December 2017 ECP ST PrOject Review SAND2017- 13792PE
ECP Project WBS 2.3.1.04 : SNL ATDM PMR

Kokkos Research & Development
DARMA Research & Development

SNL ATDM PMR PM: Robert Clay

Kokkos PI: H. Carter Edwards; acting PI: Christian Trott
DARMA PI. Jeremiah Wilke

Date: December 20, 2017

=

EXASCALE COMPUTING PROJECT

&5 W, 1.S. DEPARTHMENT OF

S@memw

SNL ATDM PMR Overview
C++ Abstractions to isolate applications from HPC HW and RT diversity

el Gt Gy © GE
K2

WAL ikh I __ A®

ORNL Summit LANL/SNL Trinity ANL Aurora21
IBM Power9 / NVIDIA Volta Intel Haswell / Intel KNL Intel unannounced Novel Architecture

—\‘\C\ SETRE

2 Exascale Computing Project

SNL ATDM PMR Overview

DARMA
Research and Prototyping
 Implicit data-effects task-parallel programming

Developer Execution

©a wmfl

))
/

Scheduler

-2

 Goals:

More productive app development
Implicit communication, load balancing

Exploit data utilization knowledge for more
effective work scheduling

Efficient use of both shared and distributed
memory

3 Exascale Computing Project

Kokkos

Production Growth

« Explicit data and task parallel programming for
hierarchical and heterogeneous architectures

View<int**, Host> J
View<int**, HBM>

B Tadhoe
TaskSingle(sched),k1)
:] parallel_for(
RangePolicy<OpenMP>(0,N),k1)

« Goals:
— Performance portability over hardware architectures

— Delivering well established, productive abstractions
for explicit parallelism

— Provide high quality implementation for production
applications

Sy \
\ ’ EXASCALE
(E COMPUTING
S— \ PROJECT
g

Kokkos: Mapping Applications to Diverse Node-Architectures

https://qgithub.com/kokkos

Ty
usm—" \ EXASCALE
— () COMPUTING
— \ PROJECT

4 Exascale Computing Project

Kokkos: On-Node Data and Execution Abstractions

Example Memory Layouts:
m AOSOA SIMD transform
l Typedefs to change data Layout

Parallel Traditional C-Layout:

Execution View<float*[3],LayoutRight>
.
Execution Spaces
("Where”) Traditional C-Layout but with SIMDType:

Supports Heterogeneous Execution View<SIMDfloat*[3],LayoutRight>

Execution Patterns

(“How”)

parallel_for/reduce/scan task_spaanieW the SIMD data as simple scalar:

Execution View<float*[3],LayoutSIMDRight>
Policies

- Range, Team’ Task_Dag

- Dynamic / Static Scheduling

- upport non-persistent (\) EXASCALE
' j S PROJECT
5 Exascale Computing Project scratch-pads \\@ ’E 1

Access Intent and Behavior
Stream, Random, Atomic

DARMA: Data effects programming embedded in C++ for
handling multi-level, dynamic, or irregular parallelism

C++ abstraction to capture .
data effects in tasks Programm'ng Model

Example Program DAG (Directed Acyclic Graph)
AccessHandl e<i nt > my_dat a; Modify

i ini darma: : create_work([=]{ my_dat a
Library calls folr defining ot o ot Tval us(29):
tasks/granularity 1) a AN
Read Read
darma: : creat e_wor k(Semantics my_dat a ny_dat a
cout << rry_d:at a.get _val ue(); %
) AN
) | Modify -’
‘ my_dat a

darma: : creat e_wor k(
reads(my_data), [=]{
cout << ny_data.get val ue();

}

); T hese two tasks are concurrent
darma: :create_work([=]{ and can be run in parallel by a

my_dat a. set _val ue(31); DARMA backend!
1)

Distributed, Asynchronous, Resilient Models for Applications
=(CP g

6 Exascale Computing Project

Kokkos can provide intra-task

The DARMA software stack model data parallelism abstractions

« App-facing frontend
provides programming
abstractions
App-driven co-design

Common API Front End API
across runtimes (Application User)

