
December 2017 ECP ST Project Review

ECP Project WBS 2.3.1.04 : SNL ATDM PMR

Kokkos Research & Development
DARMA Research & Development

SNL ATDM PMR PM: Robert Clay

Kokkos PI: H. Carter Edwards; acting PI: Christian Trott

DARMA PI: Jeremiah Wilke

Date: December 20, 2017

SAND2017-13792PE

2 Exascale Computing Project

SNL ATDM PMR Overview
C++ Abstractions to isolate applications from HPC HW and RT diversity

DARMA / Kokkos

Scientific
Libraries

Science
Applications

….
Engineering
Applications

ORNL Summit
IBM Power9 / NVIDIA Volta

LANL/SNL Trinity
Intel Haswell / Intel KNL

ANL Aurora21
Intel unannounced Novel Architecture

3 Exascale Computing Project

SNL ATDM PMR Overview

• Implicit data-effects task-parallel programming

• Goals:

– More productive app development

– Implicit communication, load balancing

– Exploit data utilization knowledge for more
effective work scheduling

– Efficient use of both shared and distributed
memory

DARMA
Research and Prototyping

• Explicit data and task parallel programming for
hierarchical and heterogeneous architectures

• Goals:

– Performance portability over hardware architectures

– Delivering well established, productive abstractions
for explicit parallelism

– Provide high quality implementation for production
applications

Kokkos
Production Growth

Task 1

A B

C

Task 2

A D

E

Task 3

C E

F

Task 1 Task 2

Task 3S
c
h

e
d

u
le

r

Developer Execution

Comm E

Data a

Data b

Task

View<int**, Host>

View<int**, HBM>

parallel_for(
RangePolicy<OpenMP>(0,N),k1) Kernel

task_spawn(
TaskSingle(sched),k1)

DDR

HBMHBM

4 Exascale Computing Project

Kokkos: Mapping Applications to Diverse Node-Architectures

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Kokkos

LAMMPS Sierra AlbanyTrilinos

https://github.com/kokkos

5 Exascale Computing Project

Kokkos: On-Node Data and Execution Abstractions

Kokkos

Execution Spaces
(“Where”)

Execution Patterns
(“How”)

Execution
Policies

Supports Heterogeneous ExecutionSupports Heterogeneous Execution

parallel_for/reduce/scan task_spawnparallel_for/reduce/scan task_spawn

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent

scratch-pads

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent

scratch-pads

Memory Spaces
(“Where”)

Memory Layouts
(“How”)

Memory
Traits

Access Intent and Behavior
Stream, Random, Atomic
Access Intent and Behavior
Stream, Random, Atomic

Execution
Parallel

Execution
Data Structures Traditional C-Layout:

View<float*[3],LayoutRight>

Traditional C-Layout but with SIMDType:

View<SIMDfloat*[3],LayoutRight>

View the SIMD data as simple scalar:

View<float*[3],LayoutSIMDRight>

x y z x y z x y z x y z

x y zx y z x y zx y z

xx yy zz xx yy zz

Example Memory Layouts:
AOSOA SIMD transform
Typedefs to change data Layout

6 Exascale Computing Project

DARMA: Data effects programming embedded in C++ for
handling multi-level, dynamic, or irregular parallelism

Distributed, Asynchronous, Resilient Models for Applications

Programming Model
Example Program

AccessHandl e<i nt > my_dat a;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(29) ;
}) ;

dar ma: : c r eat e_wor k(
 r eads(my_dat a) , [=] {
 cout << my_dat a. get _val ue() ;
 }
) ;

dar ma: : c r eat e_wor k(
 r eads(my_dat a) , [=] {
 cout << my_dat a. get _val ue() ;
 }
) ;

dar ma: : c r eat e_wor k([=] {
 my_dat a. set _val ue(31) ;
}) ;

Modify
my_dat a

Read
my_dat a

Read
my_dat a

Modify
my_dat a

DAG (Directed Acyclic Graph)

These two tasks are concurrent
and can be run in parallel by a
DARMA backend!

