
LLNL-CONF-745526

Evaluation of an Interference-free
Node Allocation Policy on
Fat-tree Clusters

S. D. Pollard, N. Jain, S. Herbein, A. Bhatele

January 31, 2018

International Conference for High Performance Computing,
Networking, Storage and Analysis
Dallas, TX, United States
November 11, 2018 through November 16, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Evaluation of an Interference-free Node Allocation
Policy on Fat-tree Clusters

Samuel D. Pollard∗, Nikhil Jain†, Stephen Herbein‡, Abhinav Bhatele†

∗Computer and Information Science Department, University of Oregon, Eugene, OR 97403
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551

‡Livermore Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551
Email: spollard@cs.uoregon.edu, {nikhil, sherbein, bhatele}@llnl.gov

Abstract—Interference between jobs competing for network
bandwidth on a fat-tree cluster can cause significant variability
and degradation in performance. These performance issues can
be mitigated or completely eliminated if the resource allocation
policy takes the network topology into account when allocating
nodes to jobs. We implement a fat-tree network topology aware
node allocation policy that allocates isolated partitions to jobs in
order to eliminate inter-job interference. We compare the impact
of this node allocation policy to a topology-oblivious policy with
respect to the execution time of individual jobs with different
communication patterns. We also evaluate the cluster’s quality
of service using metrics such as system utilization, schedule
makespan, and job wait time for both policies. The results
obtained for production workloads indicate that a topology-aware
node allocation can provide interference-free execution without
negatively impacting the cluster’s quality of service.

Index Terms—fat-tree, interference, node allocation

I. MOTIVATION

Traditional resource managers typically do not consider the
network topology when allocating nodes to jobs. Since most
supercomputing centers aim to maximize system utilization,
when allocating nodes to a new job in the queue, all currently
available nodes are considered as opposed to topologically
isolated sets of nodes. However, ignoring the underlying
network topology during the node allocation process leads
to significant link sharing and inter-job interference because
network resources are shared by all running jobs on most HPC
systems [1], [2]. Inter-job interference can result in significant
degradation and variability in performance. The degradation
occurs when heavy traffic from some jobs causes congestion
on certain ports/links in the network, and other jobs attempt
to use these ports/links for communication [3], [4].

A dynamic job queue and runtime variations within each
job further make performance degradations variable and un-
predictable. The effect of performance variations is two-fold.
First, arbitrary runtime variations not attributable to the code
itself can increase the difficulty of pinpointing performance
issues in a parallel program. Second, these variations reduce
the accuracy of users’ estimates of the duration of their
jobs, which in turn causes additional strain on resources. For
example, a user underestimating the required runtime of a
job results in that job being killed by the job scheduler, thus
forcing the experiment to be rerun [5].

Historical job queue data (including node allocation infor-
mation) from a fat-tree cluster, Cab, shows that the deployed
resource manager allocates nodes all over the network to
individual jobs and disregards the network topology. We can
get an idea of the compactness (or inversely spread) of node
allocations and in turn, expected inter-job interference by
plotting the average number of hops messages within a job
must travel on the network. This metric is formally defined in
Section IV-C. Figure 1 shows the average pairwise hops for
different jobs submitted to Cab over a two month period in
2014. We observe that average pairwise hops for most jobs are
much higher than the minimum possible, which suggests that
jobs are most likely placed in a scattered manner and suffer
from inter-job interference.

0
1

2
3

4

Job size (number of nodes)

A
ve

ra
ge

 p
ai

rw
is

e
ho

ps

Job placement on Cab using Slurm (Aug−Sep 2014)

(0,9]
(36,45]

(72,81]

(108,117]

(144,153]

(180,189]

(216,225]

(252,261]

Minimum possible hops

Fig. 1: Average hops for most jobs are significantly higher than
the minimum possible, indicating scattered node allocations.
We define one hop as a network link that can appear on
paths of messages of multiple jobs; links connecting nodes
to the switches are not counted. The maximum number of
hops between nodes on Cab is four.

An elegant solution to eliminate inter-job interference is
to allocate partitions (sets of nodes) to each job that are
isolated i.e. do not share any links with other partitions [3],
[6]. This has been implemented on IBM machines with torus
networks where n-dimensional prisms can be allocated to a
job. Such solutions can eliminate inter-job interference and

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

improve performance, but may increase system fragmentation
and job wait times. In this paper, we explore the impact of a
similar scheme for creating isolated job partitions on clusters
with fat-tree networks.

Jain et al. describe a set of rules that a topology-aware node
allocation policy can follow to eliminate inter-job interference
on fat-tree networks [6]. However, their work, among others,
does not compare topology-oblivious and topology-aware node
allocation schemes with respect to their impact on a cluster’s
Quality of Service (QoS). We use three metrics to quantify a
cluster’s QoS: system utilization, schedule makespan, and job
wait time (formally defined in Section IV-C). These metrics
together represent the overall efficiency of a cluster and
are important considerations for deploying a node allocation
policy. The general perception is that topology-aware node
allocation policies severely impact a fat-tree cluster’s QoS and
thus limits their adoption in practice.

In this paper, we build upon the rules proposed in [6] to
implement a topology-aware node allocation policy for fat-
tree clusters in an open-source resource manager called Flux,
and compare its efficacy with a topology-oblivious scheme. In
particular, we make the following contributions:
• We implement an interference-free node allocation policy

in the Flux resource management framework.
• We compare the impact of our topology-aware node

allocation policy with a topology-oblivious policy on the
runtime of different types of jobs and overall cluster QoS.

• We identify the scenarios in which a topology-aware
node allocation policy can be deployed in production
without impacting a cluster’s QoS in an effort to break the
perception that such policies are not useful in practice.

II. BACKGROUND

In this section, we provide a brief description of the tools
used in this study: the Flux resource manager, the Flux
simulator, and the TraceR-CODES network simulator.

Flux resource manager: Flux is a relatively new, distributed
resource management system for scheduling jobs and allo-
cating resources to them on HPC machines. Flux provides
versatile support for scheduling jobs centrally, hierarchically or
in a distributed fashion, and supports making decisions based
on many types of resources, including I/O and power [7], [8].
There are three components to job scheduling in Flux:
1. Ordering Policy: This creates an ordering of jobs in the
queue according to a policy based on inputs such as user
priority, historical usage, and resources requested.
2. Resource Selection Policy: This component determines if
enough resources exist to satisfy a job’s requirements, and then
selects the exact resources (nodes) to allocate to or reserve for
the job. This is where the node allocation policy resides.
3. Reservation Policy: This determines whether to allocate
resources now or to reserve resources in the future for a
given job. Example policies that operate on the ordering
generated by the ordering policy are first-come, first-served
(FCFS), conservative backfilling, and EASY backfilling. In

the FCFS scheme, scheduling stops at the first job for which
resources are currently not available. When backfilling is
enabled, resources can be tentatively reserved for jobs that
cannot be currently executed and subsequent jobs can be
scheduled if resources are available for them. In conservative
backfilling, reservation is done for every job in the order they
appear, while in EASY backfilling, the reservation is done only
for one job (the first job that needs it) in the queue.

Our proposed work only affects the second component
(resource selection), where we swap the topology-oblivious
node allocation policy with a topology-aware scheme. This
indicates that our work is compatible with all existing job
ordering and reservation policies. In our evaluations, we order
jobs based on their submission time and schedule jobs with
EASY backfilling as is common in many supercomputing
centers [9].