Translation Layer

« Translation layer provides
semantics and captures
data effects

Common API Back End API
3Cross runtimes (Specification for Runtime)

« Runtime-facing backend
expresses granularity,
concurrency, locality, etc
Runtime-driven co-design

Runtime calls into DARMA to extract
data-task dependencies

~—

Runtime controls construction
OS/Hardware and execution of the DAG

Current focus: MP| + Kokkos
Previous (and future?) focus:
Charm++, std::threads, HPX

\

EXASCALE
@ \ ’E—’ CCIVIPUTI\IE
7 Exascale Computing Project —'—\

Development Timeline

DARMA 2018 Kokkos

» Load balancing and tasking abstractions *_Support Node Partitioning for GPUs

Using MPI + Kokkos/OpenMP
DARMA tasks can dispatch Kokkos kernels

* Remote Memory Spaces
AS implementation

— Inal’ APT

— Potentially MPI OneSided support: Resource Constraint

* ProxyApp: PIC code « Pay down of Technical debt
@m Backend (AMD) maturatiD
2019
* ProxyApp: MiniMultiScale including Contact + Tiling data structures and execution
< Dispatch Kokkos GPU kernels > OpenMP5 Target Backend Functional
* Data Tiling Specification « Backend for A21 Intel Architecture

Ty

(CIP =

PROJECT

« Demonstrate capability in real application

@mance for MiniMUltiSCD 2020 @ture Backend fc@

8 Exascale Computing Project

DARMA / Kokkos Integration

« Kokkos provides tools to execute parallel work and manage memory
« DARMA analyzes data flow, determines scheduling order, and facilitates communication

« Goal: Maximize leveraging / minimize duplication

DARMA Kokkos / Communication Layer
Data Allocation » Kokkos::View / Kokkos::alloc
Data Movement Intra Node » Kokkos::deep_ copy

Data Movement Inter Node » MPI, PGAS, ...

Execute Data Parallel Task > Kokkos::parallel for/reduce/scan
Execute Portion of Task Graph > Kokkos::task spawn

PROJECT

Sy \
....,.,..\(L_\) P e5me

9 Exascale Computing Project

Kokkos Project Overview: Goals

* Goal #1: Performance Portability and Productivity Across NGP
— HPC applications and libraries using C++ and intra-node parallelism
— Diverse architectures: multicore CPU, Xeon Phi, NVIDIA GPU, AMD GPU, ...
— R&D for programming model abstractions
— R&D for back-end implementations
— R&D collaborations with labs, vendors, universities, ...
— Supporting ASC/ ATDM and IC applications and libraries

* Goal #2: Influencing ISO/C++ Standards

— Adopt abstractions enabling productivity and performance portability
— Emphasizing broadly applicability and high productivity

Ty
r— ' \ EXASCALE
—— () COMPUTING
— \ PROJECT

10 Exascale Computing Project

DARMA Project Overview: Goals

« Goal #1: Data-centric higher-leveling programming abstractions with
focus on community involvement, best practices, and standards

— Make it possible but not required for runtime to tune granularity, concurrency, operation
order, data movement, and load balancing

— Leverage existing runtime infrastructure wherever possible/feasible
« Kokkos provides knobs for controlling execution
— Emphasis on standards-compliant C++

« Goal #2: Application and results-driven development process
— Design driven by apps and existing/expected productivity/performance bottlenecks

— ldentify abstractions and high-level semantics that help compiler or runtime to solve
performance and portability challenges

« Goal #3: Efficient use of both shared and distributed memory
— Hooks for converting shared-memory to distributed-memory tasks created at compile-time
— Load balancing or distributed overheads only incurred at runtime when required

PROJECT

Sy \
..._\(L_\) P e5me

11 Exascale Computing Project

SNL ATDM PMR: Team and Budget

 Kokkos

— Team staffing: Edwards (Pl), Trott (acting Pl), Sunderland, Ibanez,
Ellingwood, Labreche

