
SANDIA REPORT
SAND2018-14109
Unlimited Release
Printed September 2018

Digital/Analog Cosimulation using
CocoTB and Xyce

Andrew M. Smith, Jackson R. Mayo, Rob Armstrong, Richard Schiek, Pete Sholan-
der, and Ting Mei

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2018-14109
Unlimited Release

Printed September 2018

Digital/Analog Cosimulation using CocoTB
and Xyce

Andrew M. Smith and Robert C. Armstrong
Assured Digital Systems & Computation

Sandia National Laboratories
Livermore, CA 94551-0969

Jackson R. Mayo
Scalable Modeling & Analysis Systems

Sandia National Laboratories
Livermore, CA 94551-0969

Richard Schiek, Pete Sholander, and Ting Mei
Electrical Models and Simulation

Sandia National Laboratories
Albuquerque, NM 87185-1177

Abstract

In this article, we describe a prototype cosimulation framework using Xyce, GHDL
and CocoTB that can be used to analyze digital hardware designs in out-of-nominal
environments. We demonstrate current software methods and inspire future work via
analysis of an open-source encryption core design. Note that this article is meant as a
proof-of-concept to motivate integration of general cosimulation techniques with Xyce,
an open-source circuit simulator.

————————————————————————

3

4

Contents

1 Introduction . 7
2 An example problem: AES encryption core finite state machine 8

2.1 Preprocessing the encryption core . 8
3 GHDL/Xyce Cosimulation Framework. 10

3.1 Setting up the environment . 10
3.2 Setting up a cosimulation project . 12

4 Example analysis of the AES encryption core . 14
4.1 Specifying an upset . 14
4.2 Initializing an analog circuit . 14
4.3 Analyzing the results of a simulation . 15
4.4 Future analysis techniques . 16

References . 18

Figures

1 Flowchart diagram of the controlling logic within the tiny aes AES encryption
core design. 8

2 Synthesized netlist of the tiny AES encryption core controller logic using San-
dia’s CMOS7 target technology. Each node has a digital and analog model
associated with it. “$source” and “$sink” nodes represent inputs and out-
puts to the system respectively. “fsm regx2x” (bottom right) represents the
location of our upset in Section 4. 9

3 Directory structure for a sample CocoTB/Xyce cosimulation project. 13
4 The internal voltages of 100 Xyce simulations of a CMOS7 flip-flop with ran-

domized inputs. Red circles indicate those simulations that resulted in a low
output (digital 0), and blue circles indicate simulations that resulted in a high
output (digital 1). 15

5 Results of cosimulation on the finite state machine of the tiny AES encryption
core. (a) shows the result of a nominal, purely digital simulation. (b) is the
result of applying a photocurrent upset to the flip-flop “fsm regx2x” at 800 ns;
we see that, even though the “key ready” input is not high, the upset causes
the state machine to register as “finished”. (c) shows the analog effect of the
upset on the flip-flop’s output “OUT FSM REGX2X QN”. 17

5

6

1 Introduction

The design of digital systems often begins at a much higher level than the circuit topology
and differential algebraic equations (DAEs) with which Xyce or other analog simulators are
concerned. Typically, the implementation of digital hardware begins in digital program-
ming languages, like VHDL and Verilog, and is tested using digital simulators, like Mentor
Graphics’s ModelSim. Properties about the digital behavior can also be proven using asser-
tion languages such as System Verilog Assertions (SVA) and model checkers like Cadence’s
Jasper or OneSpin. For high level behaviors, these digital tools are often adequate assuming
a nominal environment. However, if we wish to assert that certain design properties hold in
out-of-nominal or adverse environments, we must also consider electrical upsets, which digi-
tal simulators are unable to model. On the other hand, full-system electrical simulations are
likely computationally intractable, especially if a wide variety of upsets needs to be analyzed.

We present a prototype software framework for efficiently analyzing digital systems in the
presence of out-of-nominal environments. This framework allows for the analysis of upsets
in purely digital systems or coupled digital/analog systems. Our approach uses standard
digital design simulators while the design under test (DUT) is in nominal conditions, and
transitions to analog simulation only for the time and location of the upset of interest (UOI).
Several software challenges arise in defining this framework; in this paper, we describe how
we address these challenges using a simple example. Section 2 outlines the example target
design used throughout this article, Section 3 describes how to set up the tools and project
directories for running analog/digital cosimulations, and Section 4 describes current and
future analysis methods of cosimulation results.

7

WAIT_KEY

WAIT_DATA

INITIAL_ROUND

DO_ROUND

FINAL_ROUND

DONE

key_ready=1

key_stable=0

key_stable=0

key_stable=0

key_stable=0

i<NO_ROUNDS

i=NO_ROUNDSkey_stable=0

Figure 1: Flowchart diagram of the controlling logic within the tiny aes AES encryption core
design.