Flux simulator: Flux also includes a simulation mode that
enables evaluation of new policies without the need for a full
system or real world execution. The simulation mode emulates
the execution of job queue logs from production clusters by
creating a virtual set up for the real world scenario. The
Flux simulator is a discrete-event simulator, which natively
supports job queue logs from the Slurm resource and job
manager [8]. Simulation support in Flux is tightly integrated
with the scheduler itself, which allows us to use the same code
in both simulated and production environments.

TraceR-CODES network simulator: In addition to real-
world tests, we also use packet-level network simulation
capabilities provided by CODES [10] to study the impact
of topology-aware node allocations on the performance of
individual jobs with different communication patterns. The
simulations are driven by TraceR [11], which can replay MPI
traces collected using ScoreP [12] and Adaptive MPI [13].
The multi-job workload simulation feature of TraceR provides
expected runtime for each job executed as part of the workload
on a modeled fat-tree network.

III. DESIGN AND IMPLEMENTATION

We first describe a fat-tree topology, then the design and
implementation of our interference-free topology-aware node
allocation policy as a plugin in Flux.

A. Fat-tree and Inter-job Interference

Large cluster installations that deploy a fat-tree topology
typically use a three-level fat-tree network. Hence, we use
a three-level fat-tree (illustrated in Figure 2) to describe the
topology-aware node allocation algorithm and its implemen-
tation. Fat-tree networks are typically built using commodity
switches with a fixed radix (say r). Each leaf-level or level 1
(L1) switch has r

2 nodes connected to it. The remaining r
2 ports

are used to connect to the second-level (L2) switches. Level
1 (L1) and level 2 (L2) switches are grouped together to form
pods. Each pod has r

2 L1 and r
2 L2 switches forming a bi-

partite all-to-all graph. Half of the ports on each L2 switch are
connected to level 3 (L3) switches (also called core switches).

These connections enable traffic to flow across pods. A cluster
can have a maximum of r pods.

Pod 1 Pod 2

L1 switches

L2 switches

L3 switches

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 2: A fat-tree with a switch radix of six. The numbers un-
derneath the circles indicate node IDs and each color indicates
a different job and its placement on certain nodes (three levels
are used for illustration only; with radix-6 switches, 18 nodes
can be connected using just two levels).

An important property of full bisection fat-tree installations
is that each level of the fat-tree has the same amount of
bandwidth. However, tapered installations are also possible in
which the total bandwidth per level is reduced by using more
links/ports to connect downward than upward. The scheme we
describe in this paper works for both tapered and full bisection
configurations.

Figure 2 demonstrates the potential for interference between
jobs on a fat-tree network. We have three jobs in this example:
red job on nodes 1 and 4; blue job on nodes 2, 3, 5, 10, and
11; and yellow job on nodes 7, 13, and 14. All other nodes
are unoccupied and we assume that within each job, every
node communicates with every other node. In this scenario,
communication of the red job can interfere with that of the
blue job because messages between node 1 and 4, and those
between node 2 and 5 can potentially use the same link
connecting L1 to L2 switches. This arises because routing
policy on fat-trees is typically static and does not change
with the job placement. Adaptive routing could potentially
reduce link sharing but not remove it completely. Hence,
links connecting L1–L2 switches are not dedicated to specific
pairs of source-destination nodes connected to L1 switches.
Similarly, communication from the blue job can also interfere
with that of the yellow job even though those jobs do not share
an L1 switch. This interference can happen at links connecting
L2–L3 switches that enable communication between the two
pods.

In summary, to avoid inter-job interference, a node allo-
cation policy needs to address potential interference at two
levels: links connecting L1–L2 switches and links connecting
L2–L3 switches. Since individual nodes are not shared among
jobs in most HPC clusters, the links connecting nodes to L1
switches cannot be shared by different jobs.

B. Design of an Interference-free Node Allocation Policy

In [6], Jain et al. define the following four rules to ensure
that jobs do not share ports/links on a fat-tree network and
thus do not interfere with one another:

1) A job can be fully allocated within a single leaf (L1)
switch without interfering with other jobs.

2) A job can be fully allocated using all nodes of one or
more switches in a single pod without interfering with
other jobs. This avoids sharing of L1–L2 links because if
jobs do not share L1 switches, they use different L1–L2
links. Also note that such jobs will not use L2–L3 links.

3) A job can be fully allocated using all nodes in all switches
of one or several pods without interfering with other jobs.
This avoids L2–L3 link sharing because if different jobs
do not share pods, they use different L1–L2 and L2–L3
links.

4) If nodes in one or more pods are allocated to multiple
jobs and each job satisfies either condition (1) or (2),
the rest of the nodes can be assigned to one single job
without causing inter-job interference.

We build upon these rules that avoid L1–L2 and L2–L3
link sharing, and derive a practical way to optimize for job
allocations. Assuming a full bisection fat-tree, we propose to
divide incoming jobs into three categories based on their sizes
(number of nodes requested):

• Type 1 (T1): A job that requests fewer than or equal to
r/2 nodes; it can fit on a single leaf switch.

• Type 2 (T2): A job that requests up to (r/2)2 nodes; it
can fit in a single pod but spans multiple switches.

• Type 3 (T3): A job that requests more than (r/2)2 nodes;
it spans multiple pods.

For example, in Figure 2, a job requesting between one and
three nodes is of type T1, a job requesting between four and
nine nodes is of type T2, and one requesting between ten and
eighteen nodes is of type T3. Below, we enumerate the node
allocation policies for each type of job.

T1 job allocation: Based on Rule 1), we always allocate a
T1 job to the nodes of a single L1 switch in order to avoid
its interference with any other job. With this restriction, since
a T1 job only uses node to L1 links, multiple T1 jobs can
be allocated to the nodes of a single L1 switch and a T1 job
can also share an L1 switch with other types of job without
interfering with them.

T2 job allocation: Following Rule 2), we restrict the alloca-
tion of T2 jobs within a pod. This forces T2 jobs to only use
node to L1 and L1–L2 links. Further, we never assign nodes
of an L1 switch to more than one T2 job to avoid sharing of
L1–L2 links. However, we do allow a T2 job to share an L1
switch with multiple T1 jobs as T1 jobs do not use L1–L2
links. Further, multiple T2 jobs can co-exist in a pod if they
use nodes from different L1 switches since then those jobs are
guaranteed to use different L1–L2 links.

T3 job allocation: Although a T3 job is assigned nodes from
multiple pods by definition, based on Rules 3 and 4, we can
not assign nodes of one pod to more than one T3 job. Since a
T3 job can use links at all levels, we cannot assign a T3 job
to the nodes of an L1 switch whose other nodes are already
assigned a T2 job. However, T3 and T2 jobs can co-exist in
a pod if they use nodes from different L1 switches since then
those jobs are guaranteed to use different L1–L2 links. Finally,

Pod 1 Pod 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job types: Red - T1, Yellow - T1, Brown - T2, Blue - T3

Fig. 3: A topology-aware node allocation on a cluster that
eliminates inter-job interference on the links.

