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2 Exascale Computing Project

SNL ATDM PMR Overview
C++ Abstractions to isolate applications from HPC HW and RT diversity

DARMA / Kokkos

Scientific 
Libraries

Science 
Applications

….
Engineering 
Applications

ORNL Summit
IBM Power9 / NVIDIA Volta

LANL/SNL Trinity
Intel Haswell / Intel KNL

ANL Aurora21
Intel unannounced Novel Architecture
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SNL ATDM PMR Overview

• Implicit data-effects task-parallel programming

• Goals:

– More productive app development

– Implicit communication, load balancing

– Exploit data utilization knowledge for more 
effective work scheduling

– Efficient use of both shared and distributed 
memory

DARMA 
Research and Prototyping

• Explicit data and task parallel programming for 
hierarchical and heterogeneous architectures

• Goals:

– Performance portability over hardware architectures

– Delivering well established, productive abstractions 
for explicit parallelism

– Provide high quality implementation for production 
applications

Kokkos
Production Growth
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Kokkos: Mapping Applications to Diverse Node-Architectures
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DDR

HBM

DDRDDR

DDR
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Kokkos

LAMMPS Sierra AlbanyTrilinos

https://github.com/kokkos



5 Exascale Computing Project

Kokkos: On-Node Data and Execution Abstractions

Kokkos

Execution Spaces 
(“Where”)

Execution Patterns 
(“How”)

Execution 
Policies

Supports Heterogeneous ExecutionSupports Heterogeneous Execution

parallel_for/reduce/scan task_spawnparallel_for/reduce/scan task_spawn

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent 

scratch-pads

- Range, Team, Task-Dag
- Dynamic / Static Scheduling
- Support non-persistent 

scratch-pads

Memory Spaces 
(“Where”)

Memory Layouts 
(“How”)

Memory 
Traits

Access Intent and Behavior 
Stream, Random, Atomic
Access Intent and Behavior 
Stream, Random, Atomic

Execution
Parallel 

Execution
Data Structures Traditional C-Layout:

View<float*[3],LayoutRight>

Traditional C-Layout but with SIMDType:

View<SIMDfloat*[3],LayoutRight>

View the SIMD data as simple scalar:

View<float*[3],LayoutSIMDRight>

x y z x y z x y z x y z

x y zx y z x y zx y z

xx yy zz xx yy zz

Example Memory Layouts:
AOSOA SIMD transform
Typedefs to change data Layout
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DARMA: Data effects programming embedded in C++ for 
handling multi-level, dynamic, or irregular parallelism

Distributed, Asynchronous, Resilient Models for Applications

Programming Model
Example Program

AccessHandl e<i nt > my_dat a;

dar ma: : c r eat e_wor k( [ =] {
  my_dat a. set _val ue( 29) ;
} ) ;

dar ma: : c r eat e_wor k(
  r eads( my_dat a) ,  [ =] {
    cout  << my_dat a. get _val ue( ) ;
  }
) ;

dar ma: : c r eat e_wor k(
  r eads( my_dat a) ,  [ =] {
    cout  << my_dat a. get _val ue( ) ;
  }
) ;

dar ma: : c r eat e_wor k( [ =] {
  my_dat a. set _val ue( 31) ;
} ) ;

Modify
my_dat a

Read
my_dat a

Read
my_dat a

Modify
my_dat a

DAG (Directed Acyclic Graph) 

These two tasks are concurrent
and can be run in parallel by a 
DARMA backend!

Sequential
Semantics

C++ abstraction to capture 
data effects in tasks

Library calls for defining 
tasks/granularity
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The DARMA software stack model

• App-facing frontend 
provides programming 
abstractions
App-driven co-design

• Translation layer provides 
semantics and captures 
data effects

• Runtime-facing backend 
expresses granularity, 
concurrency, locality, etc
Runtime-driven co-design

Current focus: MPI + Kokkos
Previous (and future?) focus:
Charm++, std::threads, HPX

Kokkos can provide intra-task 
data parallelism abstractions
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Development Timeline

