for HIPP-2. In HIPP-1, the rigid cores of the particles are rich in 

polypropylene, which is highly crystalline, whereas for HIPP-2, the major component of the rigid cores is polyethylene 

with a high degree of crystallinity. The formation of these very different structures and compositions in the core and 

rubber domains may be attributed to different chain structures and compositions of the copolymers in the alloys 

produced by different catalysts. Reprinted from 45, Tang, F. G.; Bao, P. T.; Roy, A.; Wang, Y. X.; Su, Z. H., In-Situ 

Spectroscopic and Thermal Analyses of Phase Domains in High-Impact Polypropylene. Polymer 2018, 142, 155-163 

with permission from Elsevier.

The analysis of polymer blends46 and nanocomposites47 is a well-suited application for AFM-IR. 

For example, it is possible to investigate the internal structure of polymer blends; while the phase 

image of two high-impact polypropylene samples show similar internal structure of the multilayer 

rubber particles, the AFM-IR reveals that the chemical distribution is very different. (Figure 3). 

Quantitative analysis of nanodomains in polymer-based materials that relates chemical 

composition and localized thermal properties can be carried out using this approach.45, 48 AFM-IR 

has been used to confirm the uniformity of the polymerization reaction of PEDOT49 and P3HT.50 

CNT-reinforced thermoset composites have been investigated revealing the distribution of 

chemical interfaces.51 The sensitivity levels allow the characterization of additive migration in the 

industrial samples.41, 52 Finally, it is possible to perform AFM-IR measurements on biological 

samples such as cells53-55 and tissue56 without staining. The development of cataract in human 

lenses has been recently characterized with AFM-IR57 revealing the differences in protein 

secondary structure between clear and opaque lens samples. As the infrared spectra is sensitive to 

molecular vibrations, the distribution of the organic species in the hybrid materials such as 

methylammonium lead halides can be clearly observed.58 The direct registration of the local 

chemical changes generates an additional channel of information that aids the electrical 

characterization of samples and opens perspectives on the electromigration.

Optical Microscopy and Mass Spectrometry

Multimodal chemical imaging techniques coupled with mass spectrometry has a particularly bright 

future in the biomedical and biological sciences. Although single mode imaging is well-established 

in many scientific sub-fields, the combination of various complementary imaging modes – offering 



correlated information is still only emerging. These studies typically involve an optical imaging 

technique combined with a mass spectrometry technique, or a combination of various mass 

spectrometric modalities that are intrinsically complementary. As the complexity of the system 

under study increases, as is the case with biological systems, the value added by each imaging 

mode becomes increasingly more evident. The capability to detect highly diverse molecules found 

in biological specimens benefits from the various types of imaging modes, where one mode can 

detect species undetectable by another.59 Combination of nanoscale infrared spectroscopy and 

mass spectroscopy allows to circumvent some limitations imposed by either techniques used alone 

(Figure 4). For example, while AFM-IR images have higher resolution, the sampling depth of is 

a complex function of tip temperature, scanning parameters (e.g., scan speed), and heat transfer of 

the surface. By including mass spectrometry data into analysis it is possible to highlight the 

chemical composition of the surface. 

Figure 4. (a) 2D IR and (b) 2D MS chemical images for PMMA and P2VP, as well as (c) the related 2D topography 

image. Zoomed-in regions of (d, e) IR and (f, g) MS chemical images shown in (a) and (b) corresponding to areas I 

and II, respectively, indicated by the white squares in the full-size images. Arrows indicate about 1.6 μm wide gaps 

between PMMA features that are visible in the images in (c−g). Adopted with permission from 60, Tai, T.; Karacsony, 

O.; Bocharova, V.; Van Berkel, G. J.; Kertesz, V., Topographical and Chemical Imaging of a Phase Separated Polymer 



Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform. Anal. Chem. 2016, 

88, 2864-2870. Copyright (2018) American Chemical Society.

Significant challenges in terms of imaging data analytics are still pervasive. These challenges scale 

with the complexity of the system and become more significant as instrumentation is refined, and 

both spatial and spectral resolution increase. With this trend, data density for each imaging mode 

becomes increasingly difficult to manage. For example, latest generation of matrix-assisted laser 

desorption/ionization  time of flight mass spectrometry imaging (MALDI-ToF-MSI) instruments 

are now capable of acquiring spectra at a rate of 50 pixels s-1 by combining high repetition-rate 

lasers, synchronized with fast-moving sample stages, feeding into hardware that can sustain high 

data write speed.61 These experiments can generate data files on the order of TBs per sample; 

resolved at 50 µm2, containing ~10 million individual spectra. 

Another significant challenge is in-situ real-time molecular identification of biochemical species, 

essential for mapping molecules in biochemical pathways and understanding their larger biological 

impact. In the case of proteins, original approaches for spatially-targeted liquid micro-

extractions,62 spatial extractions coupled to label-free liquid chromatography tandem mass 

spectrometry experiments,63 in-situ tryptic digestion,64 and in-source decay experiments,65 among 

others are being developed. In the case of small molecules – metabolites and lipids, molecular 

identification relies heavily on high resolution mass analyzers combined with tandem MS 

experiments.66 The lack of retention time information, as with chromatographic experiments, and 

the fragmentation of metabolomics databases, are some of the remaining challenges that prevent 

real-time identification of metabolites and lipids during mass spectrometry imaging (MSI) 

experiments.67, 68

Various MS approaches have been utilized in a multimodal environment combined with 

orthogonal analytical methodologies for biomedical applications. Sweedler et al.. were some of 

the first teams to combine secondary ion mass spectrometry (SIMS) and matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI MS) for the purposes of imaging rat spinal cord 

tissue sections. This multimodal approach enhanced the chemical coverage of the MSI experiment, 

revealing molecular properties of the chemically-diverse but anatomically-discrete motor and 

sensory cell networks.69 Phospholipids, proteins and neuropeptide distributions were obtained 

from single 20 µm2 sections. Analyte identities were preliminary assigned by mass-to-charge ratio 



matches, followed by liquid chromatography-tandem mass spectrometry experiments (LC-