— Budget FY18: $1590k

 DARMA

— Team staffing: Wilke (PI), Hollman (C++ lead,Frontend), Borghesi
(Frontend), Lifflander (Backend), Markosyan (Backend, PIC app), Morales
(arrives Jan; Kokkos integration, solid mechanics app)

— Budget FY18 = $1600k

Ty
prs— \ EXASCALE
() COMPUTING
— \ PROJECT

12 Exascale Computing Project

Project Overview: Impact Goals and Metrics

« ECP, ASC ATDM and IC applications using DARMA/Kokkos demonstrate
performance portability and productivity

— Measured through applications’ successes
— Kokkos: Production apps effectively using all HPC node architectures
— DARMA: Demonstrate applicability and potential productivity/performance gains

» Refinement of abstractions to meet applications’ needs
— Enhancements requested by and developed for ASC and ECP applications

» Leverage best programming mechanisms for target architectures
— Kokkos: On-Node e.g., OpenMP4, CUDA9 and ROCm
— DARMA: On-Node (Kokkos or native OpenMP) and Inter-Node (MPI, Charm++, HPX)

« Advocacy for performance portability and productivity abstractions in future
ISO/C++ Standard for HPC

— Enabling proposals identified/developed and shepherded through ISO/C++ committee

Ty
pres— \ EXASCALE
() COMPUTING
— \ PROJECT

13 Exascale Computing Project

Kokkos Project Plan : ECP JIRA Deliverables

« Back-end R&D and external collaborations (STPR04-4)
— Focusing on ATS1/ATS2/ARM; OpenMP4 and CUDA9
— Collaborating with labs, vendors, universities, ISO/C++ standard

» Abstraction R&D for SIMD types and remote memory spaces
(STPRO4-5,7)

— Portable, explicit SIMD vectorization because compilers cannot
» Collaboration with 2.3.3.04 SNL ATDM Math Libraries

— Remote memory spaces for one-sided halo-exchange deep copy

« Support for ASC application and project management (STPR04-06)
— Training, consulting, enhancements for ASC ATDM and IC
— Substantial project management load

oy
r— \ EXASCALE
—— () COMPUTING
— \ PROJECT

14 Exascale Computing Project

DARMA Project Plan : ECP JIRA Deliverables

 Milestone STPR04-13: Reliable and stable code base

— Open-source release plan completed with Sandia copyright

— Sandia Jenkins infrastructure configured and linked to GitHub with unit tests for each
individual frontend/backend feature implemented

— To-do: Implement auto-tester/auto-merger, finalize 1.0 release

* Milestone STPR04-15: DARMA-MPI interoperability

— MPI-Compatible components in development (See 04-14)

— To-do: Frontend programming abstractions for DARMA-MPI handoff in development
(Q2), full demonstration (late Q3/early Q4)

* Milestone STPRO4-16: Kokkos interoperability

— Use Kokkos for executing thread-parallel tasks instead of just serial tasks
— Backend prototype complete using Kokkos thread pools/partitioning
— To-do: Finalize abstractions for expressing intra-task parallelism and elasticity

PROJECT

Sy \
......\(l_.\) P 55

15 Exascale Computing Project

DARMA Project Plan : ECP JIRA Deliverables
STPRO04-14: Component-based development

DARMA software
stack model

App & Frontend Backend Runtime

. In progress/on
CHARM++ schedule
Prototype done Prototvpe
B Data effects L MP] . nyt) d
B Serialization . T : complete
capture g tration | ® Active messaging
~ Semantic ype TegIStration | o Event sequencing Completed
analysis B Collectives Pendi
= Task scheduling ending

B Thread contexts
O Load balancer

. Behind schedule

OS/Hardware

\

EXASCALE
@ \ E—-—’ CIIVIPUTNE
16 Exascale Computing Project —\

Kokkos is essential for sustainable, production-quality ASC
applications and libraries on NGPs

« Exascale compute node challenges
— Heterogeneous, diverse, and evolving execution and memory architectures

— Concurrency increasing must faster than memory capacity
— Diversity of “best” programming mechanism (e.g., OpenMP, CUDA) for each architecture

