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Emphasis	on	Scalable	Methods	for	High-fidelity	UQ	on	HPC

Core UQ Capabilities:
• Sampling methods: MC, LHS, QMC, et al.
• Reliability methods: local (MV, AMV+, FORM, …), 

global (EGRA, GPAIS, POFDarts)
• Stochastic expansion methods: PCE, SC, fn train
• Epistemic methods: interval est., Dempster-Shafer evidence

G(u)

Expected
Improvement

Black box:
Sandia simulation codes
Commercial simulation codes

Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter, 
SIERRA (multiphysics)

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

Model
Parameters

Quantities 
of Interest

Steward Scalable Algorithms within

Common theme across DOE/DOD M&S:
High-fidelity simulations: push forward SOA in computational M&S w/ HPC
à Severe simulation budget constraints (e.g., a handful of runs)
à Significant dimensionality, driven by model complexity (multi-physics,scale)
Compounding effects: mixed uncertainties, rare events, nonsmooth QoI



Emphasis	on	Scalable	Methods	for	High-fidelity	UQ	on	HPC

Core UQ Capabilities:
• Sampling methods: MC, LHS, QMC, et al.
• Reliability methods: local (MV, AMV+, FORM, …), 

global (EGRA, GPAIS, POFDarts)
• Stochastic expansion methods: PCE, SC, fn train
• Epistemic methods: interval est., Dempster-Shafer evidence

G(u)

Expected
Improvement

Black box:
Sandia simulation codes
Commercial simulation codes

Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter, 
SIERRA (multiphysics)

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

Model
Parameters

Quantities 
of Interest

Steward Scalable Algorithms within

Common theme across DOE/DOD M&S:
High-fidelity simulations: push forward SOA in computational M&S w/ HPC
à Severe simulation budget constraints (e.g., a handful of runs)
à Significant dimensionality, driven by model complexity (multi-physics,scale)
Compounding effects: mixed uncertainties, rare events, nonsmooth QoI

Tailor	OUU	approaches	to	exploit	features	of	specific	UQ	algorithms



Optimization Under Uncertainty

min
s.t.

optimize, accounting 
for uncertainty metrics

(using any UQ method)

Input design parameterization
• Design vars may augment uncertain vars in simulation
• Inserted design vars: an optimization design var may be a 

parameter of an uncertain dist, e.g., the mean of a normal

Control response statistics to design for…
…robustness:
min/constrain moments 
μ, σ2, or z(β) range

…reliability:
min/max/constrain p/β
(tail stats, failure)

…combined/other:
Pareto, inversion/model 
calibration under uncertainty
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UQ with Reliability Methods
Mean Value Method

Rough 
statistics

G(u)

MPP search methods
Reliability Index 
Approach (RIA)

Find min dist to G level curve
Used for fwd map z à p/b

Performance Measure
Approach (PMA)

Find min G at b radius
Used for inv map p/b à z

Nataf x à u:

Failure
region



RBDO Algorithms

Bi-level/Nested RBDO
• Constrain RIA z à p/b result
• Constrain PMA p/bà z result

RIA
RBDO

PMA
RBDO

KKT
of MPP

Unilevel RBDO:
• All at once: apply KKT conditions of 

MPP search as equality constraints
• Opt. increases in scale (d,u)
• Requires 2nd-order info for 

derivatives of 1st-order KKT

1st-order 
(also 2nd-order w/ QN)

Sequential/Surrogate-based RBDO:
• Break nesting: iterate between opt & UQ until target is met.

Trust-region surrogate-based approach is non-heuristic.

Analytic Bi-level RBDO
• Analytic reliability sensitivities avoid 

numerical differencing at design level

(1st order)

If d = distr param, then expand



Issues with RBDO

• AMV2+ and FORM converge to 
different MPPs 
(+ and O respectively)

• Issue: high nonlinearity leading to 
multiple legitimate MPP solns.

• Challenge: design optimization 
may tend to seek out regions 
encircled by the failure domain.  
1st-order and even 2nd-order 
probability integrations can 
experience difficulty with this 
degree of nonlinearity.

Insight from parameter study over 3σ uncertain 
variable range for fixed design variables dM*.  
Dashed black line denotes g(x) = Fmin(x) = -5.0.