MS/MS). Later work also combined SIMS and MALDI, but in a hybrid, single ion source design,70 

enabling ion images of individual invertebrate neurons, mammalian spinal cord, and cultured 

neural networks (Figure 5). Confocal Raman microscopy coupled to SIMS and registered via an 

array of chemical microdroplets was later used for imaging quinolone signaling molecules in P. 

aeruginosa biofilms, important in human diseases such as cystic fibrosis and in bacterial ecology 

studies.71, 72

Figure 5: C60 SIMS images of an A. californica neural network obtained with a hybrid SIMS/MALDI ion source 

coupled to a commercial quadrupole-time of flight mass spectrometer allowing both high resolution and tandem MS 

measurements directly from biological specimens. PC=phosphocholine. The scale bar corresponds to 200 µ. 

Reproduced by permission from Springer Nature reference 70, Lanni, E. J.; Dunham, S. J. B.; Nemes, P.; Rubakhin, 

S. S.; Sweedler, J. V., Biomolecular Imaging with a C60-Sims/Maldi Dual Ion Source Hybrid Mass Spectrometer: 

Instrumentation, Matrix Enhancement, and Single Cell Analysis. J. Am. Soc. Mass Spectrom. 2014, 25, 1897-1907.

Pioneering work by Heeren et al.. demonstrated the combined application of magnetic resonance 

spectroscopic imaging (MRSI), metal-assisted SIMS, matrix enhanced SIMS, and MALDI MS for 

in vivo and ex vivo measurements on metastatic and non-metastatic breast cancer xenograft 

models73. Principal component analysis of the multimodal imaging data revealed distinct tumor 



microenvironments characterized by their characteristic molecular signatures, revealing the altered 

choline metabolism and transport characteristic of cancer cells. Multimodal imaging can also be 

performed in a two-step fashion, with the sampling event separated in space and time from the 

detection event. The combination of laser capture microdissection with continuous on-line 

atmospheric pressure chemical ionization mass spectrometry enabled the sampling event to take 

place at higher resolution than typical for most MS imaging approaches (a few to sub-micron), 

whereas the detection was provided by downstream thermal vaporization of the generated tissue 

aerosols and reaction with an atmospheric pressure plasma leading to proton transfer and mass 

spectrometric detection.74

Multimodal imaging MS has also been successfully used in several other biological applications. 

Ewing et al.. employed multimodal imaging via time of flight secondary ionization mass 

spectrometry (ToF-SIMS) and MALDI MS to investigate spatial distributions of the 

environmental toxin β-N-methylamino-L-alanine (BMAA) in hippocampus sections of a rat. 

BMAA has been causatively linked to neurodegenerative disease pathology and, in a rat model, 

learning and memory impairments.74 More recent work has demonstrated the simultaneous 

imaging of both N-glycans and proteins in the same tissue section via MALDI MSI.75 Using a 

single technique, but two sequential on-tissue digestion procedures with PNGaseF and trypsin, 

complementary images on leiomyosarcomas, myxoid liposarcomas, and colorectal carcinoma 

tissues were produced. Fixed adrenal cells prepared for and imaged by transmission electron 

microscopy were also imaged by both ToF-SIMS and nanoSIMS.76 Ewing et al.. have recently 

demonstrated the multimodal use of nanoparticle assisted laser desorption ionization mass 

spectrometry (NP-LDI MS), MALDI MS, and gas cluster ion beam (GCIB) SIMS to investigate 

intact lipids in mouse brain tissues.77 GCIB SIMS acts as a semi-soft ionization method that closes 

the gap between conventional SIMS and MALDI techniques in terms of internal energy deposition 

and ion fragmentation. More recently, a “trimodal” MALDI MSI approach imaging positive and 

negative lipids and proteins at a resolution of 10 μm was reported, revealing spatially correlated 

lipid and peptide distributions involved in Aβ plaque pathology in Alzheimer’s disease.78

The aforementioned body of work and its success in utilizing multi-modal imaging techniques in 

mass spectrometry, are just a sliver of a growing community reliant on these and similar tools to 

advance research across a wide biomedical front. It is expected that the number of tools and 



researchers utilizing these approaches will continue to grow with techniques increasing in 

complexity and in produced data. Some of the complexity alone stems from higher resolution mass 

spectrometry techniques operating at nanoscale, and coupled with scanning probe microscopy 

techniques, described in the next section.

Ion, Electron and Probe Microscopy with Mass Spectrometry

In the last few decades a whole class of MSI techniques was developed to map distribution of the 

chemical composition with spatial resolution ranged from nanometers to tens of microns.79-83 Here, 

the surface and the sub-surface chemistry of the sample is analyzed via a focused physical probe 

(ionic, optical, thermal, etc.), which releases the analyte species from a small area on the sample. 