Pod 1 Pod 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Job types: Red - T1, Yellow - T1, Brown - T2, Blue - T3

Fig. 4: Topology-oblivious node allocation for the example in
Figure 3. Merely swapping the allocation of two nodes (node
2 and 7) can induce inter-job interference between the red and
brown jobs, and red and blue jobs

T3 jobs can share an L1 switch with T1 jobs as T1 jobs only
use node to L1 links.

An example of a valid, i.e. interference-free, allocation of
jobs is shown in Figure 3. The colors represent the jobs and
their types are listed in the figure. Note here that although the
red and blue jobs share an L1 switch, they do not interfere
since the red job is of type T1 and thus only uses node to L1
links not used by the blue job. Similarly, although the brown
and blue jobs share Pod 1, they do not interfere because the
L1–L2 links these jobs can use are different: the brown job
can only use links from the second and third switch of Pod 1
while the blue job can only use links from the first switch.

In contrast to Figure 3, in Figure 4, the allocation of jobs
to nodes 2 and 7 has been swapped. This swapping leads to
inter-job interference because now the red and brown jobs can
contend for the L1–L2 links in Pod 1, and the red and blue
jobs can also contend for the L1–L2 links in Pod 1.

C. Implementation in Flux

We implement the policy described in the previous section
in version 0.8.0 of the Flux framework (available on Github).
Our plugin is also open source and available at https://github.
com/sampollard/flux-sched/tree/topo. In this paper, we focus
on the EASY backfilling policy for both topology-oblivious
and topology-aware node allocation policies.

As mentioned in Section II, our proposed work only mod-
ifies the resource selection component of Flux for which
the pseudo-code is presented in Algorithm 1. In this plugin,

Algorithm 1 Topology-aware node allocation
Input: job node count N , nodes per L1 switch k, pod size p
Output: allocated nodes S
Maintains: types of jobs allocated to nodes in the system (T1, T2, T3)

1: function RESOURCE ALLOCATION(N , k, p)
2: if N ≤ k then . T1 job
3: return resource allocate small(N)
4: else if N ≤ p then . T2 job
5: return resource allocate medium(N)
6: else . T3 job
7: return resource allocate large(N)

8: function RESOURCE ALLOCATE SMALL(N)
9: S = {}

10: sort pods based on available nodes: least to most available
11: for each pod in the sorted order do
12: sort L1 switches based on available nodes: least to most available
13: for each switch in the sorted order do
14: if N nodes available in the switch then
15: add first N available nodes to S
16: mark type of job for nodes in S to T1
17: return S
18: return NULL

19: function RESOURCE ALLOCATE MEDIUM(N)
20: S = {}
21: sort pods based on available nodes: least to most available
22: for each pod in the sorted order do
23: sort L1 switches with no T2 and T3 jobs based on available nodes:

most to least available
24: for each switch in the sorted order do
25: add first N − |S| available nodes to S
26: if |S| == N then
27: mark type of job for nodes in S to T2
28: return S
29: S = {}
30: return NULL

31: function RESOURCE ALLOCATE LARGE(N)
32: S = {}
33: sort pods without T3 jobs based on available nodes: most to least

available
34: for each pod in the sorted order do
35: sort L1 switches without T2 jobs based on available nodes: most

to least available
36: for each switch in the sorted order do
37: add first N − |S| available nodes to S
38: if |S| == N then
39: mark type of job for nodes in S to T3
40: return S
41: return NULL

the following global state is maintained: the set of available
nodes, type of jobs allocated to each node, and connectivity
of nodes to L1 switches and pods. When the function to
allocate nodes is invoked for a new job, the type of job
(T1, T2, or T3) is determined based on the job’s requested
node count, and one of the three functions is invoked. In
order to reduce fragmentation, we have developed heuristics
to determine more preferred locations when there are multiple
options for where to place a job on the fat-tree topology.

T1 jobs: T1 jobs have the most flexibility due to their small
node count requests. So, we place them in pods and L1
switches with the fewest available nodes (lines 10–13).

T2 jobs: T2 jobs can be placed in any pod as long as they do
not share an L1 switch with other T2 and T3 jobs. Thus, we

https://github.com/sampollard/flux-sched/tree/topo
https://github.com/sampollard/flux-sched/tree/topo

Aug 03 Aug 13 Aug 23 Sep 02

0
50

00
15

00
0

Nodes requested over time (Aug 2014)
N

od
es

 r
eq

ue
st

ed
 /

hr

Sep 02 Sep 12 Sep 22 Oct 02

0
50

00
15

00
0

Nodes requested over time (Sep 2014)

N
od

es
 r

eq
ue

st
ed

 /
hr

Aug 03 Aug 13 Aug 23 Sep 02

0
50

00
15

00
0

Nodes requested over time (Aug−2x)

N
od

es
 r

eq
ue

st
ed

 /
hr

Fig. 5: Nodes requested in different workloads. Bars show the number of nodes requested in every hour during the one-month
periods: significantly more nodes are requested in September. Distribution for other workloads can be found in Appendix A.

10

1000

0 50 100 150 200 250

Number of nodes

N
um

be
r

of
 jo

bs

Distribution of Nodes Requested (Aug 2014)

10

1000

0 50 100 150 200 250

Number of nodes

N
um

be
r

of
 jo

bs

Distribution of Nodes Requested (Sep 2014)

10

1000

0 100 200 300 400 500

Number of nodes

N
um

be
r

of
 jo

bs

Distribution of Nodes Requested (Aug−2x)

Fig. 6: Histograms of the number of jobs binned based on the number of nodes requested. The bin size is one for jobs requesting
1–18 nodes and six elsewhere. Note the logarithmic scale on the y-axis (see Appendix A for other workloads).

prioritize pods with the fewest available nodes in which the
T2 job can fit and not cause interference (line 21). Also, since
T2 jobs interfere with other jobs if they share L1 switches,
we wish to minimize the number of L1 switches they utilize.
Thus, within a pod, we prioritize allocating nodes on switches
with the most available nodes (line 23).
T3 jobs: Because of their large node count, T3 jobs can cause
the most interference. Thus, we prioritize placement on pods
with the most available nodes (line 33). Within a pod, we
prioritize the switches with the most available nodes (line 35).
Note that, for all these selections, we only choose resources
such that inter-job interference is guaranteed not to occur.

IV. EXPERIMENTAL SETUP

In order to evaluate the impact of topology-aware node
allocation on the performance of individual jobs and the
cluster’s overall QoS, we run multi-job workloads on a produc-
tion system and perform simulations, respectively (using the
TraceR-CODES and Flux simulators). The Flux framework is
ideal for our study because it allows us to use existing job
logs from production clusters as input. These can be output
from Slurm through its sacct command.

A. Machines Simulated

We simulate Cab, a production cluster at Lawrence Liver-
more National Laboratory with 1,296 nodes. We obtain the
precise network topology for Cab from the system adminis-
trators and provide it as an input to the Flux simulator. Cab is
a three-level fat-tree with 36-port switches. At the leaf level,
18 nodes are connected to each L1 switch. 18 L1 switches
connect to 18 L2 switches to construct a pod. On Cab, there
are four such pods, which are connected to each other by 36

L3 switches. We simulate another similar system, Pinot, which
is also a three-level fat-tree with 36-port switches but has twice
as many nodes and pods as Cab.