Sequential
Semantics

C++ abstraction to capture
data effects in tasks

Library calls for defining
tasks/granularity

7 Exascale Computing Project

The DARMA software stack model

• App-facing frontend
provides programming
abstractions
App-driven co-design

• Translation layer provides
semantics and captures
data effects

• Runtime-facing backend
expresses granularity,
concurrency, locality, etc
Runtime-driven co-design

Current focus: MPI + Kokkos
Previous (and future?) focus:
Charm++, std::threads, HPX

Kokkos can provide intra-task
data parallelism abstractions

8 Exascale Computing Project

Development Timeline

• Load balancing and tasking abstractions

• Using MPI + Kokkos/OpenMP

• DARMA tasks can dispatch Kokkos kernels

• ProxyApp: PIC code

• ProxyApp: MiniMultiScale including Contact

• Dispatch Kokkos GPU kernels

• Data Tiling Specification

• Performance for MiniMultiScale

• Demonstrate capability in real application

• Support Node Partitioning for GPUs

• Remote Memory Spaces

– Initial API + MMap and PGAS implementation

– Potentially MPI OneSided support: Resource Constraint

• Pay down of Technical debt

• ROCm Backend (AMD) maturation

• Tiling data structures and execution

• OpenMP5 Target Backend Functional

• Backend for A21 Intel Architecture

• Mature Backend for A21

2018

2019

DARMA Kokkos

2020

9 Exascale Computing Project

DARMA / Kokkos Integration

• Kokkos provides tools to execute parallel work and manage memory

• DARMA analyzes data flow, determines scheduling order, and facilitates communication

• Goal: Maximize leveraging / minimize duplication

Data Allocation

Data Movement Intra Node

Data Movement Inter Node

Execute Data Parallel Task

Execute Portion of Task Graph

Kokkos::View / Kokkos::alloc

Kokkos::deep_copy

MPI, PGAS, …

Kokkos::parallel_for/reduce/scan

Kokkos::task_spawn

DARMA Kokkos / Communication Layer

10 Exascale Computing Project

Kokkos Project Overview: Goals

• Goal #1: Performance Portability and Productivity Across NGP
– HPC applications and libraries using C++ and intra-node parallelism

– Diverse architectures: multicore CPU, Xeon Phi, NVIDIA GPU, AMD GPU, ...

– R&D for programming model abstractions

– R&D for back-end implementations

– R&D collaborations with labs, vendors, universities, ...

– Supporting ASC/ ATDM and IC applications and libraries

• Goal #2: Influencing ISO/C++ Standards
– Adopt abstractions enabling productivity and performance portability

– Emphasizing broadly applicability and high productivity

11 Exascale Computing Project

DARMA Project Overview: Goals

• Goal #1: Data-centric higher-leveling programming abstractions with
focus on community involvement, best practices, and standards
– Make it possible but not required for runtime to tune granularity, concurrency, operation

order, data movement, and load balancing

– Leverage existing runtime infrastructure wherever possible/feasible

• Kokkos provides knobs for controlling execution

– Emphasis on standards-compliant C++

• Goal #2: Application and results-driven development process
– Design driven by apps and existing/expected productivity/performance bottlenecks

– Identify abstractions and high-level semantics that help compiler or runtime to solve
performance and portability challenges

• Goal #3: Efficient use of both shared and distributed memory
– Hooks for converting shared-memory to distributed-memory tasks created at compile-time

– Load balancing or distributed overheads only incurred at runtime when required

12 Exascale Computing Project

SNL ATDM PMR: Team and Budget

• Kokkos
– Team staffing: Edwards (PI), Trott (acting PI), Sunderland, Ibanez,

Ellingwood, Labreche

– Budget FY18: $1590k

• DARMA
– Team staffing: Wilke (PI), Hollman (C++ lead,Frontend), Borghesi

(Frontend), Lifflander (Backend), Markosyan (Backend, PIC app), Morales
(arrives Jan; Kokkos integration, solid mechanics app)

– Budget FY18 = $1600k

13 Exascale Computing Project

Project Overview: Impact Goals and Metrics

• ECP, ASC ATDM and IC applications using DARMA/Kokkos demonstrate
performance portability and productivity

– Measured through applications’ successes

– Kokkos: Production apps effectively using all HPC node architectures

– DARMA: Demonstrate applicability and potential productivity/performance gains

• Refinement of abstractions to meet applications’ needs

– Enhancements requested by and developed for ASC and ECP applications

• Leverage best programming mechanisms for target architectures

– Kokkos: On-Node e.g., OpenMP4, CUDA9 and ROCm

– DARMA: On-Node (Kokkos or native OpenMP) and Inter-Node (MPI, Charm++, HPX)