The specific probes define the pros and the cons of a given technique. For instance, ionic probes 

used in SIMS allow chemical imaging with sub-micron spatial resolution,84, 85 but lead to 

significant fragmentation of large molecules,86complicating data interpretation in biological and 

polymeric systems. On the other hand, optical probes (MALDI) and discussed at some length in 

the previous section,87 allow direct identification of large molecules (e.g. lipids, peptides and 

proteins),88-91 but requires an appropriate matrix and suffer from low spatial resolution, limited by 

the size of laser beam; down to few micrometers. Released secondary species in MSI are further 

analyzed using different types of the mass detectors (time-of-flight, magnetic sector, orbitrap, etc.) 

to acquire information on the local chemical composition at a certain spatial point on the surface. 

Rastering the beam/probe thus produces chemical maps, containing information on the distribution 

of chemical species. When the electron microscopy signal is combined with secondary ion 

spectroscopy, high resolution imaging is supplemented by the chemical sensitivity intrinsic to MS 

(Figure 6).



Figure 6. (A) PIES image: Overlay of BF-TEM image (contrast inverted) and SIMS images of 6Li+ and 7Li+, (B–D) 

high-magnification TEM images (contrast as acquired) corresponding to the boxed hotspots and (E–G) SIMS images 

of 6Li+ (green) overlaid on 7Li+(red) corresponding to images B–D respectively. The arrows in the TEM images 

indicate nanoparticles rich in 6Li+ (green) and 7Li+ (red). The color scales indicate secondary ion counts in linear scale. 

Reproduced with permission from reference 92, under a Creative Commons Attribution 4.0 International License, 

Nature Publishing Group 2018.

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is one of MSI techniques that uses 

a focused ion beam to release secondary ions from the surface and direct them into the time-of-

flight analyzer to detect their mass-to-charge ratio. This tool requires high or ultra-high vacuum. 

The chemical spatial resolution in imaging mode for ToF-SIMS is defined by the spot size of the 

focused primary beam. Liquid metal ion guns, (LMIG) commonly used in static and dynamic 

SIMS, routinely provide ~100 nm spot sizes. The surface analysis can be complemented by 

additional sputtering sources, allowing the removal of significant amounts of the material. This 

extends chemical investigation into the bulk, down to few micrometers in depth. The time-of-flight 

mass analyzer used in ToF-SIMS offers mass resolution m/∆m in the ~ 103 – 104 along with wide 

mass range (up to 105 Da) and high transmission efficiency (above 50%).93 The time-of-flight 

approach also enables parallel acquisition of the chemical information on all chemical species seen 

by the detector.94-97 This produces high dimensionality datasets where an entire mass spectrum can 



be recorded at each voxel of a 3-dimensional sample map; revealing the surface and bulk chemical 

composition of a material with sub-micrometer spatial resolution. ToF-SIMS has found its 

application in life sciences allowing to probe the distribution of relevant species within the 

biological sample (Figure 7). 

Figure 7. Correlative backscattered electron and nanoSIMS analysis of multilamellar lysosomes within amiodarone-

treated macrophages; (A) BSE image zoomed on an area containing profound multilammelar lysosomes for the full 

image) and (B) the corresponding NanoSIMS 127I− secondary ion map, which shows the locations of amiodarone 

accumulation. (C) 127I−/31P− ratio image of the selected area (the ratio colour scale: 0–0.08, blue – pink, respectively). 



(D) Plot of the 127I−and 31P− secondary ion intensities measured in lysosomes, showing a linear relationship between 

the amount of the drug and phospholipids accumulated in MLLs. Reproduced from reference 98, with permission of 

The Royal Society of Chemistry.

While there are obvious strengths to chemical sensitivity in the ToF-SIMS, its capabilities can be 

extended beyond chemical mapping by combining the tool with atomic force microscopy (AFM) 

in the same vacuum chamber. This multimodal imaging AFM/ToF-SIMS platform enables 

nanoscale characterization of chemical and physical properties of the sample along with the surface 

morphology. The chemical information acquired by ToF-SIMS, at chemical resolution of 50-100 

nm can be supplemented with functional sample response measured by AFM at resolution down 

to 1 nm. This combination has been recently used by Sostarecz et al.. to characterize chemistry 

and phase behavior of lipid films99 and by Belianinov et al.. to study ion induced changes in layered 

copper indium thiophosphate ferroelectrics.100-102 Furthermore, a combined AFM/ToF-SIMS 

platform opens pathways for chemical characterization of local physical behavior at the nanoscale. 

In these types of experiments local chemical phenomena induced by the physical field of the AFM 

cantilever tip (including, but not limited to: mechanical, electric, thermal, magnetic, etc. excitation) 

can be studied by ToF-SIMS. Recently, this approach enabled a study focused on the growth of 

metal-organic frameworks with AFM tip grafting,103 explore chemical phenomena associated with 

local polarization switching in ferroelectrics104 (Figure 8), and investigate electrochemical 

response of lithium-ion cathodes105 and chemical interaction between AFM tip and the sample 

surface.106 



Figure 8. Combined AFM/ToF-SIMS investigations of the electro-resistive switching by AFM tip in BiFeO3 thin 

film. (a) Topographical changes associated with electroresistive switching. (b) ToF-SIMS XY map of  Bi+ on the 

surface. (c)-(g) XZ depth profiles across modified region, base elements of the BiFeO3 film, SrRuO3 buffer layer and 

LaAlO3 substrate: (c) Fe+; (d) Sr+; (e) Al+; (f) La+; (g) Cs2O+. (h) Overlay of Fe+ (red), Sr+ (blue) and Al+ (green). 