B. Description of Job Logs

We obtained three workloads (job logs) from Cab, one each
from the months of August, September, and November in
2014. These logs contain information recorded by the resource
manager about each submitted job including nodes requested,
allocated, start time, end time, etc. The logs do not contain
information about the application/code being run in the batch
jobs or their communication patterns. Job logs from Cab
represent a capacity-style workload in which jobs are limited
to 256 nodes of the total 1,296, and runtime is limited to 24
hours for individual jobs.

Since the 256 node limit on job sizes on Cab is lower than
the number of nodes in one pod (i.e. no T3 jobs), we also
study workloads derived from these months by doubling the
number of nodes requested by every job. Aug-2x and Nov-2x
represent workloads created by doubling the nodes requested
by each job in August and November, respectively. We also
created an Aug-3x workload by tripling the nodes requested
by each job in August. As we will see next, since September
is unusually heavily loaded, we simulated the job logs for the
first 15 days of the September workload only, and did not
create new workloads using it.

Figure 5 shows the total number of nodes requested per
hour in the August, September, and Aug-2x logs. We observe
that there are several local peaks for node requests, mostly
due to the time of the day: more jobs are submitted during
business hours. Further, we see that a much higher number
of nodes were requested in September than in August. For

the month of August, we also found that a Dedicated Access
Time (DAT) session was scheduled, in which the machine was
used by a single user running large jobs. Finally, note that the
distribution for Aug-2x is similar to August, and the height of
each bar for Aug-2x is twice the corresponding bar in August.

Figure 6 shows the distribution of job sizes for the same
logs as above. We observe that a large number of jobs request
very few nodes. Also note that in September, several more
mid-sized (25-100 nodes) jobs were submitted in comparison
to August, but overall, the percentage of small-sized jobs
(1-18 nodes) is much higher in September than in August.
Further, the x-axis range for Aug-2x is twice that of the other
months, and the distribution is stretched to the right compared
to August. Appendix A provides similar distributions for all
workloads used in this paper.

C. Metrics for Comparison

We compare topology-oblivious and topology-aware node
allocation policies using various metrics. The first metric,
average pairwise hops, is a rough estimate of the compactness
of jobs under the two node allocation policies and is an
indicator of the expected improvement in execution time of
jobs due to reduced interference [6], [14]. The remaining
metrics are used to measure the cluster’s quality of service
(QoS).

Average Pairwise Hops (APH) quantifies the compactness
of nodes allocated to a job by calculating the number of links
messages travel through between pairs of nodes in a job. Given
a network topology T , we have an associated function HT ,
which maps a pair of nodes to the number of inter-switch
hops between them. For example, if nodes i and j are in
the same pod but on different switches within the pod, then
HT (i, j) = 2. Specifically, we do not count hops between
nodes and L1 switches because such hops do not contribute
to inter-job interference. Given HT , we compute the average
across all ordered pairs of nodes in a job. Thus, for a job J
that is assigned n nodes, we calculate APH as:

APH (J) =

∑
i6=j HT (i, j)

n× (n− 1)
. (1)

System Utilization is a straightforward metric expressing the
percentage of nodes in a cluster allocated for running jobs at
a given time. In our evaluation, we record utilization every
minute of simulation time. Specifically, it is defined as:

utilizationt =
Nt

N
(2)

where Nt is the number of nodes allocated at time t and
N is the total number of nodes in the cluster. Note that the
utilization of a cluster can be low for two reasons: 1. the job
scheduling algorithm is not able to find suitable nodes for
pending jobs, or 2. not enough jobs are submitted to fill the
cluster’s capacity.

Schedule Makespan is the time interval from when the first
job is submitted to the completion of the last job. This is
a way to quantify the compactness and efficiency of a job

schedule; the job scheduler usually aims to run a given number
of experiments with a minimal makespan. This can be a
challenging metric for real-world job logs since they do not
improve much with better placement policies. In the real-
world, jobs are submitted continually over the entire time
period contained in the logs. For example, in a month-long job
queue log, there will be jobs submitted on day 30 regardless
of how efficiently jobs on the first 29 days were scheduled.
This means our makespan measurements can show limited
improvement for a given log. However, when a significantly
large number of nodes are requested, this metric reflects the
efficiency of a scheme.

Job Wait Time measures the interval between when a job is
submitted and when it starts running. It is defined as:

Twait = Tstart − Tsubmit (3)

where Tstart is the time when the job begins execution and
Tsubmit is the time when the job is submitted to the scheduler.
The lower the wait time, the better it is for the users.

Utilization and job wait time can be correlated. For instance,
increasing utilization typically decreases wait time. There
also exists a potential trade-off between these metrics and
APH. On the one hand, delaying the execution of a job to
wait for an interference-free allocation (i.e., lower APH) can
increase the job’s wait time. On the other hand, the lower APH
allocation can reduce network interference experienced by
the application, thereby improving its runtime. If the runtime
speedups outweigh the increased wait time, then the job’s and
workload’s makespan will improve.

V. EVALUATION RESULTS

We now evaluate the impact of the previously described
interference-free node allocation policy on average pairwise
hops, execution time of common HPC communication pat-
terns, and metrics defined in Section IV-C that represent the
QoS of a cluster.

A. Reduction in Network Hops

We first compare the two node allocation policies with
respect to the average pairwise hops (APH) for all jobs in the
queue. We group jobs into bins based on the number of nodes
requested and present the distribution of APH for all jobs in
each bin using bars and whiskers. Figure 7 presents represen-
tative results using the Aug-2x workload simulated on systems
Cab and Pinot. For each bin, the five data points shown are
the minimum, 25th percentile, median, 75th percentile, and
the maximum APH of the distribution for the jobs in that bin.
We observed similar results for all other workloads that were
simulated, and thus only these two representative results are
presented.

On both systems, we observe that the topology-aware node
allocation policy is able to reduce APH for jobs with up to 324
nodes significantly. The maximum APH is less than two for
all jobs with less than 128 nodes, and for jobs with 128–324
nodes, the maximum APH is close to the minimum possible
hops. In contrast, the median APH for the topology-oblivious

0
1

2
3

4

Job size (number of nodes)

Topology−oblivious allocation (Aug−2x on XXX)
A

ve
ra

ge
 p

ai
rw

is
e

ho
ps

(0,18]
(72,90]

(144,162]

(216,234]

(288,306]

(360,378]

(432,450]

(504,522]

Minimum possible hops

0
1

2
3

4

Job size (number of nodes)

Topology−aware allocation (Aug−2x on XXX)

A
ve

ra
ge

 p
ai

rw
is

e
ho

ps

(0,18]
(72,90]

(144,162]

(216,234]

(288,306]

(360,378]

(432,450]

(504,522]

Minimum possible hops

0
1

2
3

4

Job size (number of nodes)

Topology−oblivious allocation (Aug−2x on YYY)

A
ve

ra
ge

 p
ai

rw
is

e
ho

ps

(0,18]
(72,90]

(144,162]

(216,234]

(288,306]

(360,378]

(432,450]

(504,522]

Minimum possible hops

0
1

2
3

4

Job size (number of nodes)

Topology−aware allocation (Aug−2x on YYY)

A
ve

ra
ge

 p
ai

rw
is

e
ho

ps
(0,18]

(72,90]

(144,162]

(216,234]

(288,306]

(360,378]

(432,450]

(504,522]

Minimum possible hops

Fig. 7: Average hops for system Cab (top row) and system Pinot (bottom row). The topology-aware node allocation policy
significantly reduces the average hops, resulting in fewer links on which jobs can interfere on both systems.

policy is higher than the ideal APH. This indicates that for T1
and T2 jobs that can be fit within a pod, the topology-aware
policy finds compact allocations while the topology-oblivious
policy spreads them. We also note that for the topology-
oblivious policy, the APH for these job sizes is typically higher
for the larger system (Pinot). This indicates that the jobs are
more spread out on the larger system, and thus are more likely
to suffer from inter-job interference.