• Advocacy for performance portability and productivity abstractions in future
ISO/C++ Standard for HPC

– Enabling proposals identified/developed and shepherded through ISO/C++ committee

14 Exascale Computing Project

Kokkos Project Plan : ECP JIRA Deliverables

• Back-end R&D and external collaborations (STPR04-4)
– Focusing on ATS1/ATS2/ARM; OpenMP4 and CUDA9

– Collaborating with labs, vendors, universities, ISO/C++ standard

• Abstraction R&D for SIMD types and remote memory spaces
(STPR04-5,7)
– Portable, explicit SIMD vectorization because compilers cannot

• Collaboration with 2.3.3.04 SNL ATDM Math Libraries

– Remote memory spaces for one-sided halo-exchange deep copy

• Support for ASC application and project management (STPR04-06)
– Training, consulting, enhancements for ASC ATDM and IC

– Substantial project management load

15 Exascale Computing Project

DARMA Project Plan : ECP JIRA Deliverables

• Milestone STPR04-13: Reliable and stable code base

– Open-source release plan completed with Sandia copyright

– Sandia Jenkins infrastructure configured and linked to GitHub with unit tests for each
individual frontend/backend feature implemented

– To-do: Implement auto-tester/auto-merger, finalize 1.0 release

• Milestone STPR04-15: DARMA-MPI interoperability

– MPI-Compatible components in development (See 04-14)

– To-do: Frontend programming abstractions for DARMA-MPI handoff in development
(Q2), full demonstration (late Q3/early Q4)

• Milestone STPRO4-16: Kokkos interoperability

– Use Kokkos for executing thread-parallel tasks instead of just serial tasks

– Backend prototype complete using Kokkos thread pools/partitioning

– To-do: Finalize abstractions for expressing intra-task parallelism and elasticity

16 Exascale Computing Project

DARMA Project Plan : ECP JIRA Deliverables
STPR04-14: Component-based development

App & Frontend Backend Runtime

CHARM++
Prototype done

MPI
• Active messaging
• Event sequencing
• Collectives
• Task scheduling
• Thread contexts
• Load balancer

• Serialization
• Type registration

• Data effects
capture

• Semantic
analysis

In progress/on
schedule

Prototype
completed

Completed

Pending

Behind schedule

DARMA software
stack model

17 Exascale Computing Project

Kokkos is essential for sustainable, production-quality ASC
applications and libraries on NGPs

• Exascale compute node challenges
– Heterogeneous, diverse, and evolving execution and memory architectures

– Concurrency increasing must faster than memory capacity

– Diversity of “best” programming mechanism (e.g., OpenMP, CUDA) for each architecture

• Performance portable and productive programming model, for C++
– On-node shared memory parallelism with heterogeneous execution and memory

– Productivity via explicit data and task parallel patterns and abstractions for heterogeneous arch.

– Applications can develop and maintain a single source code base for diverse NGPs

– Unique (vs. OpenMP, OpenACC, ...) capability to trivially transform data layout

– Agile research, prototyping, evaluation, development, and deployment of capabilities

• Future-proofing
– Engaged with ISO/C++ to semantically align with future standard

– Collaborating with vendors to anticipate and influence architectures and programming
mechanisms

18 Exascale Computing Project

DARMA provides data-centric programming abstractions
essential for productivity/performance in exascale era

• Data-effects programming makes app developers more productive
– Now: Lower threshold to experiments with tasking, load balancing, code coupling,

resilience

– Future: Mapping applications to fundamentally new architectures, resilience
methods, or even problem domains requires significant code changes for
execution-centric models

• Lack of data-centric models may delay new dynamic or multi-physics
codes
– Instead of desired algorithms, developers settle for algorithms that are ”good

enough”

– Slows pace of algorithmic exploration or adding new physics

• We need robust programming models for the entire exascale era, not
just models good enough to cross the initial exascale threshold

19 Exascale Computing Project

Delivery of Kokkos to Users, since 2015

• Regular releases at github.com/kokkos/kokkos

– First released stand-alone March 2015; BSD 3-clause

• Prior to March 2015 development and release was through Trilinos

– development -> master promotion model with extensive up-stream integration testing

– Nightly multi-architecture and multi-configuration testing of develop branch (using Jenkins)