• Load balancing and tasking abstractions

• Using MPI + Kokkos/OpenMP

• DARMA tasks can dispatch Kokkos kernels

• ProxyApp: PIC code

• ProxyApp: MiniMultiScale including Contact

• Dispatch Kokkos GPU kernels

• Data Tiling Specification

• Performance for MiniMultiScale

• Demonstrate capability in real application

• Support Node Partitioning for GPUs

• Remote Memory Spaces

– Initial API + MMap and PGAS implementation

– Potentially MPI OneSided support: Resource Constraint

• Pay down of Technical debt

• ROCm Backend (AMD) maturation

• Tiling data structures and execution

• OpenMP5 Target Backend Functional

• Backend for A21 Intel Architecture 

• Mature Backend for A21

2018

2019

DARMA Kokkos

2020
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DARMA / Kokkos Integration

• Kokkos provides tools to execute parallel work and manage memory

• DARMA analyzes data flow, determines scheduling order, and facilitates communication

• Goal: Maximize leveraging / minimize duplication

Data Allocation

Data Movement Intra Node

Data Movement Inter Node

Execute Data Parallel Task

Execute Portion of Task Graph

Kokkos::View / Kokkos::alloc

Kokkos::deep_copy

MPI, PGAS, …

Kokkos::parallel_for/reduce/scan

Kokkos::task_spawn

DARMA Kokkos / Communication Layer
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Kokkos Project Overview: Goals

• Goal #1: Performance Portability and Productivity Across NGP
– HPC applications and libraries using C++ and intra-node parallelism

– Diverse architectures: multicore CPU, Xeon Phi, NVIDIA GPU, AMD GPU, ...

– R&D for programming model abstractions

– R&D for back-end implementations

– R&D collaborations with labs, vendors, universities, ...

– Supporting ASC/ ATDM and IC applications and libraries

• Goal #2: Influencing ISO/C++ Standards 
– Adopt abstractions enabling productivity and performance portability

– Emphasizing broadly applicability and high productivity
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DARMA Project Overview: Goals

• Goal #1: Data-centric higher-leveling programming abstractions with 
focus on community involvement, best practices, and standards
– Make it possible but not required for runtime to tune granularity, concurrency, operation 

order, data movement, and load balancing

– Leverage existing runtime infrastructure wherever possible/feasible

• Kokkos provides knobs for controlling execution 

– Emphasis on standards-compliant C++

• Goal #2: Application and results-driven development process
– Design driven by apps and existing/expected productivity/performance bottlenecks

– Identify abstractions and high-level semantics that help compiler or runtime to solve 
performance and portability challenges 

• Goal #3: Efficient use of both shared and distributed memory
– Hooks for converting shared-memory to distributed-memory tasks created at compile-time

– Load balancing or distributed overheads only incurred at runtime when required
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SNL ATDM PMR: Team and Budget

• Kokkos 
– Team staffing: Edwards (PI), Trott (acting PI), Sunderland, Ibanez, 

Ellingwood, Labreche

– Budget FY18: $1590k

• DARMA 
– Team staffing: Wilke (PI), Hollman (C++ lead,Frontend), Borghesi 

(Frontend), Lifflander (Backend), Markosyan (Backend, PIC app), Morales 
(arrives Jan; Kokkos integration, solid mechanics app)

– Budget FY18 = $1600k
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Project Overview: Impact Goals and Metrics

• ECP, ASC ATDM and IC applications using DARMA/Kokkos demonstrate 
performance portability and productivity 

– Measured through applications’ successes

– Kokkos: Production apps effectively using all HPC node architectures

– DARMA: Demonstrate applicability and potential productivity/performance gains  

• Refinement of abstractions to meet applications’ needs

– Enhancements requested by and developed for ASC and ECP applications

• Leverage best programming mechanisms for target architectures

– Kokkos: On-Node e.g., OpenMP4, CUDA9 and ROCm

– DARMA: On-Node (Kokkos or native OpenMP) and Inter-Node (MPI, Charm++, HPX)

• Advocacy for performance portability and productivity abstractions in future 
ISO/C++ Standard for HPC

– Enabling proposals identified/developed and shepherded through ISO/C++ committee
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Kokkos Project Plan : ECP JIRA Deliverables