2 An example problem: AES encryption core finite

state machine

To illustrate our software framework and analysis, we use a portion of the tiny aes Advanced
Encryption Standard (AES) core design. VHDL code for this project is available on Open-
Cores [3]. More specifically, we are concerned with the finite state machine in the AES design
that serves as the logic controller for the encryption algorithm. Figure 1 shows the high-level
functionality of this design.

2.1 Preprocessing the encryption core

The tiny aes encryption core is designed in behavioral VHDL, a digital modeling language
with high-level programming constructs, motivated by, but not strictly tied to, its physical
implementation. At this level, testing can be done through simulation, universal verification
methodology (UVM) testing, or more rigorous formal verification through the use of tools
like Jasper or OneSpin. Unless specified explicitly in the design, such tools can describe only
nominal digital behavior. We wish to understand how designs behave in adverse environ-
ments, such as under the influence of a single-event upset. Consequences of such behavior
can be very loosely approximated by modeling one-off bit-flips in digital logic. What is

8

fsm_regx1x

u25

u26

u22u23

u13
u14

round_index_regx1x

u5

u15
u21

u29

u9

u18

u31
u8 u17

u32

u30

u4

round_index_regx3x
round_index_regx2x

round_index_regx0x fsm_regx0x

fsm_regx2x

u7

u6

u3

u19

u27

u28
u20

u11

u10
u12

u24

$sink

u16$source

Figure 2: Synthesized netlist of the tiny AES encryption core controller logic using San-
dia’s CMOS7 target technology. Each node has a digital and analog model associated with
it. “$source” and “$sink” nodes represent inputs and outputs to the system respectively.
“fsm regx2x” (bottom right) represents the location of our upset in Section 4.

missing, however, is the ability to characterize the upset behavior based on the physical
characteristics of the UOI. For this level of fidelity, we require an analog description of what
is happening during an electrical upset. To achieve an analog representation of our digital
model, we must first synthesize the behavioral VHDL into a netlist comprised of gates from
a specified technology. The target technology we use for this example is Sandia’s CMOS7
library, used for many ASICs at Sandia. The CMOS7 library also includes corresponding
analog circuit descriptions for each digital gate (which is common for most target technolo-
gies). The digital netlist resulting from the synthesis process (shown in Figure 2) can also
be used with the digital analysis tools described above, as well as with network-based anal-
ysis methods [6]. We will use both the synthesized netlist and the target technology analog
circuit files to analyze the AES design in our cosimulation framework.

9

3 GHDL/Xyce Cosimulation Framework

We begin describing our cosimulation framework by introducing the external tools used.
For digital simulation, we use the open-source GHDL simulator [2]. We use this simulator
because it is free, and thus easily transferable to other analysts, but other popular simulators
such as ModelSim will also work within this framework. For analog simulation, we use
the Sandia developed Xyce simulator. For cosimulation, we must also have interfaces to
each simulator. This is not trivial, and requires tool support since starting and stopping
simulations whenever values are requested can be costly and lead to incorrect results if
not careful about synchronization. For interfacing with GHDL, we use CocoTB an open-
source automated cosimulation and testbench library [1]. CocoTB is typically used for
generating and running VHDL or Verilog testbenches in Python, and supports a wide range
of popular simulators, including GHDL. For the analog interface, we will use the recently
developed Xyce/Python libraries; as of release 6.10, these libraries ship with Xyce. We will
use Python scripts to manage and synchronize the cosimulation of Xyce and GHDL, since
their corresponding interfaces have Python libraries.

3.1 Setting up the environment

In this section, we walk through how to correctly set up an environment for using our
digital/analog co-simulation framework. This will assume an account on one of Sandia’s
HPC machines; if this is not available, independent installations of Xyce and GCC will be
required.

Installing Python

Python version 2.7.12 is the only tested version for this cosimulator; it is expected that later
versions will work as well. For a stable install, run the following shell commands:

On HPC clusters, ensure you're using GCC v. 6.0.1

module load tce

module load gcc/6.1.0

Install python locally (so far this only works for 2.7.12):

mkdir ~/python

cd ~/python

wget http://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz

tar zxfv Python-2.7.12.tgz

find ~/python -type d | xargs chmod 0755

cd Python-2.7.12

./configure --enable-shared --prefix=\$HOME/python

10

make

make install

Installing GHDL and CocoTB

To checkout and install the latest versions of GHDL and CocoTB, run the following com-
mands:

Install ghdl and cocotb

git clone https://github.com/potentialventures/cocotb

git clone https://github.com/tgingold/ghdl

cd ghdl

./configure --prefix=/usr/local

make

make install

Setting the Xyce/Python environment

Xyce 6.9 is currently deployed on Sandia’s SRN capacity machines with the Xyce/Python
interface libraries (these are also included in independent installations). To load Xyce 6.9
with radiation models (necessary for certain upsets) on the SRN capacity machines, enter:

module load xyce/XyceRad/serial

For setting up the Xyce/Python interface, Sholander, et al. [4] has more information
on how to run the Mixed Signal Interface with Xyce 6.9/6.10 on Sandia High-Performance
Computing (HPC) platforms, including the location of the necessary libraries and some
Python-based examples.