• Over 200 configurations (Architecture/Compiler/Backend/Options combinations)

– Fully utilizing github pull requests, issue management, and project kanban boards

• User support – ramping up

– Augmented by ECP ST 2.3.1.10 Kokkos Support (starting Jan’2017)

– User guide wiki at github.com/kokkos/kokkos/wiki (released Nov’2017, previously as PDF)

– Slack channel at kokkosteam.slack.com (currently underutilized)

– Many tutorials, hackathons, and bootcamps for ASC, ECP, at conferences, with collaborators

– More than 250 developers attended some form of Kokkos Tutorial

20 Exascale Computing Project

Delivery of DARMA to Users (Feb 2018)

• First public release at ECP all-hands meeting in Feb 2018
– Open-source copyright process completed with Sandia-modified BSD-3 license
– Spack packages to follow
– API preservation across minor release numbers

• Documentation and user-support through GitHub repository
– Wiki with documentation (PDF manuals in releases)
– Issue tracker and mailing list for user questions
– Regular DARMA Skype/BlueJeans help sessions to discuss open issues

following 1.0 release

• Feature/Devel/Master branch model for repository
– Pull requests accepted into Devel after Jenkins tests
– Devel tested nightly on Jenkins
– Master/Devel merge at regular intervals after consistent nightlies

21 Exascale Computing Project

Kokkos progress toward goals; FY17 highlights

• Deployed production portable task-dag capabilities (micro-tasking)
– Dynamic heterogeneous task-dag; used in Tacho sparse matrix factorization

– Static homogeneous work-dag; used in LANL Tycho2 neutral particle transport via sweeps mini-app

– Thread scalable memory pool

• Deployed production support for “macro tasking” / resource management
– Coarse grain, long duration splitting and management of CPU threads

– Fully interoperable with OpenMP

– Integrated into Uintah @ U-Utah, publication in progress

• Application-driven enhancements

– Dynamic rank multidimensional array view

– Multidimensional parallel range policy (~OpenMP loop collapse)

• ISO/C++ Standard engagement
– Championed “lambda-capture-*this” in C++17 and CUDA host-device offload

– Hosted November ISO/C++ Standard committee meeting

• Presentations and Tutorials
– PADAL, SC, JOWOG, PSAPP WEST, SIAM CS&E, GPU-Tech

22 Exascale Computing Project

DARMA progress toward goals; FY17 highlights

• Deployed prototype DARMA-compliant stack (Charm++ backend) as part of
successful ASC ATDM L2 milestone

• Initial scalability on Trinity to test load balancing, task
pipelining via problem over-decomposition factor (ODF)

– Identified most critical areas for improvement
for MPI + OpenMP/Kokkos backend

40B particles
3.4B cells
ODF = 4

Trinity (KNL, 131K cores)

ODF=1

ODF=8

23 Exascale Computing Project

Kokkos progress toward impact goals

• Capabilities are being enhanced in response to application needs

– Documented through many enhancement requests closed / release notes

• SNL ASC ATDM and IC C++ applications are “all in”

– Milestones with performance goals using Kokkos for Aria, Empire, Sparta, SPARC, Sierra SM
Contact among others

• Numerous ECP applications using/integrated/exploring/considering (FY17 WBS)
AD-1.2.1.03-LatticeQCD, AD-1.2.1.04 EXAALT, AD-1.2.1.07-ExaWind, AD-1.2.1.08-EXASMR,

AD-1.2.1.09-QMCPACK, AD-1.2.1.10-ExaAM, AD-1.2.1.11-NWChemEx, AD-1.2.1.14-CombustionPele,
AD-1.2.1.20 ExaBiome, AD-1.2.2.01-LANLapp, AD-1.2.2.03a-SNLapp, AD-1.2.2.03b-SNLapp,
AD-1.2.5.3.3-CoPA, AD-1.2.5.3.5-CEED, ST-1.3.1.06-DARMA, ST-1.3.1.10-Legion, ST-1.3.1.11-Parsec,

ST-1.3.2.09-ExaPAPI, ST-1.3.3.01-KokkosKernels, ST-1.3.3.02-TrilinosSolvers,
ST-1.3.3.03a-AgileComponents, ST-1.3.3.03b-DataProp, ST-1.3.3.05-xSDK4ECP, ST-1.3.3.12-FleCSI,
ST-1.3.3.15-ALExa, ST-1.3.4.05-DataWarehouse, ST-1.3.5.05-VTKm, ST-1.3.8.04-AAPS