For T3 jobs that span multiple pods (>324 nodes), the APH
is sometimes higher than the ideal APH for the topology-aware
scheme because nodes for such jobs may not be compacted in
the best possible manner across multiple pods if interference-
free execution is guaranteed. Nonetheless, the median APH
of jobs in the topology-aware policy is lower than that in the
topology-oblivious policy, and gets closer to the ideal APH as
the node count increases.

B. Impact on Execution Time of Individual Jobs

Previous work has shown that the execution time of pro-
duction applications reduces when interference-free and/or
topology-aware placements are used on a fat-tree network [4],
[15], [16]. In order to quantify the impact of our interference-
free topology-aware node allocations on the execution time of
individual jobs, we run TraceR-CODES network simulations
as well as real-world multi-job executions on Cab. For these
comparisons, we use proxy applications with four different

HPC communication patterns as described in [6]: structured
near-neighbor communication on a 4D process grid (Stencil),
unstructured near-neighbor communication on a 3D process
grid (Unstr-mesh), random-pairs communication (Pairs), and
sub-communicator based all-to-all communication on a 3D
process grid (Sub-a2a).

Simulation results: For the network simulations, we model
a three-level fat-tree system described in [6], which consists
of 10,648 nodes connected using radix-44 switches arranged
in 22 pods each with 22 switches. We simulate 15 randomly
generated multi-job workloads, each of which consists of
jobs running on 512–4096 nodes (5-40% of the system size).
Each job in these multi-job workloads is randomly assigned
one of the four communication patterns. For jobs performing
structured and unstructured near-neighbor communication, our
multi-job workload simulations predict an average speedup of
1.58× and 1.68× respectively when using an interference-free
node allocation. The speedup obtained for Pairs is only 1.06×,
the lowest among the four patterns. For Sub-a2a, in which
all-to-all is performed along two dimensions, the speedup is
1.14×. The average speedup obtained over all jobs is 1.36×.

Experimental results: We compare the performance impact
of topology-oblivious and topology-aware node allocations on
a production system, Cab with 1,296 nodes under a full-system
reservation. The workloads for these experiments are generated

 0

 0.2

 0.4

 0.6

 0.8

 1

TO TA TA 5% TA 10% TA 20% TA V1 TA V2

U
til
iz
at
io
n

(a) Utilization (August on Cab)

 0

 0.2

 0.4

 0.6

 0.8

 1

TO TA TA 5% TA 10% TA 20% TA V1 TA V2

U
til
iz
at
io
n

(b) Utilization (September on Cab)

 0

 0.2

 0.4

 0.6

 0.8

 1

TO TA TA 5% TA 10% TA 20% TA V1 TA V2

U
til
iz
at
io
n

(c) Utilization (November on Cab)

 0
 0.2
 0.4
 0.6
 0.8

 1

TO TA TA V1 TA V2

U
til
iz
at
io
n

(d) Utilization (Aug-2x on Cab)

 0
 0.2
 0.4
 0.6
 0.8

 1

TO TA TA V1 TA V2

U
til
iz
at
io
n

(e) Utilization (Aug-2x on Pinot)

 0
 0.2
 0.4
 0.6
 0.8

 1

TO TA TA V1 TA V2

U
til
iz
at
io
n

(f) Utilization (Nov-2x on Cab)

 0
 0.2
 0.4
 0.6
 0.8

 1

TO TA TA V1 TA V2

U
til
iz
at
io
n

(g) Utilization (Nov-2x on Pinot)

Fig. 8: Comparing system utilization: a 10% drop is observed because of topology-aware node allocation when the system is
overloaded (e.g. in b, d, f). In other cases, the drop in utilization is due to the lack of jobs available for execution.

by randomly packing jobs of sizes between 4 and 512 nodes
on the entire system. Each job is assigned one of the four
communication patterns listed above, which it repeats in a
for loop. The input parameters are configured so that each
jobs runs for approximately 15 minutes and reports the time
taken per iteration. The same set of workloads are run with
both topology-aware and topology-oblivious policies in order
to compare their performance.

When jobs of all sizes (4–512 nodes) are allowed, a typical
workload generated consists of ∼20 jobs. In this case, we
find that the average speedups for Stencil and Unstr-mesh are
1.26× and 1.14× respectively, with maximum speedups of
1.5× and 1.4× respectively. For Pairs, the mean improvement
is 1.1×, but we also observe performance degradation in some
cases. This is because static routing on fat-tree can adversely
impact performance for some placements, especially when the
communication pattern is sparse. For Sub-a2a, in which all-
to-all is performed along all dimensions, we observe a mean
speedup of 1.55×. Overall, the average speedup over all jobs is
1.3×. These empirical results come close to what we observe
in the simulations above despite the relatively smaller size of
the system Cab and smaller node counts for individual jobs.

If we limit the size of jobs to be between 4 and 128 nodes
(so that more jobs execute simultaneously as is the common
case), we obtain a workload with ∼36 jobs. In this case, the
average speedup over all jobs is 1.35×. The mean speedups
of individual patterns are as follows: Stencil – 1.32×, Unstr-
mesh – 1.29×, Pairs – 1.08×, and Sub-a2a – 1.74×. For the
same workload, when we add idle computation to the jobs
such that the communication time is expected to be around
30% of the total time in interference-free scenarios, the mean
and maximum speedups obtained are 1.08× and 1.31×.

In summary, we find that the performance improvements on
a production system vary significantly not only with the type
of communication pattern, but also with the specific placement
chosen for a workload. However, the expected gains predicted
by the simulations and experiments are similar and significant.

C. Impact on System Utilization

Next, we compare the two placement policies in terms of
their impact on various QoS metrics defined in Section IV-C.
Based on the results described above, we assume that jobs
requesting more than four nodes could expect modest speedups
due to the complete elimination of interference and localiza-
tion of nodes allocated to them. Thus, for topology-aware
allocation, we also conduct simulations with a reduction in
the elapsed time of jobs that requested larger than four nodes
by x% (x = 5, 10, 20).

We also include two scenarios in which the speedups depend
on the job size and a random job categorization. In scenario
called V1, every job is randomly categorized into one of three
speedup ranges: 0%-10%, 0%-20%, and 0%-30%. In V2, jobs
with node count between 5-128 are randomly categorized into
speedup ranges of 0%-10% and 0%-20%, and jobs with node
count above 128 nodes are randomly categorized into speedup
ranges of 0%-10%, 10%-20%, or 10%-30%. Within a speedup
range, the runtimes for jobs are reduced linearly based on
their node counts, i.e., larger jobs receive larger speedups. All
reductions are capped at 512 nodes, i.e., speedups for all jobs
≥ 512 nodes are at the top of the speedup range. This type
of categorization helps us reproduce real-world scenarios in
which different types of jobs are affected differently and the
size of the job impacts the obtained speedup. In summary,
seven different setups are simulated for the datasets: one with
topology-oblivious (TO) allocation, one with topology-aware
(TA) allocation, and five with topology-aware allocation with
different runtime improvements.