Reprinted with permission from reference 104, Ievlev, A. V.; Maksymovych, P.; Trassin, M.; Seidel, J.; Ramesh, R.; 

Kalinin, S. V.; Ovchinnikova, O. S., Chemical State Evolution in Ferroelectric Films During Tip-Induced Polarization 

and Electroresistive Switching. ACS Appl. Mater. Interfaces 2016, 8, 29588-29593. Copyright (2018) American 

Chemical Society.

AFM topography offers a quantitative roughness and depth measurements, which can be used 

before and after ion beam sputtering in 3D profiling ToF-SIMS measurements. In this type of work 

the depth of the sputtered crater as measured by AFM, allows sputter rate calibration and accurate 

volume reconstruction; assuming sample homogeneity.107-110 The authors would like to point out 

that the chemical resolution is still dictated by the beam spot size. However, the geometric 

correction offered by the AFM topography can offer invaluable information at the data 

reconstruction step, where changes in morphology can significantly impact interpretation.111-115

Thus, a combined AFM/ToF-SIMS platform offers a perfectly complimentary set of tools for 

correlated chemical and functional investigations of wide range of materials. Achieving lateral 

chemical spatial resolution bellow 50 nm with primary source LMIGs is still challenging. Gas field 

ion sources (GFIS) using helium, or neon ion beam as a primary source, combined with mass 



spectrometer were recently suggested by Wirtz et al.. and are based on commercially available 

helium ion microscope (HIM) Zeiss ORION NanoFab.116 While the source design for this tool is 

significantly more complex than for LMIG, the spatial resolution (~0.5 nm with He, and ~1.9 nm 

with Ne) is a significant breakthrough for the SIMS community.

Helium ion microscopy is a relatively young technique that can produce higher resolution images 

than scanning electron microscopy (SEM).117, 118 GFIS deliver high brightness ion beams and the 

interaction volume for helium ions is smaller than for electrons in SEM.119 The overall result is 

enhanced resolution and a greater depth of field for HIM compared to SEM.120 In addition to the 

imaging of emitted secondary electrons, the helium ion beam can be used to obtain information on 

ions released by sputtering. High brightness, high current (5-10 pA) ion beams and a low energy 

spread below 1 eV can be theoretically focused to area smaller than 1 nm,121 making the GFIS 

interesting as a primary ion source for SIMS.122 No general restrictions exist that prohibit the use 

of gases other than helium in GFIS, although practical reasons limit the use to species with 

sufficiently high ionization energies, i.e., to helium and neon.123

While the small focus size of the GFIS beam directly translates into a higher spatial resolution, for 

SEM the limitations for the analysis of secondary ions are set by the lateral dimensions of the 

collision cascades induced in the sample. For helium, the collision cascade is situated quite deep 

below the sample surface but because only a small fraction of the impact energy is deposited close 

to the surface, sputter yields (the fraction of sputtered particles to incident ions) are low (<1 for 

He11). For neon, the surface area that secondary particles are sputtered is significantly larger due 

to shallower collision cascades.124, 125 Sputter yields are higher (30× in comparison to He) and 

comparable to O and Cs ion beams routinely utilized in SIMS.

The initial work of Wirtz et al..116 led to the development of a HIM-SIMS tool based on the Zeiss 

ORION NanoFab microscope utilizing a custom set of retractable extraction optics to feed into a 

double focusing magnetic sector mass spectrometer with 4 detectors in a Mattauch-Herzog design. 

This system showed chemical imaging with 13 nm lateral resolution on a standard sample. Another 

implementation of HIM-SIMS platform was demonstrated by Klingner et al.. extended a Zeiss 

ORION NanoFab by time-of-flight based mass analyzer with a pulsed primary ion beam and a 

multi-channel plate (MCP) based ion detector.126 Altogether HIM-SIMS is considered as a 



perspective direction of development for MSI, allowing chemical imaging with ultimate spatial 

resolution. 

Although, various SIMS techniques provide great set of the tools for chemical imaging with sub-

micrometer and even nanometer spatial resolutions, several fundamental problems hamper its 

application for identification of large (biological) molecules. Primary ion beams used in SIMS for 

ionization lead to molecular fragmentation. Furthermore, SIMS measurements require vacuum, 

which is not compatible with many materials. This significantly complicates chemical 

characterization of biological and some other systems in SIMS. Hybrid solution, utilizing sharp 

AFM tips for material desorption from the surface of the sample have been recently suggested.127-

129

An AFM tip can be used to mechanically uptake sample material from the surface. The work by 

Lee et al..128 suggested using field ionization to release the scratched material into a mass 

spectrometer for elemental analysis. The entire SPM – MS system was held under vacuum along 

with a special probe design that enabled tip transfer (together with the collected sample) from a 

urface sampling position to a field desorption emitter position. In other work by Hoffmann et al..130 

the AFM tip was used to mechanically sample material from the surface, with a subsequent 

temperature ramping step for the controlled release of the material by thermal desorption. Initial 

work on coupling direct thermal desorption from the sample surface with heated AFM cantilever 

probes with mass spectrometry has been developed by Price et al..131 This method used an offline 

approach to capture material that was thermally desorbed under either volatilization or pyrolysis 

on a sorbent in close vicinity to the desorption site. This enabled the analysis of the desorbed 

material by gas chromatography coupled with mass spectrometry. Other researchers also used 

similar approaches to draw material from the desorption site through a capillary into a separate 

collection device for the deposition onto graphite which allowed for subsequent laser desorption 

and  2-photon ionization.132

Several combined AFM/MS platforms using thermal desorption have been developed. Their 

general applicability has been illustrated for small organic molecules including dyes, 

pharmaceuticals, explosives and pesticides.133-135 The application to polymers also has been shown 

(Figure 9), based on the detection of small characteristic fragments—such as for poly(methyl 

methacrylate) (PMMA), polystyrene (PS), poly(2-vinylpyridine) (P2VP).136-138 The overall 



sensitivity of the combined AFM/MS platform can be benchmarked by the minimal detectible 

amount of sample material (e.g., the smallest desorption crater) and future developments are 

focused on improving the precision with which the material is removed. 