• Back-end R&D and external collaborations (STPR04-4)
– Focusing on ATS1/ATS2/ARM; OpenMP4 and CUDA9

– Collaborating with labs, vendors, universities, ISO/C++ standard

• Abstraction R&D for SIMD types and remote memory spaces 
(STPR04-5,7)
– Portable, explicit SIMD vectorization because compilers cannot

• Collaboration with 2.3.3.04 SNL ATDM Math Libraries

– Remote memory spaces for one-sided halo-exchange deep copy

• Support for ASC application and project management (STPR04-06)
– Training, consulting, enhancements for ASC ATDM and IC

– Substantial project management load
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DARMA Project Plan : ECP JIRA Deliverables

• Milestone STPR04-13: Reliable and stable code base

– Open-source release plan completed with Sandia copyright

– Sandia Jenkins infrastructure configured and linked to GitHub with unit tests for each 
individual frontend/backend feature implemented

– To-do: Implement auto-tester/auto-merger, finalize 1.0 release

• Milestone STPR04-15: DARMA-MPI interoperability

– MPI-Compatible components in development (See 04-14)

– To-do: Frontend programming abstractions for DARMA-MPI handoff in development 
(Q2), full demonstration (late Q3/early Q4)

• Milestone STPRO4-16: Kokkos interoperability 

– Use Kokkos for executing thread-parallel tasks instead of just serial tasks

– Backend prototype complete using Kokkos thread pools/partitioning

– To-do: Finalize abstractions for expressing intra-task parallelism and elasticity
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DARMA Project Plan : ECP JIRA Deliverables
STPR04-14: Component-based development

App & Frontend Backend Runtime

CHARM++
Prototype done

MPI
• Active messaging
• Event sequencing
• Collectives
• Task scheduling
• Thread contexts
• Load balancer

• Serialization
• Type registration

• Data effects 
capture 

• Semantic 
analysis

In progress/on 
schedule

Prototype
completed

Completed

Pending

Behind schedule

DARMA software 
stack model
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Kokkos is essential for sustainable, production-quality ASC 
applications and libraries on NGPs

• Exascale compute node challenges
– Heterogeneous, diverse, and evolving execution and memory architectures

– Concurrency increasing must faster than memory capacity

– Diversity of “best” programming mechanism (e.g., OpenMP, CUDA) for each architecture

• Performance portable and productive programming model, for C++
– On-node shared memory parallelism with heterogeneous execution and memory

– Productivity via explicit data and task parallel patterns and abstractions for heterogeneous arch.

– Applications can develop and maintain a single source code base for diverse NGPs

– Unique (vs. OpenMP, OpenACC, ...) capability to trivially transform data layout

– Agile research, prototyping, evaluation, development, and deployment of capabilities

• Future-proofing 
– Engaged with ISO/C++ to semantically align with future standard

– Collaborating with vendors to anticipate and influence architectures and programming 
mechanisms  
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DARMA provides data-centric programming abstractions 
essential for productivity/performance in exascale era

• Data-effects programming makes app developers more productive
– Now: Lower threshold to experiments with tasking, load balancing, code coupling, 

resilience

– Future: Mapping applications to fundamentally new architectures, resilience 
methods, or even problem domains requires significant code changes for 
execution-centric models

• Lack of data-centric models may delay new dynamic or multi-physics 
codes 
– Instead of desired algorithms, developers settle for algorithms that are ”good 

enough”

– Slows pace of algorithmic exploration or adding new physics

• We need robust programming models for the entire exascale era, not 
just models good enough to cross the initial exascale threshold
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Delivery of Kokkos to Users, since 2015

• Regular releases at github.com/kokkos/kokkos

– First released stand-alone March 2015; BSD 3-clause

• Prior to March 2015 development and release was through Trilinos

– development -> master promotion model with extensive up-stream integration testing

– Nightly multi-architecture and multi-configuration testing of develop branch (using Jenkins)

• Over 200 configurations (Architecture/Compiler/Backend/Options combinations)

– Fully utilizing github pull requests, issue management, and project kanban boards