Figure 8 compares the topology-oblivious (TO) and
topology-aware (TA) allocation policies in terms of the system
utilization for several combinations of datasets and systems.
Utilization is calculated every minute, and box and whisker
plots are used to show the distribution over the entire simula-
tion. For several scenarios (e.g. August on Cab (a), November
on Cab (c), Aug-2x on Pinot (e)), the utilization for TO and

 0

 200

 400

 600

 800

 1000

 1200

TO TA TA 5% TA 10% TA 20% TA V1 TA V2

M
ak
es
pa
n
(h
rs
)

(a) Makespan for default months

August on Cab
September on Cab
November on Cab

 0

 400

 800

 1200

 1600

TO TA TA V1 TA V2

M
ak
es
pa
n
(h
rs
)

(b) Makespan for other datasets

Aug-2x on Cab
Nov-2x on Cab
Aug-2x on Pinot

Nov-2x on Pinot
Aug-3x on Pinot

Fig. 9: Makespan comparison: topology-aware scheme increases makespan when the system is overloaded, but when the
runtime improvements due to better allocations are considered, the makespan is similar to the topology-oblivious scheme in
most scenarios.

 0

 1

 2

 3

 4

 5

 6

 7

 8

(0, 18] (18, 64] (64, 256] Overall

W
ai
t
tim
e
(h
rs
)

Job size (number of nodes)

Average wait times (August on Cab)

TO
TA

TA 5%
TA 10%
TA 20%
TA V1
TA V2

 0

 50

 100

 150

 200

 250

(0, 18] (18, 64] (64, 324] (324, 771] Overall

W
ai
t
tim
e
(h
rs
)

Job size (number of nodes)

Average wait times (Aug-3x on Pinot)

Fig. 10: Average wait times comparison: with runtime improvements, the wait times for jobs of various sizes are not significantly
higher than the default.

TA are similar. These are the scenarios in which the system is
not overloaded with jobs (as witnessed by <100% utilization
for the topology-oblivious scheme). As a result, even the
topology-aware scheme is able to find the nodes as needed for
incoming jobs and maintain the utilization. For these scenarios,
as we introduce the runtime improvements for jobs in TA 5%,
TA V1, etc., the utilization begins to drop as the jobs begin
to end sooner, and sufficiently large number of jobs are not
available to maintain the utilization.

For the remaining scenarios with overloaded systems (e.g.
September on Cab (b), Aug-2x on Cab (d)), the topology-
aware node allocation scheme results in a ∼ 10% drop in the
system utilization. In these scenarios, even though more jobs
are available, the requirements posed by the topology-aware
scheme prevent newer jobs from beginning execution and thus
leaves a part of the system unused. For such cases, reducing
the runtime of individual jobs does not impact the utilization
as several jobs are waiting to be queued even when some jobs
finish early. Results for simulation of Aug-3x dataset on Pinot
also fall in this category and are similar to the results for Aug-
2x on Cab, thus they are not presented due to lack of space.

D. Impact on Schedule Makespan

Figure 9 compares the makespan metric for the two node
allocation policies with different simulation setups. As ex-
pected, based on the similar utilization results for scenarios
with lighter load such as August on Cab and Nov-2x on Pinot,
the makespan is close to the length of a month (720 hours)
and similar for all schemes. For more loaded scenarios such
as September on Cab and Aug-3x on Pinot, the makespan
increases by up to ∼ 9% for TA if runtime improvements for
individual jobs are not considered. However as the speedups
are introduced, we find that the makespan improves for the TA-
based scenarios and is close to the makespan of the topology-
oblivious scheme in most cases. The worst case scenario is
observed for the half-month simulation of September on Cab,
where use of even TA V1 and TA V2 result in 9% and 4%
longer makespan. We suspect this is because for September,
87% of jobs request less than 18 nodes, and thus are expected
to have minimal speedups for TA V1 and TA V2. In contrast,
for other workloads, less than 80% jobs request fewer than 18
nodes.

Policy TO TA TA V1 TA V2

Aug on Cab .15 .98 .8 .3
Sept on Cab 295 330 327 307
Nov on Cab .01 .41 .31 .10
Aug-2x on Cab 269 322 296 270
Nov-2x on Cab 240 300 266 240
Aug-2x on Pinot .15 1.2 .65 .29
Nov-2x on Pinot .01 .69 .13 .04
Aug-3x on Pinot 110 148 126 103

TABLE I: Comparison of mean wait times (in hours).

E. Impact on Job Wait Time

Job wait time is an important QoS metric from the point of
view of the end user. Figure 10 shows a breakdown of the wait
times by job sizes for two representative scenarios: August on
Cab and Aug-3x on Pinot. The first three/four clusters show
wait times by different job sizes and the last cluster shows the
overall wait times. It is interesting to note that depending on
the system load, the wait time can be as low as a few minutes
(in August) and as high as hundreds of hours (in Aug-3x).
We observe that, on average, jobs have to wait an additional
45 minutes in the August dataset and 38 hours in the Aug-3x
dataset when the topology-aware placement is used as opposed
to the topology-oblivious placement. However, as the runtime
improvements are introduced, the mean wait times for both
the scenarios reduce significantly, in particular for TA V2.

If we look at the breakdown by job size, we observe that the
trends for small-sized jobs (first cluster in the plots) is similar
to the overall trends. This is because small node jobs constitute
the majority of jobs in the system. The wait time increases sig-
nificantly with the job sizes for the topology-aware placement
assuming no speedups. For example 64-256 node jobs have to
wait for almost eight hours with the topology-aware placement
as opposed to 10 minutes with the topology-oblivious policy
(for the August dataset). However, for the 10% and 20%
speedup scenarios, the wait times are comparable or even
smaller with the topology-aware placement. When jobs speed
up by 20%, 64-257 node jobs in the August dataset only wait
for 30 minutes in the queue on average. With TA V2, the wait
times obtained are similar to the scenarios with 10% speedup.

Table I presents the mean wait times over all jobs for all
datasets. As before, we find that in comparison to the topology-
oblivious scheme, the wait times are higher for the topology-
aware scheme. However, the runtime improvements that are
expected due to the use of the topology-aware scheme have
a significant impact on these wait times. For all scenarios
in which the wait time is more than an hour, the wait time
provided by TA V2 is similar. For other scenarios, the wait
time increase is reasonable with the mean wait time increasing
to only 18 minutes in the worst case.

VI. RELATED WORK

Job scheduling has been as a topic of study in its own right
for over twenty years [17]. With the increasing importance of
interconnection networks there is much recent work optimizing
job schedulers for specific topologies, including the 3D and

5D-torus networks [18], [19], [20]. One common approach
the schedulers for tori networks use is to enforce convexity
of any allocation. This causes internal fragmentation within
jobs but ensures jobs have exclusive access to the network
links between their nodes. Another approach is to use a space-
filling curve to map the nD-torus of nodes into a 1D list,
on which the scheduler then performs a contiguous alloca-
tion [21]. This approach does not guarantee a convex allocation
or an interference-free allocation, but the allocated nodes
will be physically close to one another (i.e., high locality).
Slurm provides this approach for 3D tori topologies via the
“topology/3d torus” plugin [22]. Since all of these approaches
leverage unique features of tori, they are not directly applicable
to hierarchical networks like fat-trees.