Figure 9. Combined SIMS‐SPM 3D mapping of a PS/PMMA blend. Field of view: 10.6 × 9.8 µm2. Reproduced with 

permission from reference 139 Wirtz, T.; Fleming, Y.; Gysin, U.; Glatzel, T.; Wegmann, U.; Meyer, E.; Maier, U.; 

Rychen, J., Combined Sims-Spm Instrument for High Sensitivity and High-Resolution Elemental 3d Analysis. Surf. 

Interface Anal. 2013, 45, 513-516. Copyright John Wiley & Sons, Inc 2018.

In the case of thermal desorption, improved heating functions can reduce the redeposition of 

initially desorbed material 140 on the vacuum transfer line walls.141 Additionally, inline ion sources 

can aid with material ionization for lower limits of detection. For example, AFM coupled to a 

custom built electrospray ionization (ESI) stage is capable of detecting 250 nm craters in pure 

caffeine.129 Several implementations using atmospheric pressure chemical ionization (APCI) 

stages have been used, based on a modifications of the manufacturer's ion source design133 and 

custom APCI based inline ionization stages.136, 141  Detection of ink dye components for spot-

sampling yields 800 nm lateral resolution, as well as 411 nm spatial resolution for P2VP and 

polystyrene PS polymers. For the multimodal imaging with an AFM/MS system, Ovchinnikova et 

al.. illustrated a phase-separated PS/P2VP system using multiple imaging modalities provided by 

the AFM (topography and band excitation nanomechanical), followed by the chemical imaging of 

thermally desorbed material in the MS (Figure 10).142 



Figure 10. Co-registered AFM (a) pre-pyrolysis topography image, (b) BE elastic modulus image, (c) post-pyrolysis 

topography image, and (d) mass spectrometry chemical image for m/z 106, obtained from an ∼500 nm thick thin film 

of phase-separated PS/P2VP blend. The color scale for the topography goes from dark to light, which is proportional 

to an increase in relative surface height. Highlighted ovals in panels (b), (c), and (d) indicate areas where the AFM 

topography, elastic modulus, and mass spectrometry images differ in terms of the presence of P2VP. Reprinted with 

permission from reference 142 Ovchinnikova, O. S.; Tai, T. M.; Bocharova, V.; Okatan, M. B.; Belianinov, A.; 

Kertesz, V.; Jesse, S.; Van Berkel, G. J., Co-Registered Topographical, Band Excitation Nanomechanical, and Mass 

Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform. ACS Nano 2015, 9, 

4260-4269. Copyright (2018) American Chemical Society.

In summary, multimodal platforms where mass spectrometry imaging is combined with other 

scanning probe microscopy techniques allows a significant extension of capabilities for chemical 



characterization and correlation of chemical phenomena with structural and physical properties. In 

addition to classical optics, and scanning probe systems incorporated into combinatorial MS 

systems, tools featuring nonlinear optical microscopy components are gaining popularity. 

Nonlinear Optical Microscopy 

Nonlinear optical spectroscopies have now been used for several decades to probe chemical and 

physical phenomena in systems spanning small molecules,143-145 proteins,146-148 complex 

materials,149-151 and interfaces.152-155  The foundation of any nonlinear method lies in multiple 

interactions between the sample and the incident radiation driven by the high intensity of a laser 

that is often pulsed.  It is through these multiple light-matter interactions that access to ultrafast 

dynamics, or surface selective chemistry, which are not available using linear optical methods, is 

obtained.  These methods thereby provide a direct view of the underlying physical and/or chemical 

processes at play.  Despite the great advances in fundamental understanding, traditionally 

ensemble spectroscopic probes report spatially averaged information.  In many cases however, 

heterogeneity on the nano- and mesoscales is critical to the function and performance of these 

sample systems.  As such, there has been a push to apply nonlinear optical methods to microscopic 

platforms to obtain both chemically selective and time-resolved information from spatially 

heterogeneous and chemically complex samples. By far, the most common form of nonlinear 

microscopy is two-photon fluorescence microscopy, which has found greatest utility in biological 

imaging applications.156-159  This technique takes advantage of two-photon transitions to populate 

an electronic excited state from which a photon is emitted and recorded at a given spatial location. 