Finalizing the cosimulation environment

Either run or place these environment variable declarations in your $HOME/.bashrc file.
These will ensure that Python and associated libraries are on your path.

#Edit .bashrc for environment variables.

export PATH=$HOME/python/Python-2.7.12:$HOME/python/bin

export PYTHONPATH=$HOME/python/Python-2.7.12

export PYTHON_HOME=$HOME/python/Python-2.7.12

export LD_LIBRARY_PATH=$HOME/python/Python-2.7.12:$LD_LIBRARY_PATH

11

Finally, it may be required to edit one of CocoTB’s makefiles to ensure that the in-
stalled Python libraries are included when simulation projects are built. Go to the ‘make-
files’ directory where CocoTB was installed (if the preceding steps were done in your home
directory, it will be in $HOME/cocotb/makefiles). Using your favorite text editor, open
‘Makefile.inc’ and navigate to the line that begins with ‘export INCLUDES := ...’. Add ‘
-I$(PYTHON HOME)’ to the end of this line. To test out the environment, change directory
to ‘cocotb/examples/dff/tests’ and run:

TOPLEVEL_LANG=vhdl SIM=ghdl make

3.2 Setting up a cosimulation project

While the Xyce/Python interface is a Python library that can be included directly in any
project, CocoTB is a Makefile-based interface that requires a special directory structure and
parameters to run correctly. Figure 3 shows the directory structure used for the tiny AES ex-
periment. The parent directory consists of CocoTB Makefiles (Makefile, Makefile.ghdl, and
Makefile.sim) with project-specific parameters set. It also contains two subdirectories. The
“input” folder contains the entire digital design (aes fsm encrypt no rounds14 coupled.vhd),
the digital component for the upset region (fsm regx2x digital.vhd), the corresponding ana-
log circuit for the upset region (fsm regx2x .cir), a stimulus file that specifies which input
vectors to simulate, and a Bash script (build ghdl.sh) for compiling/synthesizing the digital
design via GHDL. The “sim build” folder is where the VHDL libraries are built and CocoTB
simulation output files are stored.

We refer the reader to our Sandia GitHub repository [5] for how parameters are set for this
project, and recommend the use of this project as a template for other similar projects. Once
your environment is set up according to 3, simply enter ‘make’ from the parent directory to
run the project. Also note that this project is located on a Sandia Official Use Only (OUO)
repository server, so may only be accessed by users with proper permissions.

12

Project Directory

sim build

input

build ghdl.sh

fsm regx2x.cir

fsm regx2x digital.vhd

aes fsm encrypt no rounds14 coupled.vhd

fsm stimulus.csv

Makefile

Makefile.ghdl

Makefile.sim

Figure 3: Directory structure for a sample CocoTB/Xyce cosimulation project.

13

4 Example analysis of the AES encryption core

With the cosimulation project set up, we now wish to run and analyze the state machine
within the tiny AES encryption core design (described in Chapter 2). For this example
experiment, our UOI involves the effect of a photocurrent on an internal flip-flop. We wish
to control the time at which this upset occurs (or, the time that we switch the simulation of
the flip-flop from digital to analog), and measure the effect of the UOI on the entire design.
Our project (set up in Chapter 3) can be run by setting the UOI parameters in config.py
and running the Makefile1.

4.1 Specifying an upset

Specifying the UOI requires defining spatial and temporal parameters. Spatial parameters
include how many gates in the digital design are to be simulated as analog at the time of the
upset. These parameters must be incorporated into the design files in the “input” directory.
For our example, we choose one flip-flop in the tiny AES FSM named “fsm regx2x”, a gate
near the output of the design. Adjusting these parameters can be done in an automated
way, but tools to do so are currently in development and not publicly available. Temporal
parameters of the UOI define the time interval that an analog simulation is active. We call
tstart the time that the analog simulation begins and tend the time it ends. These are specified
in “build.py” and are easily adjustable.