Many job schedulers do support optimizations for fat-tree
topologies. The Slurm workload manager provides a plugin
for fat tree topologies denoted “topology/tree.” Its general
strategy is to find the smallest sub-tree in which the request
can be satisfied, then select the nodes within that tree using a
best-fit algorithm. Specifically, best-fit allocates nodes subject
to minimizing the number of free nodes between jobs [22].
An approach by Soner and Özturan, AUCSCHED3, builds
on an auctioning strategy which prioritizes contiguous al-
locations within the smallest sub-tree possible but requires
solving an expensive integer programming at each scheduling
interval [23]. Subramoni et al. propose a technique that collects
dynamic congestion data and schedules jobs to minimize
congestion on an InfiniBand cluster [24]. This differs from our
approach because an additional service must be run to measure
congestion while our scheduler relies on the static config-
uration. Despite being topology-aware, these job scheduling
and placement techniques still permit situations where jobs
may interfere with each other. Jokanovic et al. propose “quiet
neighborhoods,” which are virtual blocks of nodes designed to
minimize fragmentation among jobs. For example, since many
jobs request 2n nodes for some n, the scheduler can prevent
16-node partitions from being fragmented between multiple
jobs [3].

Considerable research also exists in exploring topology-
aware mapping of tasks to nodes in resource alloca-
tions [25]. Routing Algorithm-aware Hierarchical Task Map-
ping (RAHTM) maps tasks using not only communication
graphs and network topology but also knowledge of the routing
algorithms [26]. These techniques help ensure better applica-
tion performance within a given resource allocation, but they
were not designed to prevent a topologically poor resource
selection or interference between applications. A project called
PaCMap [27] proposes a topology-aware algorithm which
combines the processes of resource selection and MPI task
mapping.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented an implementation of a
topology-aware node allocation policy for clusters with a fat-
tree network. The topology-aware policy allocates isolated par-
titions for jobs to eliminate inter-job interference completely.

We showed that QoS metrics such as makespan and wait
times increase under this new allocation policy because jobs
might have to wait longer for the right set of nodes. However,
we also found that such a scheme results in better runtime
for proxy applications with common HPC communication
patterns. Assuming modest speedups based on these results,
we found that the negative impact of the proposed topology-
aware policy on both makespan and wait times is neutralized.
Our results also suggest that the topology-aware policy could
provide better QoS if, in comparison to the topology-oblivious
policy, the average performance of jobs improves by more than
10%.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
745526).

REFERENCES

[1] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,” in
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. IEEE Computer Society,
Nov. 2013, LLNL-CONF-635776.

[2] X. Yang, J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan, “Watch
Out for the Bully! Job Interference Study on Dragonfly Network,” in
Supercomputing 2016 (SC’16), Salt Lake City, UT, November 13-18
2016.

[3] A. Jokanovic, J. C. Sancho, G. Rodriguez, A. Lucero, C. Minkenberg,
and J. Labarta, “Quiet neighborhoods: Key to protect job performance
predictability,” in International Parallel and Distributed Processing
Symposium, May 2015.

[4] N. Jain, A. Bhatele, L. Howell, D. Böhme, I. Karlin, E. Leon,
M. Mubarak, N. Wolfe, T. Gamblin, and M. Leininger, “Predicting
the performance impact of different fat-tree configurations,” in
Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’17. IEEE Computer Society, Nov. 2017, lLNL-CONF-736289.
[Online]. Available: http://doi.acm.org/10.1145/3126908.3126967

[5] Y. Fan, P. Rich, W. E. Allcock, M. E. Papka, and Z. Lan,
“Trade-off between prediction accuracy and underestimation rate in job
runtime estimates,” in 2017 IEEE International Conference on Cluster
Computing, ser. Cluster ’17. IEEE, sep 2017. [Online]. Available:
https://doi.org/10.1109%2Fcluster.2017.11

[6] N. Jain, A. Bhatele, X. Ni, T. Gamblin, and L. V. Kale, “Partitioning low-
diameter networks to eliminate inter-job interference,” in Proceedings of
the IEEE International Parallel & Distributed Processing Symposium,
ser. IPDPS ’17. IEEE Computer Society, May 2017, lLNL-CONF-
706801.

[7] D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer,
and M. Schulz, “Flux: A next-generation resource management frame-
work for Large hpc centers,” in Proceedings of the 10th International
Workshop on Scheduling and Resource Management for Parallel and
Distributed Systems, September 2014.

[8] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer, “Scalable I/O-
aware job scheduling for burst buffer enabled HPC clusters,” in Proceed-
ings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC), 2016.

[9] D. A. Lifka, “The ANL/IBM SP scheduling system,” in Job Scheduling
Strategies for Parallel Processing. Springer Berlin Heidelberg,
1995, pp. 295–303. [Online]. Available: https://doi.org/10.1007%
2F3-540-60153-8 35

[10] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling
parallel simulation of large-scale HPC network systems,” IEEE Trans.
Parallel Distrib. Syst., 2016.

[11] N. Jain, A. Bhatele, S. T. White, T. Gamblin, and L. V. Kale, “Evaluating
HPC networks via simulation of parallel workloads,” in Proceedings of
the ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, ser. SC ’16. IEEE Computer
Society, Nov. 2016, LLNL-CONF-690662.

[12] “Score-p user manual,” 2015. [Online]. Available: https://silc.zih.
tu-dresden.de/scorep-current/pdf/scorep.pdf

[13] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Performance Evaluation
of Adaptive MPI,” in Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming 2006, March 2006.

[14] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proceedings of the international
conference on Supercomputing, ser. ICS ’11. New York, NY, USA:
ACM, 2011, pp. 75–84.

[15] A. Jokanovic, G. Rodriguez, J. C. Sancho, and J. Labarta, “Impact of
Inter-application Contention in Current and Future HPC Systems,” in
18th Annual Symposium on High Performance Interconnects (HOTI),
Mountain View, CA, USA, August 18-20 2010.

[16] G. Michelogiannakis, K. Ibrahim, J. Shalf, John anWilke, S. Knight, and
J. Kenny, “Aphid: Hierarchical task placement to enable a tapered fat
tree topology for lower power and cost in hpc networks,” CCGrid 2017
(to appear), 2017.

[17] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, “Theory and practice in parallel job scheduling,” in Workshop
on the Job Scheduling Strategies for Parallel Processing, ser. JSSPP,
1997.

[18] K. Li, M. Malawski, and J. Nabrzyski, “Topology-aware job
allocation in 3d torus-based hpc systems with hard job priority
constraints,” Procedia Computer Science, vol. 108, pp. 515 – 524,
2017, international Conference on Computational Science, ICCS
2017, 12-14 June 2017, Zurich, Switzerland. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050917305100

[19] Z. Zhou, X. Yang, Z. Lan, P. Rich, W. Tang, V. Morozov, and N. Desai,
“Improving batch scheduling on blue gene/q by relaxing 5d torus
network allocation constraints,” in 2015 IEEE International Parallel and
Distributed Processing Symposium, May 2015, pp. 439–448.

[20] J. Enos, G. Bauer, R. Brunner, and S. Islam, “Topology-aware job
scheduling strategies for torus networks,” in Proceedings of the Cray
User Group, 2014.