This approach is the nonlinear analog of confocal fluorescence microscopy, but boasts superior 

penetrating power, reduced photobleaching, and intrinsic longitudinal sectioning.156-158  These 

methods tend to rely on an assortment of stains/dyes that are designed to target specific regions of 

a system,160, 161 say in a cellular membrane,162 and thus provide contrast based on where the labels 

are localized and can emit light.  These approaches have also found utility in imaging domains and 

local ordering in light harvesting materials without the need for labels.163  While widely used, these 

methods rely on the emission of light, which in many cases necessitates staining procedures or the 

study of materials with appreciable quantum yields, thereby limiting the overall utility.  To address 

these limitations, complimentary suites of nonlinear optical microscopies have been developed to 



probe native species in complex heterogeneous samples without the need for chemical labels or 

dyes.  These can be categorized as even-order techniques that are sensitive to the molecules at an 

interfacial monolayer or to chiral assemblies of molecules-  e.g., Second Harmonic Generation 

(SHG)92, 164-170 and Sum-frequency Generation (SFG),101, 171-175 and odd-ordered methods that 

probe molecular resonances in the bulk material - e.g., Coherent Anti-Stokes Raman Scattering 

(CARS),176-179  Stimulated Raman Scattering (SRS),180, 181 and Transient Absorption Microscopy 

(TAM).182-188  Note that this is not an exhaustive list but is rather a compilation of those most 

commonly found in the literature. 

As an example, both CARS and SRS microscopies have revolutionized the way in which 

vibrational chemical images are taken. Traditional linear Raman microscopes rely on a weak 

Raman scattering process, which limits the time and fidelity at which a chemical map can be 

obtained.  In contrast, using coherent nonlinear approaches, Raman signals can be greatly 

enhanced allowing for chemical images to be obtained at video rate,180, 181 or for the dynamics of 

a single molecules tracked in time.177  SHG imaging methods have been developed and applied to 

probe interfacial or chiral species.92, 164-170  Due to symmetry considerations, only species in non-

centrosymmetric environments (i.e., interfaces) or chiral species can produce appreciable SHG 

signals, thus making it an ideal tool for imaging interfacial phenomena and biological systems. 

Through staining procedures, SHG methods can provide insight in local electric fields complex 

systems such as neurons.165, 166  Extension of SHG imaging to SFG microscopy has been reported 

in a several different geometries with samples studied ranging from biological systems to complex 

matrerials.101, 171-175  Of particular note, is the recent development of compressive sensing SFG 

microscopy, which leverages efficient means to acquisition hyperspectral images with relatively 

minor modifications to a conventional SFG spectrometer.172, 173 It is expected that approaches 

using compressive sensing will revolutionize the field of nonlinear microscopy by allowing 

chemical images to be obtained using established spectroscopic protocols, while providing 

microscopic insight.   

In parallel, approaches using intrinsic time-domain responses as a source of chemical contrast have 

appeared in the literature.188-194  These approaches extend Fluorescence Lifetime Imaging 

Microscopy (FLIM) techniques,195 where the temporal responses of excited states species can 

provide contrast between areas of disparate chemical speciation or environments while 



simultaneously providing access to excited state photochemical dynamics.  A distinguishing 

feature of transient absorption microscopies (also known as pump-probe microscopy192) is the use 

of multiple laser pulses to excite and probe species at controllable ultrafast (fs-ps) time delays to 

produce a 3D-image stack as shown in Figure 11. By exciting and probing the system at very early 

time delays, access to a whole realm of information is obtained, including the dynamics of excitons, 

motions of charge carriers, and local chemical makeup, to name a few examples.  Additionally, 

since the probe pulse carries the relevant optical signals, one does not rely on emission of the 

sample thus allowing for native non-fluorescent samples to be imaged188 at sub-diffraction limited 

spatial resolutions with sub 100 fs temporal resolutions.  

Figure 11. (a) Near-field pump−probe time traces recorded on different positions on a microcrystal (red, positions 

indicated in panel b), together with full time traces extracted from a series of spatiotemporal images (blue, images and 

positions shown in panel b). (b) Set of images showing spatial and temporal variations in the IMT dynamics of a single 

VO2 microcrystal. (c) Line profiles for several pump−probe time delays across the microcrystal shown in panel b. 



Reprinted with permission from reference 196, Donges, S. A.; Khatib, O.; O'Callahan, B. T.; Atkin, J. M.; Park, J. H.; 

Cobden, D.; Raschke, M. B., Ultrafast Nanoimaging of the Photoinduced Phase Transition Dynamics in Vo2. Nano 

Lett. 2016, 16, 3029-3035. Copyright (2018) American Chemical Society.

Pioneering work by the Warren group demonstrated this capability through selective probing and 

characterization of cancerous tissues.193, 194  By selectively exciting species and probing the 

ultrafast dynamics in time, they were able to differentiate between species having indistinguishable 

absorption spectra by using only the ultrafast responses.  In this way they were able to spatially 

localize the distributions of eumelanin and pheomelanin in skin lesions without chemical labels.194 

These approaches have even been applied to fine art, in the characterization of pigments in 

paintings in a non-destructive manner.197  TAM has also found numerous applications to materials 

systems where insight into photophysical phenomena in spatially heterogeneous materials is 

generally lacking.  For instance, work probing lead halide perovskites, also extensively studied by 

scanning probes198-201, used the temporal response at distinct spatial locations to characterize the 

photoexcited state species that were created (Figure 12) 191 This, and related work, demonstrated 

that a coexistence of charge carriers and excitons is present in these materials.189-191  Other 

examples of the utility of TAM based microscopies make use of spatially offset probe pulses185, 

202, 203  to track the motions of carriers as they move though a material in space and time.  This 

powerful approach provides a movie of excited state processes evolving on native time and length 

scales, which holds promise in understanding photo physics in spatially heterogeneous and 

chemically complex materials. 