« Performance portable and productive programming model, for C++
— On-node shared memory parallelism with heterogeneous execution and memory
— Productivity via explicit data and task parallel patterns and abstractions for heterogeneous arch.
— Applications can develop and maintain a single source code base for diverse NGPs
— Unique (vs. OpenMP, OpenACC, ...) capability to trivially transform data layout
— Agile research, prototyping, evaluation, development, and deployment of capabilities

 Future-proofing
— Engaged with ISO/C++ to semantically align with future standard

— Collaborating with vendors to anticipate and influence architectures and programming
mechanisms

Sy \
.,.,.,..\(L_\) P e5me

PROJECT

17 Exascale Computing Project

DARMA provides data-centric programming abstractions
essential for productivity/performance in exascale era

« Data-effects programming makes app developers more productive

— Now: Lower threshold to experiments with tasking, load balancing, code coupling,
resilience

— Future: Mapping applications to fundamentally new architectures, resilience
methods, or even problem domains requires significant code changes for
execution-centric models

 Lack of data-centric models may delay new dynamic or multi-physics
codes

— Instead of desired algorithms, developers settle for algorithms that are "good
enough”

— Slows pace of algorithmic exploration or adding new physics

* We need robust programming models for the entire exascale era, not
just models good enough to cross the initial exascale threshold

Ty
r— ' \ EXASCALE
—— () COMPUTING
— \ PROJECT

18 Exascale Computing Project

Delivery of Kokkos to Users, since 2015

« Regular releases at github.com/kokkos/kokkos
— First released stand-alone March 2015; BSD 3-clause
 Prior to March 2015 development and release was through Trilinos
— development -> master promotion model with extensive up-stream integration testing

— Nightly multi-architecture and multi-configuration testing of develop branch (using Jenkins)
« Over 200 configurations (Architecture/Compiler/Backend/Options combinations)

— Fully utilizing github pull requests, issue management, and project kanban boards

« User support — ramping up
— Augmented by ECP ST 2.3.1.10 Kokkos Support (starting Jan’2017)
— User guide wiki at github.com/kokkos/kokkos/wiki (released Nov'2017, previously as PDF)
— Slack channel at kokkosteam.slack.com (currently underutilized)
— Many tutorials, hackathons, and bootcamps for ASC, ECP, at conferences, with collaborators
— More than 250 developers attended some form of Kokkos Tutorial

19 Exascale Computing Project PROJECT

Sy \
..._\(L_\) P e5me

Delivery of DARMA to Users (Feb 2018)

* First public release at ECP all-hands meeting in Feb 2018
— Open-source copyright process completed with Sandia-modified BSD-3 license
— Spack packages to follow
— API preservation across minor release numbers

* Documentation and user-support through GitHub repository
— Wiki with documentation (PDF manuals in releases)
— Issue tracker and mailing list for user questions
— Regular DARMA Skype/BlueJeans help sessions to discuss open issues
following 1.0 release
* Feature/Devel/Master branch model for repository
— Pull requests accepted into Devel after Jenkins tests
— Devel tested nightly on Jenkins
— Master/Devel merge at regular intervals after consistent nightlies

Ty
prs— \ EXASCALE
po—— () COMPUTING
— \ PROJECT

20 Exascale Computing Project

Kokkos progress toward goals; FY17 highlights

— Dynamic heterogeneous task-dag; used in Tacho sparse matrix factorization

Deployed production portable task-dag capabilities (micro-tasking)

— Static homogeneous work-dag; used in LANL Tycho2 neutral particle transport via sweeps mini-app

— Thread scalable memory pool

— Coarse grain, long duration splitting and management of CPU threads

— Fully interoperable with OpenMP

— Integrated into Uintah @ U-Utah, publication in progress
Application-driven enhancements

— Dynamic rank multidimensional array view

— Multidimensional parallel range policy (~OpenMP loop collapse)

ISO/C++ Standard engagement
— Championed “lambda-capture-*this” in C++17 and CUDA host-device offload
— Hosted November ISO/C++ Standard committee meeting