• User support – ramping up

– Augmented by ECP ST 2.3.1.10 Kokkos Support (starting Jan’2017)

– User guide wiki at github.com/kokkos/kokkos/wiki (released Nov’2017, previously as PDF)

– Slack channel at kokkosteam.slack.com (currently underutilized)

– Many tutorials, hackathons, and bootcamps for ASC, ECP, at conferences, with collaborators

– More than 250 developers attended some form of Kokkos Tutorial



20 Exascale Computing Project

Delivery of DARMA to Users (Feb 2018)

• First public release at ECP all-hands meeting in Feb 2018
– Open-source copyright process completed with Sandia-modified BSD-3 license
– Spack packages to follow
– API preservation across minor release numbers

• Documentation and user-support through GitHub repository
– Wiki with documentation (PDF manuals in releases)
– Issue tracker and mailing list for user questions
– Regular DARMA Skype/BlueJeans help sessions to discuss open issues 

following 1.0 release

• Feature/Devel/Master branch model for repository
– Pull requests accepted into Devel after Jenkins tests
– Devel tested nightly on Jenkins
– Master/Devel merge at regular intervals after consistent nightlies
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Kokkos progress toward goals; FY17 highlights

• Deployed production portable task-dag capabilities (micro-tasking)
– Dynamic heterogeneous task-dag; used in Tacho sparse matrix factorization

– Static homogeneous work-dag; used in LANL Tycho2 neutral particle transport via sweeps mini-app

– Thread scalable memory pool

• Deployed production support for “macro tasking” / resource management
– Coarse grain, long duration splitting and management of CPU threads

– Fully interoperable with OpenMP

– Integrated into Uintah @ U-Utah, publication in progress

• Application-driven enhancements

– Dynamic rank multidimensional array view

– Multidimensional parallel range policy (~OpenMP loop collapse)

• ISO/C++ Standard engagement
– Championed “lambda-capture-*this” in C++17 and CUDA host-device offload

– Hosted November ISO/C++ Standard committee meeting

• Presentations and Tutorials
– PADAL, SC, JOWOG, PSAPP WEST, SIAM CS&E, GPU-Tech
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DARMA progress toward goals; FY17 highlights

• Deployed prototype DARMA-compliant stack (Charm++ backend) as part of 
successful ASC ATDM L2 milestone 

• Initial scalability on Trinity to test load balancing, task 
pipelining via problem over-decomposition factor (ODF)

– Identified most critical areas for improvement 
for MPI + OpenMP/Kokkos backend

40B particles
3.4B cells
ODF = 4

Trinity (KNL, 131K cores)

ODF=1

ODF=8
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Kokkos progress toward impact goals

• Capabilities are being enhanced in response to application needs

– Documented through many enhancement requests closed / release notes

• SNL ASC ATDM and IC C++ applications are “all in”

– Milestones with performance goals using Kokkos for Aria, Empire, Sparta, SPARC, Sierra SM 
Contact among others

• Numerous ECP applications using/integrated/exploring/considering (FY17 WBS)
AD-1.2.1.03-LatticeQCD, AD-1.2.1.04 EXAALT, AD-1.2.1.07-ExaWind, AD-1.2.1.08-EXASMR, 

AD-1.2.1.09-QMCPACK, AD-1.2.1.10-ExaAM, AD-1.2.1.11-NWChemEx, AD-1.2.1.14-CombustionPele, 
AD-1.2.1.20 ExaBiome, AD-1.2.2.01-LANLapp, AD-1.2.2.03a-SNLapp, AD-1.2.2.03b-SNLapp, 
AD-1.2.5.3.3-CoPA, AD-1.2.5.3.5-CEED, ST-1.3.1.06-DARMA, ST-1.3.1.10-Legion, ST-1.3.1.11-Parsec, 

ST-1.3.2.09-ExaPAPI, ST-1.3.3.01-KokkosKernels, ST-1.3.3.02-TrilinosSolvers, 
ST-1.3.3.03a-AgileComponents, ST-1.3.3.03b-DataProp, ST-1.3.3.05-xSDK4ECP, ST-1.3.3.12-FleCSI, 
ST-1.3.3.15-ALExa, ST-1.3.4.05-DataWarehouse, ST-1.3.5.05-VTKm, ST-1.3.8.04-AAPS