Figure 12. TAM images acquired for the same area of the pristine CH3NH3PbI3 (a), CH3NH3PbI3/PCBM (b), and 

CH3NH3PbI3/ Spiro-OMeTAD (c) samples at five different delay time delays. Scale bars are 5 μm.  The color bars 

encode the variation in TAM signal and sign. Adapted with permission from 204, Simpson, M. J.; Doughty, B.; Yang, 

B.; Xiao, K.; Ma, Y. Z., Spatial Localization of Excitons and Charge Carriers in Hybrid Perovskite Thin Films. J. 

Phys. Chem. Lett. 2015, 6, 3041-3047. Copyright (2018) American Chemical Society.

While TAM methods provide excellent sensitivity to ultrafast electronic processes, it is 

morphologically blind. This lack of morphological information can limit interpretations regarding 

photophysical processes based on challenges in correlating material structure to emission 

intensities or TAM images collected on different platforms.  To circumvent this, multimodal 

approaches to TAM have been developed by combining linear photoluminescence (PL),205 

transmission, and confocal reflectance microscopies into a single platform.206  By collecting a 

multidimensional dataset using the same laser system at the same sample location, insight into how 

morphology and film thickness impact the ultrafast and exit channel dynamics (TAM and PL 

imaging, respectively) can be obtained.  For instance, from a correlation analysis of four different 

optical modalities, it was shown that in mixed perovskite thin films PL originates predominantly 



from the first few layers of the film, whereas the TAM measurements probe predominantly bulk 

excited state processes.206 

Through the combination of the various linear and nonlinear optical methods described above that 

use the same microscopic platform a more complete picture of the sample can be obtained than 

using any individual approach.  That being said, challenges in processing and developing physical 

insight these large multidimensional datasets, often with different resolutions, bin sizes, etc.…, 

exist and remain to be addressed as chemical imaging methods continue to grow. Coupling of these 

optical methods to scanning probe207, 208 or electron microscopy methods209, 210 has also attracted 

attention and remains an avenue for continued development.  For instance, using near-field optical 

excitation for the probing the sample for the visualization and spectroscopic characterization of a 

vast variety of nano materials, from semiconducting nanoparticles to polymer thin films to 

sensitive measurements of single molecules (Figure 13). In addition, it can be conducted in non-

contact mode, producing high-resolution measurements at ambient conditions. Such non-linear 

optical properties of materials as nonlinear excited state absorption and stimulated Raman 

vibrational transitions can be locally measured by these approaches. The ultimate goal would be 

to push the temporal and spatial limits of both optical and scanning probe/electron microscopy 

methods to address scientific questions at the extremes of space and time. 



Figure 13. (a) Schematic of the pump−probe excitation of SiNc. (b) Time-resolved excited state absorption measured 

with PiFM (solid dots) and with optical pump−probe microscopy (solid line). (c) Topography (top) and PiFM signal 

amplitude (bottom) of a nanocluster measured at different time delay settings of the probe pulse. Reprinted with 

permission from reference 211, Jahng, J.; Fishman, D. A.; Park, S.; Nowak, D. B.; Morrison, W. A.; Wickramasinghe, 

H. K.; Potma, E. O., Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force 

Microscopy. Acc. Chem. Res. 2015, 48, 2671-2679. Copyright (2018) American Chemical Society.

Multimodal and multidimensional data analysis



Over the last two decades, developments in the characterization equipment have significantly 

increased the size and the quality of data produced by experimental techniques.212-217 Improved 

detectors, a rise in multimodal tools – machines capable of probing different material properties, 

and clever uses of metadata have underwritten the growth of collected and stored data. 

Interestingly, this trend in scientific data growth follows classification devised by IBM in 2012218 

for big data on the web, shown in Figure 14, and is reflected in a wide variety of common 

characterization techniques, e.g. scanning probe microscopy; with data volumes and 

computational complexity reflected in Figure 14(b, c), as well as scanning transmission electron 

microscopy, mass spectrometry, and many others. Terabytes of scientific data in biological and 

material sciences are now common beyond monolithic tools like accelerators and beam lines; the 

data is mixed between structured and unstructured, and many detectors and devices are moving to 

storing data streams as opposed to data batches. Unfortunately, analysis approaches have largely 

lagged behind this growth, or remained static altogether.219, 220

Figure 14. Data set size and computational power evolution. (a) IBM’s characterization of Big Data – Volume, 

Variety, Velocity, or V3. (b) Evolution of multidimensional data sets in scanning probe microscopy and their sizes 

over the last decade. Acronym list: BE, band excitation; SSPFM, switching spectroscopy piezoresponse force 

microscopy; TR PFM, time resolved piezoresponse force microscopy; BE SSPFM, band excitation piezoresponse 

force microscopy; TR BE, time resolved band excitation; FORC, first-order reversal curve. (c)Typical 

processing/acquisition time (smaller value is better) on a laptop, desktop, and cluster for multidimensional data sets. 

Hardware configurations were assumed as follows: laptop - 4-core processor, 8 GB of RAM, integrated video, and 1 

hard drive approximately 1 TB of space; desktop - 12-core processor, 32 GB RAM, dedicated video, 2 hard drives, 4 

TB of space; cluster - 10 nodes, each node with 8 processors at 8 cores, 20 GB of RAM, 160 GB storage space. 

Adopted with permission from 221, under an Open Access article distributed under the terms of the Creative Commons 

Attribution License. Copyright Springer 2018. 