Presentations and Tutorials
— PADAL, SC, JOWOG, PSAPP WEST, SIAM CS&E, GPU-Tech

21 Exascale Computing Project

Deployed production support for “macro tasking” / resource management

=P

EXASCALE
COMPUTING
PROJECT

DARMA progress toward goals; FY17 highlights

» Deployed prototype DARMA-compliant stack (Charm++ backend) as part of
successful ASC ATDM L2 milestone

« Initial scalability on Trinity to test load balancing, task
pipelining via problem over-decomposition factor (ODF)

— ldentified most critical areas for improvement
for MPIl + OpenMP/Kokkos backend

Percentage Utilization

. Data transfer
(send/recv)

Total Wall Time (s)

Trlnlty (KN L, 131K cores) Application 2.159s 2.162s 2.165s 2.168s 2.171s 2.174s 2.178s 2.181s 2.184s
100 — c
work (tasks)

= 90
. -9 80 -

N

200 40B particles g
.~.. 100 |¢l I¢l |J'l li/l 1| | 70

.-
.'.. 34B Ce”S = 0 100 iters LB [ol kot ol n = 60
N g 80 - i “ | | o 50 —

N = i Iy ‘ R

..... ODF - 4 N 70 - Lt i1 0 gy L R L S 40

..... a 1 AT ‘ | | =]
....... 5 60 — | I [8 30 —
~~~~~ © 50 - \ 8 204

..... &0 I A~
........ g 40 = 10 7
1009 __ s e g 30 0

—$— HybridLB . 5 0 2.161s 2.168s 2.175s 2.182s 2.190s 2.197s 2204s 2211s 2218s
L Z
50 —$- Noload Balancer ", T~", .
»
= Ideal  Tn - o M v P \
. . MR .',~ 0.000s 38.950s 77.900s 116.850s 155.800s 194.750s 233.700s 272.650s  311.600s prn— (E\ Eéﬂgﬁﬁrﬁs
32768 65536 131072 — - )
#of C — PROJECT




Kokkos progress toward impact goals

« Capabilities are being enhanced in response to application needs
— Documented through many enhancement requests closed / release notes

« SNL ASC ATDM and IC C++ applications are “all in”

— Milestones with performance goals using Kokkos for Aria, Empire, Sparta, SPARC, Sierra SM
Contact among others

 Numerous ECP applications using/integrated/exploring/considering (FY17 WBS)
AD-1.2.1.03-LatticeQCD, AD-1.2.1.04 EXAALT, AD-1.2.1.07-ExaWind, AD-1.2.1.08-EXASMR,
AD-1.2.1.09-QMCPACK, AD-1.2.1.10-ExaAM, AD-1.2.1.11-NWChemEXx, AD-1.2.1.14-CombustionPele,
AD-1.2.1.20 ExaBiome, AD-1.2.2.01-LANLapp, AD-1.2.2.03a-SNLapp, AD-1.2.2.03b-SNLapp,
AD-1.2.5.3.3-CoPA, AD-1.2.5.3.5-CEED, ST-1.3.1.06-DARMA, ST-1.3.1.10-Legion, ST-1.3.1.11-Parsec,
ST-1.3.2.09-ExaPAPI, ST-1.3.3.01-KokkosKernels, ST-1.3.3.02-TrilinosSolvers,
ST-1.3.3.03a-AgileComponents, ST-1.3.3.03b-DataProp, ST-1.3.3.05-xSDK4ECP, ST-1.3.3.12-FleCSlI,
ST-1.3.3.15-ALExa, ST-1.3.4.05-DataWarehouse, ST-1.3.5.05-VTKm, ST-1.3.8.04-AAPS

» |SO/C++: lambda-capture-*this, floating point atomic, atomic reference, multidimensional array, SIMD
« Utilizing SNL Testbeds for early porting and optimization of back-ends
 FY17-18 back-ends: std::threads, OpenMP4, OpenMP4.5, NVIDIA CUDA9, AMD ROCm

23 Exascale Computing Project PROJECT

Sy \
....\(L_\) P e5me




DARMA progress toward impact goals

» Applications using/considering DARMA:
— 2.2.5.03 ADNNO03-ASC ATDM SNL Application
— 2.2.1.02 ADSE11-NWChemEx

« FY17-18 leveraging infrastructure/vendor-supported libraries:
— Charm++ backend tested at scale
— MPI+OpenMP, std::threads, HPX backends in development
— Engagement with HiHat

* Interoperability being explored with:
— ST-1.3.3.01-KokkosKernels
— ST-1.3.3.02-TrilinosSolvers
— ST-1.3.4.05-DataWarehouse

« Team members active on C++ standards committee

PROJECT

Sy \
_\(l_\) P e5me

24 Exascale Computing Project




Kokkos relationship with other software

« Comparison to RAJA @ LLNL

— This Kokkos Support project is actively engaging ECP projects with training and support
* Intentionally diversifying usage domains to insure broad applicability of programming model