• ISO/C++: lambda-capture-*this, floating point atomic, atomic reference, multidimensional array, SIMD

• Utilizing SNL Testbeds for early porting and optimization of back-ends

• FY17-18 back-ends: std::threads, OpenMP4, OpenMP4.5, NVIDIA CUDA9, AMD ROCm

24 Exascale Computing Project

DARMA progress toward impact goals

• Applications using/considering DARMA:

– 2.2.5.03 ADNN03-ASC ATDM SNL Application

– 2.2.1.02 ADSE11-NWChemEx

• FY17-18 leveraging infrastructure/vendor-supported libraries:

– Charm++ backend tested at scale

– MPI+OpenMP, std::threads, HPX backends in development

– Engagement with HiHat

• Interoperability being explored with:

– ST-1.3.3.01-KokkosKernels

– ST-1.3.3.02-TrilinosSolvers

– ST-1.3.4.05-DataWarehouse

• Team members active on C++ standards committee

25 Exascale Computing Project

Kokkos relationship with other software

• Comparison to RAJA @ LLNL

– This Kokkos Support project is actively engaging ECP projects with training and support

• Intentionally diversifying usage domains to insure broad applicability of programming model

– Relative to our outward focus, RAJA is inwardly focused on LLNL applications

– RAJA, aided by other LLNL projects, are working to catch up with Kokkos capabilities...

• E.g., LLNL CHAI for heterogeneous memory data management

• Details are in flux / limited information about current development state

– Kokkos has single, holistic programing model strategy

• Comparison to OpenMP, OpenACC, OpenCL, ...

– Language / compiler extensions versus pure C++ library interface

• Kokkos is more agile for prototyping / developing new abstractions

– No multidimensional array (with polymorphic layout); key for performance portability

– Explicit multi-dependence directed acyclic graph of tasks (task-DAG)

– Low overhead work-DAG via CRS graph of dependences

26 Exascale Computing Project

DARMA relationship with other software

• Data-effects programming through standards-compliant C++

– Similar to Legion, but focus there on new Regent language

– HPX also C++-centric, but lacks data-centric abstractions

– RUST language defines similar asynchronous semantics, but new language

• High-level programming abstractions with performance-portable mapping to
architectures

– Similar to FleCSI, but DARMA focus on expressing tasks + data effects while FleCSI is
one-step above as almost a DSL for expressing mesh operations

• Community best practices, standards for (AMT) tasking runtimes

– Beginning engagement with HiHat

– Worked with Open Community Runtime (OCR)

– Participated in various conference groups (Workshops, Panels, BOFs, etc)

27 Exascale Computing Project

Kokkos Risks / Concerns / Issues

• Understaffed / underfunded
– Scaling up user support with growing user base

– Regrets given for R&D of ATDM application requested execution and data tiling
capability

– Publication-worthy R&D going unpublished

• Risk: accumulating technical debt
– Understaffing and high support demands preventing “paying down” technical debt

• Risk: staffing / structure changes
– Project PI is acting line manager, further reducing available technical resources

• Temporary? To-be-determined March’18

– We’re working through the new PMR alignment – so far the results are positive but has
introduced some uncertainty

28 Exascale Computing Project

DARMA Risks / Concerns / Issues

• Application-driven design requires buy-in from app and performance analysis teams
– Many app teams driven by short-term priorities for 2019 and 2020

– Lacking a list of “diagnosed performance bottlenecks” from performance analysis teams

– Application space is moving target

• Staffing
– Highly specialized compiler/runtime/C++ knowledge required for implementing DARMA libraries

• Compiler support for C++11/14
– C++11 required (and a few C++14 features)

– Nominally supported by older compiler versions, but DARMA has exposed internal compiler bugs

– There exist Clang/GCC/ICC versions that work, but may not be versions apps teams want

• Demonstrating incremental value when full payoff potentially not realized until after first
exascale machines delivered
– DARMA likely not critical to cross exascale threshold; needed for exascale era

– Management changes (within Sandia and ECP) can change risk tolerance and focus

– On-node performance optimization may shift more performance bottlenecks into DARMA domain –
application space is moving target