Advances in machine learning brought significant developments to multiple areas of science and 

engineering, specifically image processing,222 with perhaps autonomous vehicle technology 

leading the charge.223 While the aspects of image processing and machine learning have already 

begun appearing in areas of microscopy,224-227 the underpinning aspects of what makes machine 

learning so attractive to scientists is the ability to make sense of seemingly disconnected pieces of 

data; potentially coming from a wide variety of sources, at various rates, resolutions, and reflective 

of different material properties.228 

This is promising for chemical imaging, where many of the collected data, or data descriptors, 

contain correlated information on structure and property of the specimen. While the analysis of 

these data has traditionally followed a qualitative and manual approach, the veracity and volume 

of data produced by modern multimodal instrumentation either preclude such methods, or 

significantly hampers the processing rate. Nonetheless, manual, or semi-automated approaches 

have proven to be successful in relatively high-volume data environments combining multimodal 

information to present a fuller picture of material composition and exhibited properties.142, 229-232 

More advanced approaches, leveraging deep learning, are less common, but are now gaining 

popularity.233-235 Nevertheless, the penetration of machine learning into scientific and industrial 

areas reliant on multimodal tools, and combinatorial data approaches remain slow. In addition, 

machine learning enables high-throughput processing of experimental data from multiple sources 

through the data fusion (Figure 15). This approach boosts the capability to generate complex 

insights about composition and structure or the sample by improving the quality of the image as 

well as deriving connections between various sample properties on a fundamental level.

This trend reflects several challenges complicating direct adaptability of data analytics to 

multimodal problems in science and engineering. While many in their respective fields have 

achieved a considerable degree of sophistication in the use of respective experimental, theoretical 

and computational tools, the overlap between these communities is small. This problem is 

exacerbated by a lack of a common language and philosophy and will likely necessitate extensive 

cross-disciplinary training. Furthermore, big- and deep-data approaches, implying knowledge 

extraction from data, greatly benefit from universal, centralized, or distributed databases and 

repositories. This requires information exchange between researchers, requiring the development 

of infrastructure, adoption of compatible and potentially universal data formats, and addressing 



inevitable intellectual property and socio-cultural issues. Private entities like Citrine Informatics, 

have already begun to fill these gaps proving that there is a viable pathway towards centralizing 

and standardizing scientific information. 

Perhaps the most compelling evidence for feasibility of large-scale processing and machine 

learning in science and engineering comes from areas that have long embraced the potential of 

these tools and have shown their practicality. Data analytics have been long established in the 

materials modelling community, starting with chemometrics and on to computation and correlation 

of response functions with experimental data. In fact, the argument could be made that rapid 

advances in quantum density functional theory, was a grassroots moment for the concept of 

computational-based materials by design.236 Early efforts that utilized the power of supervised and 

unsupervised neural networks, genetic and evolutionary algorithms, along with graph theory and 

statistics-based methods demonstrated capabilities, even though the data available at that time was 

modest compared with the volumes accessible today.237, 238 These success stories, advances in 

experimental techniques, and availability of high-quality information, as well as notable advances 

in high-performance computing,239 offer a clear roadmap to the required capabilities for better 

scientific data analysis and bridge technologies across various disciplines.



Figure 15. An ion image measured in mouse brain, describing the distribution of m/z 778.5 (identified as 

lipid PE(P-40:4)) at 100-μm spatial resolution (top right), is integrated with an H&E microscopy image 

measured from the same tissue sample at 10-μm resolution (top left). By combining the information from 

both image types, the image fusion process can predict the ion distribution of m/z 778.5 at 10-μm resolution 

(bottom). Reprinted by permission from Springer Nature reference 240, Van de Plas, R.; Yang, J.; Spraggins, 

J.; Caprioli, R. M., Image Fusion of Mass Spectrometry and Microscopy: A Multimodality Paradigm for 

Molecular Tissue Mapping. Nature methods 2015, 12, 366. Copyright Nature Methods 2018.



Conclusions

Chemical analysis at the nanoscale is critical to progress in the fields of biology, medicine, and 

material science. Complicated processes like cellular signal transduction, pharmaceutical 

discovery, and trace element characterization in nanoelectronics, require nanometer-resolved 

multimodal chemical and physical analysis. This subsequently drives the need for analytical tools 

offering higher sensitivity, and detailed chemical information coupled to high spatial resolution 

modes. The trend is beginning to be recognized by equipment manufacturers and is evidenced by 

the development of several platforms. Much attention has been focused on combining chemically 

sensitive techniques with high spatial resolution techniques such as scanning probes, optical 

microscopy, and electron/ion systems. Developing multimodal imaging approaches and 

interrogating multiple properties on a single platform circumvents many technical issues 

associated with sample preparation, transfer and storage. Furthermore, these combinatorial 

techniques generate multidimensional data sets, which are expected to grow; and contain data as a 

function of constantly increasing number of parameters such as time, temperature, bias, light and 

other external stimuli. From the technical aspect moving towards single platforms can significantly 

reduce the complexity associated with intermediary data processing and visualization steps, as well 

as data provenance. Effective approaches to dimensionality reduction, scalable algorithms, high 

performance computing, and cloud infrastructure still need to be widely and uniformly 

implemented for scientific use. Nonetheless, multimodal chemical imaging systems already offer 

a glimpse of powerful capabilities offered by extracting additional information from cross 

correlating and combinatorial processing of the captured material signals. Going forward we will 

without a doubt see an emergence of more complex processing capabilities (likely through the use 

of support vector machines and supervised learning methods) as well as significant breakthroughs 

in multimodal hardware capable of capturing even more independent channels of information. 
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