• ISO/C++: lambda-capture-*this, floating point atomic, atomic reference, multidimensional array, SIMD

• Utilizing SNL Testbeds for early porting and optimization of back-ends

• FY17-18 back-ends: std::threads, OpenMP4, OpenMP4.5, NVIDIA CUDA9, AMD ROCm
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DARMA progress toward impact goals

• Applications using/considering DARMA:

– 2.2.5.03 ADNN03-ASC ATDM SNL Application

– 2.2.1.02 ADSE11-NWChemEx

• FY17-18 leveraging infrastructure/vendor-supported libraries:

– Charm++ backend tested at scale

– MPI+OpenMP, std::threads, HPX backends in development

– Engagement with HiHat

• Interoperability being explored with: 

– ST-1.3.3.01-KokkosKernels

– ST-1.3.3.02-TrilinosSolvers

– ST-1.3.4.05-DataWarehouse

• Team members active on C++ standards committee
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Kokkos relationship with other software

• Comparison to RAJA @ LLNL

– This Kokkos Support project is actively engaging ECP projects with training and support

• Intentionally diversifying usage domains to insure broad applicability of programming model

– Relative to our outward focus, RAJA is inwardly focused on LLNL applications

– RAJA, aided by other LLNL projects, are working to catch up with Kokkos capabilities...

• E.g., LLNL CHAI for heterogeneous memory data management

• Details are in flux / limited information about current development state

– Kokkos has single, holistic programing model strategy

• Comparison to OpenMP, OpenACC, OpenCL, ...

– Language / compiler extensions versus pure C++ library interface

• Kokkos is more agile for prototyping / developing new abstractions

– No multidimensional array (with polymorphic layout); key for performance portability

– Explicit multi-dependence directed acyclic graph of tasks (task-DAG)

– Low overhead work-DAG via CRS graph of dependences
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DARMA relationship with other software

• Data-effects programming through standards-compliant C++

– Similar to Legion, but focus there on new Regent language

– HPX also C++-centric, but lacks data-centric abstractions 

– RUST language defines similar asynchronous semantics, but new language

• High-level programming abstractions with performance-portable mapping to 
architectures

– Similar to FleCSI, but DARMA focus on expressing tasks + data effects while FleCSI is 
one-step above as almost a DSL for expressing mesh operations

• Community best practices, standards for (AMT) tasking runtimes

– Beginning engagement with HiHat

– Worked with Open Community Runtime (OCR)

– Participated in various conference groups (Workshops, Panels, BOFs, etc)
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Kokkos Risks / Concerns / Issues

• Understaffed / underfunded 
– Scaling up user support with growing user base

– Regrets given for R&D of ATDM application requested execution and data tiling 
capability

– Publication-worthy R&D going unpublished

• Risk: accumulating technical debt
– Understaffing and high support demands preventing “paying down” technical debt

• Risk: staffing / structure changes
– Project PI is acting line manager, further reducing available technical resources

• Temporary?  To-be-determined March’18

– We’re working through the new PMR alignment – so far the results are positive but has 
introduced some uncertainty
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DARMA Risks / Concerns / Issues

• Application-driven design requires buy-in from app and performance analysis teams  
– Many app teams driven by short-term priorities for 2019 and 2020

– Lacking a list of “diagnosed performance bottlenecks” from performance analysis teams

– Application space is moving target

• Staffing
– Highly specialized compiler/runtime/C++ knowledge required for implementing DARMA libraries

• Compiler support for C++11/14
– C++11 required (and a few C++14 features)

– Nominally supported by older compiler versions, but DARMA has exposed internal compiler bugs

– There exist Clang/GCC/ICC versions that work, but may not be versions apps teams want

• Demonstrating incremental value when full payoff potentially not realized until after first 
exascale machines delivered
– DARMA likely not critical to cross exascale threshold; needed for exascale era

– Management changes (within Sandia and ECP) can change risk tolerance and focus

– On-node performance optimization may shift more performance bottlenecks into DARMA domain –
application space is moving target