[21] J. A. Pascual, J. A. Lozano, and J. Miguel-Alonso, “Analyzing the
performance of allocation strategies based on space-filling curves,” in
Workshop on Job Scheduling Strategies for Parallel Processing, 2017,
pp. 232–251.

[22] SchedMD LLC, “Topology guide,” may. [Online]. Available: https:
//slurm.schedmd.com/topology.html

[23] S. Soner and C. Özturan, “Topologically aware job scheduling for
SLURM,” Tech. Rep., 2014. [Online]. Available: http://www.prace-ri.
eu/IMG/pdf/WP180.pdf

[24] H. Subramoni, D. Bureddy, K. Kandalla, K. Schulz, B. Barth, J. Perkins,
M. Arnold, and D. K. Panda, “Design of network topology aware
scheduling services for large infiniband clusters,” in 2013 IEEE Inter-
national Conference on Cluster Computing (CLUSTER), Sept 2013, pp.
1–8.

[25] A. Bhatele, “Automating topology aware mapping for supercomputers,”
Ph.D. dissertation, Dept. of Computer Science, University of Illinois,
Aug. 2010. [Online]. Available: http://hdl.handle.net/2142/16578

[26] A. Abdel-Gawad, M. Thottethodi, and A. Bhatele, “RAHTM: Routing-
algorithm aware hierarchical task mapping,” in Proceedings of the
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’14. IEEE Computer
Society, Nov. 2014, lLNL-CONF-653568. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/SC.2014.32

[27] O. Tuncer, V. J. Leung, and A. K. Coskun, “PaCMap: Topology
mapping of unstructured communication patterns onto non-contiguous
allocations,” in Proceedings of the 29th ACM on International
Conference on Supercomputing, ser. ICS ’15. New York, NY, USA:
ACM, 2015, pp. 37–46. [Online]. Available: http://doi.acm.org/10.1145/
2751205.2751225

http://doi.acm.org/10.1145/3126908.3126967
https://doi.org/10.1109%2Fcluster.2017.11
https://doi.org/10.1007%2F3-540-60153-8_35
https://doi.org/10.1007%2F3-540-60153-8_35
https://silc.zih.tu-dresden.de/scorep-current/pdf/scorep.pdf
https://silc.zih.tu-dresden.de/scorep-current/pdf/scorep.pdf
http://www.sciencedirect.com/science/article/pii/S1877050917305100
https://slurm.schedmd.com/topology.html
https://slurm.schedmd.com/topology.html
http://www.prace-ri.eu/IMG/pdf/WP180.pdf
http://www.prace-ri.eu/IMG/pdf/WP180.pdf
http://hdl.handle.net/2142/16578
http://doi.ieeecomputersociety.org/10.1109/SC.2014.32
http://doi.ieeecomputersociety.org/10.1109/SC.2014.32
http://doi.acm.org/10.1145/2751205.2751225
http://doi.acm.org/10.1145/2751205.2751225

Aug 03 Aug 13 Aug 23 Sep 02

0
50

00
15

00
0

Nodes requested over time (Aug−3x)
N

od
es

 r
eq

ue
st

ed
 /

hr

Nov 01 Nov 11 Nov 21 Dec 01

0
50

00
15

00
0

Nodes requested over time (Nov 2014)

N
od

es
 r

eq
ue

st
ed

 /
hr

Nov 01 Nov 11 Nov 21 Dec 01

0
50

00
15

00
0

Nodes requested over time (Nov−2x)

N
od

es
 r

eq
ue

st
ed

 /
hr

Fig. 11: Nodes requested in different workloads. Bars show the number of nodes requested in every hour during the one-month
periods.

10

1000

0 200 400 600 800

Number of nodes

N
um

be
r

of
 jo

bs

Distribution of Nodes Requested (Aug−3x)

10

1000

0 50 100 150 200 250

Number of nodes

N
um

be
r

of
 jo

bs

Distribution of Nodes Requested (Nov 2014)

10

1000

0 100 200 300 400 500

Number of nodes

N
um

be
r

of
 jo

bs

Distribution of Nodes Requested (Nov−2x)

Fig. 12: Histograms of the number of jobs binned based on the number of nodes requested. The bin size is one for jobs
requesting 1–18 nodes and six elsewhere.

APPENDIX

A. Additional Data on Job Traces

Figure 11 shows the total number of nodes requested per
hour in the Aug-3x, November and Nov-2x logs. Figure 12
shows the distribution of job sizes for the same logs as above.

B. Artifact Description: [Evaluation of an Interference-free
Node Allocation Policy on Fat-tree Clusters]

1) Abstract: In this work, job scheduling has been sim-
ulated for job queue logs collected from system Cab using
the open source Flux framework. These logs will be available
for download from a publicly visible git repository after the
review process. The new interference-free topology-aware job
allocation policy has been implemented in Flux; a link to
the publicly accessible git repository, which contains this
implementation, will be provided after the review process.
The network simulation results for analyzing the impact of
topology-aware placement on specific communication patterns
are obtained using the production version of the TraceR-
CODES simulation framework.

2) Check-list:
• Program: Flux, TraceR-CODES
• Compilation: using default options; compilation options do

not affect the results.
• Data set: job queue logs from August and September 2014

for system Cab; we will release these logs after the review
process. Traces for network simulation are obtained using
publicly available communication-proxy codes.

• Run-time environment: single node Linux; does not affect
the results.

• Hardware: Intel Xeon node; does not affect the results.
• Output: standard output from Flux simulator and TraceR.

• Experiment workflow: simulate job queue logs using default
Flux options; simulate communication traces using TraceR.

• Experiment customization: none.
• Publicly available: yes.

3) How software can be obtained: The Flux plugin de-
veloped as part of this work will be available in a public
git repository. For network simulations, we used the current
production version of TraceR-CODES. Here are the links to
the current production versions of these software.
• https://github.com/flux-framework/flux-core
• https://github.com/flux-framework/flux-sched
• https://github.com/LLNL/tracer
• https://xgitlab.cels.anl.gov/codes/codes
• https://github.com/carothersc/ROSS

4) Hardware dependencies: None.
5) Software dependencies: Flux-core, Flux-sched, TraceR,

CODES, ROSS, MPI.
6) Installation: Standard installation process described in

the documentation of Flux, ROSS, CODES, and TraceR have
been followed.

7) Experiment workflow: The job queue log simulations in
this paper follow a two step workflow:
• Obtain job queue logs for specific time frame by con-

tacting the HPC facility at Lawrence Livermore National
Laboratory, where Cab is hosted.

• For different job placement policies, simulate the job
scheduling using the Flux simulator for the network
configuration of system Cab.

The network simulations performed in this paper also follow
a two step workflow:

https://github.com/flux-framework/flux-core
https://github.com/flux-framework/flux-sched
https://github.com/LLNL/tracer
https://xgitlab.cels.anl.gov/codes/codes
https://github.com/carothersc/ROSS

• Collect traces for the available communication-proxy
codes that are used in the multi-job workload.

• Generate job-mapping using the Flux simulator and pre-
dict runtime using TraceR.

8) Evaluation and expected result: Most of the results
in this paper are based on the job properties output from
Flux simulation: job start time, allocated nodes, wait time,
etc. Other results are based on the timing output from the
simulations performed using TraceR. The users should be able
to use the released logs/traces, and system configuration files
to reproduce them.