4.2 Initializing an analog circuit

Analog circuits contain more parameters than their digital counterpart. For instance, a
digital model of a gate can be represented by a truth table, while its corresponding analog
model is represented by a network of transistors and potentially complex, nonlinear DAEs.
As a result, initializing an analog circuit from a digital state is non-trivial, since the only
information provided by the digital state is input and output voltage. For CMOS gates,
we performed experiments to see if the analog state can be “learned” from the digital state
in various contexts. Flip-flops in particular can be difficult for this task due to the time-
dependence of the outputs on internal voltages. Figure 4 shows the relationship of internal
voltages in the analog model to the resulting digital output of a CMOS7 flip-flop over 100
Xyce simulations with randomized inputs. Here we see clear-cut patterns corresponding to
digital 1s and 0s at the output. For this particular flip-flop, this means that if we wish to
initialize the output to a digital 1, we initialize all the internal voltages to the values indicated
by the blue dots (and equivalently, the red dots for a digital 0). Similar experiments were
conducted on the other CMOS7 gates present in the tiny AES design with the same results.
Note that these results may be dependent on the target technology and clock speed, so such

1A batch file can easily be written for parameter sweeps, etc., however, we focus on running one instance
for the sake of simplicity

14

Figure 4: The internal voltages of 100 Xyce simulations of a CMOS7 flip-flop with randomized
inputs. Red circles indicate those simulations that resulted in a low output (digital 0), and
blue circles indicate simulations that resulted in a high output (digital 1).

a straightforward approach may not always work. Sensitivity analysis over these parameters
is left for future work.

4.3 Analyzing the results of a simulation

Since a full digital system and an analog component have been simulated in GHDL and Xyce,
respectively, we now have output files corresponding to both. If we examine the “.vcd” file
output by GHDL from the time the UOI was imposed and onwards, we see the digital effect
of the analog upset. Examining the “.prn” file output by Xyce allows us to observe the
analog behavior of the upset.

Figure 5a shows the result of a purely digital simulation with no upset as a baseline for
comparison. Here, the AES FSM goes through a typical cycle of encrypting a key. After
all the good states have been traversed, the state machine outputs a high “finished” signal
to indicate that a full round key has been generated. For validation, equivalent results are
observed when running digital/analog cosimulations nominally (without any upsets) with
several different, independent analog components. We then apply a photocurrent upset on
one of the flip-flops, “fsm regx2x”, at 800 ns. Figure 5b shows the effect of this upset in
the red box. After the first “finished” signal is asserted, the state machine starts to process
another key. However, at 800 ns, the “key ready” de-asserts, which should cause the FSM to
reset. However, we see the upset causes the “finished” signal to pulse high anyways, which

15

could have a negative effect downstream from the encryption core. We examine the analog
effect of the photocurrent in Figure 5c.

4.4 Future analysis techniques

The presented cosimulation techniques exhibit a proof of concept for including analog be-
havior in digital analysis. The task of building a simulation project remains mostly manual
and tedious. Through future software engineering efforts, however, automating most of the
simulation process seems tractable. Automation would allow for sensitivity analysis and un-
certainty quantification to be performed on analog upsets in digital simulation. Capturing
the digital effect of electrical upsets within a design enables more powerful analysis meth-
ods that would otherwise be intractable at the analog level. Formal methods, for instance,
involving the proof of safety and security properties is a difficult task. We can leverage
tools used for formal analysis of discrete systems using the digital projection of analog upset
behavior to prove out-of-nominal properties as well (or at least give confidence bounds for
specific upset scenarios). Demonstrations of this have been shown on small problems, but
more research and development in automating cosimulation and projection methods is still
required.

16

(a)

(b)

(c)

Figure 5: Results of cosimulation on the finite state machine of the tiny AES encryption core.
(a) shows the result of a nominal, purely digital simulation. (b) is the result of applying
a photocurrent upset to the flip-flop “fsm regx2x” at 800 ns; we see that, even though the
“key ready” input is not high, the upset causes the state machine to register as “finished”.
(c) shows the analog effect of the upset on the flip-flop’s output “OUT FSM REGX2X QN”.

17

References

[1] CocoTB. http://potential.ventures/cocotb/, Last accessed on 2018-10-15.

[2] Tristan Gingold. GHDL. http://ghdl.free.fr/, Last accessed on 2018-10-15.

[3] Homer Hsing. Tiny AES. https://opencores.org/project/tiny_aes, Last accessed
on 2018-10-15.

[4] Peter E. Sholander and Richard L. Schiek. Application note: Mixed signal simulation
with Xyce. Technical Report SAND2018-TBD, Sandia National Laboratories, 2018.

[5] Andrew M. Smith. PyCAT FSM. https://gitlab.sandia.gov/amsmith/pycat_FSM,
Last accessed on 2018-10-31.

[6] Andrew M Smith, Jackson R Mayo, Vivian Kammler, Robert C Armstrong, and Yev-
geniy Vorobeychik. Using computational game theory to guide verification and security
in hardware designs. In Hardware Oriented Security and Trust (HOST), 2017 IEEE
International Symposium on, pages 110–115. IEEE, 2017.

18

v1.40

19

20