— Relative to our outward focus, RAJA is inwardly focused on LLNL applications
— RAJA, aided by other LLNL projects, are working to catch up with Kokkos capabilities...
« E.g., LLNL CHAI for heterogeneous memory data management
» Details are in flux / limited information about current development state
— Kokkos has single, holistic programing model strategy

« Comparison to OpenMP, OpenACC, OpenCL, ...

— Language / compiler extensions versus pure C++ library interface

« Kokkos is more agile for prototyping / developing new abstractions
— No multidimensional array (with polymorphic layout); key for performance portability
— Explicit multi-dependence directed acyclic graph of tasks (task-DAG)
— Low overhead work-DAG via CRS graph of dependences

PROJECT

Sy \
....,.,..\(L_\) P e5me

25 Exascale Computing Project




DARMA relationship with other software

« Data-effects programming through standards-compliant C++
— Similar to Legion, but focus there on new Regent language
— HPX also C++-centric, but lacks data-centric abstractions
— RUST language defines similar asynchronous semantics, but new language

« High-level programming abstractions with performance-portable mapping to
architectures

— Similar to FleCSI, but DARMA focus on expressing tasks + data effects while FleCSl is
one-step above as almost a DSL for expressing mesh operations

« Community best practices, standards for (AMT) tasking runtimes
— Beginning engagement with HiHat
— Worked with Open Community Runtime (OCR)
— Participated in various conference groups (Workshops, Panels, BOFs, etc)

Ty
r— ' \ EXASCALE
—— ( ) COMPUTING
— \ PROJECT

26 Exascale Computing Project




Kokkos Risks / Concerns / Issues

e Understaffed / underfunded

— Scaling up user support with growing user base

— Regrets given for R&D of ATDM application requested execution and data tiling
capability

— Publication-worthy R&D going unpublished

 Risk: accumulating technical debt
— Understaffing and high support demands preventing “paying down” technical debt

* Risk: staffing / structure changes
— Project Pl is acting line manager, further reducing available technical resources
« Temporary? To-be-determined March’'18

— We're working through the new PMR alignment — so far the results are positive but has
introduced some uncertainty

27 Exascale Computing Project PROJECT

Sy \
..._\(L_\) P e5me




DARMA Risks / Concerns / Issues

Application-driven design requires buy-in from app and performance analysis teams

— Many app teams driven by short-term priorities for 2019 and 2020
— Lacking a list of “diagnosed performance bottlenecks” from performance analysis teams
— Application space is moving target

Staffing

— Highly specialized compiler/runtime/C++ knowledge required for implementing DARMA libraries

Compiler support for C++11/14

— C++11 required (and a few C++14 features)
— Nominally supported by older compiler versions, but DARMA has exposed internal compiler bugs
— There exist Clang/GCC/ICC versions that work, but may not be versions apps teams want

Demonstratin

incremental value when full payoff potentially not realized until after first

exascale machines delivered
— DARMA likely not critical to cross exascale threshold; needed for exascale era
— Management changes (within Sandia and ECP) can change risk tolerance and focus

— On-node performance optimization may shift more performance bottlenecks into DARMA domain —
application space is moving target

28 Exascale Computing Project

=P

EXASCALE
COMPUTING
PROJECT