Stochastic collocation: instead of estimating coefficients for 
known basis functions, form interpolants for known coefficients
• Global:  Lagrange (values) or Hermite (values+derivatives)
• Local:    linear (values) or cubic (values+gradients) splines
• Nodal or Hierarchical interpolants

Sparse interpolants formed using S of tensor interpolants

Stochastic	Expansions:	Polynomial	Chaos	&	Stochastic	Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

using

• Estimate aj using regression or numerical integration:
sampling, tensor quadrature, sparse grids, or cubature

• Tailor expansion form:
– p-refinement: anisotropic tensor/sparse, generalized sparse
– h-refinement: local bases with dimension & local refinement

• Method selection: requirements for fault tolerance, decay, sparsity, error estimation



Slide #10

• Approach 2: PCE/SC over all variables
Moment sensitivity = expectations over x +
differentiation of remaining polynomial in s

Stochastic Sensitivity Analysis
• PCE/SC have convenient analytic features

– Expansions readily differentiated w.r.t. x
– Analytic moment expressions

• Augment w/ nonprobabilistic dimensions s
– Design, epistemic uncertain

• Approach 1: PCE/SC over prob. vars
for each set of nonprobabilistic vars

Moment sensitivity = expectation of response sensitivity
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Stochastic Sensitivity Analysis
• PCE/SC have convenient analytic features

– Expansions readily differentiated w.r.t. x
– Analytic moment expressions

• Augment w/ nonprobabilistic dimensions s
– Design, epistemic uncertain

• Approach 1: PCE/SC over prob. vars
for each set of nonprobabilistic vars
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àAdditional data requirements (dR/ds), but no additional dimensions

à Additional dimensions, but no additional data requirements



PCE-based and SC-based OUU
Reliability: Robustness:Analytic Bi-level: 

• Analytic moment/reliability sensitivities
(avoid numerical derivs. at design level)

• Uncertain or Combined expansions
(b initially based on moment proj)

• 1st-order
• Also QN 

2nd-order 

Sequential/Surrogate-based:
• Break nesting: iterate between opt & UQ w/ (surrogate) linkage
• Uncertain expansions

TR-SBO with local 
data fit & multifidelity

Multifidelity (focused on UQ fidelity):
• Optimize corrected LF UQ model over TR

• LF = Combined expansion (over s), MVFOSM
• HF = Uncertain expansion (at single design pt)

• Additive corrections enforce LF/HF consistency
• 1st order & 

QN 2nd-order



UQ with Sampling Methods
Starting from distributions on the uncertain input values, draw observations
from each distribution, pair samples, and execute the model for each pairing
à ensemble of results yields distributions of the outputs

– Monte Carlo: basic random sampling
– Pseudo Monte Carlo: Latin Hypercube Sampling (LHS)
– Quasi Monte Carlo: Halton, Hammersley, Sobol sequences
– Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling

Advantage: Sampling is easy to implement, robust, and transparent.
Disadvantage: N-1/2 convergence, often impractical for pfail, stats nonsmooth over d

N realizations of Y

Simulation 
Model

Output Distributions
N samples of X

Output 1

Output 2

Input  Distributions • sample mean and variance

• full PDF(probabilities)
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OUU with	Sampling	

Employ surrogate models for interpolation of noisy data due to under-resolved sampling
• Dakota TRMM using smoothing data fits at design level
• SNOWPAC internally uses trust region management on low-order surrogates, 

integrating estimates of noise

Stochastic DSA
• Independent design vars: Derivative of expectation = expectation of derivative

Gradient-based OUU can again be employed: analytic bi-level, 1st-order TRMM, etc.

For Scramjet OUU, multilevel and multilevel-multifidelity Monte Carlo extensions are used



Time	Permitting



Trust-Region Model Management
Data Fit

Data fit surrogates:
• Global: polynomial regress., splines, 

neural net, kriging/GP, radial basis fn
• Local: 1st/2nd-order Taylor
• Multipoint: TPEA, TANA, …

Data fits in SBO
• Smoothing: extract global trend
• DACE: number of des. vars. limited
• Local consistency should be 

balanced with global accuracy

Multifidelity surrogates:
• Coarser discretizations, looser conv. 

tols., reduced element order
• Omitted physics: e.g., Euler CFD, 

panel methods

Multifidelity SBO
• HF evals scale better w/ des. vars.
• Requires smooth LF model
• May require design vect. mapping
• Correction quality is crucial

à Multifidelity

ROM surrogates:
• Spectral decomposition (str. dynamics)
• POD/PCA w/ SVD (CFD, image analysis)

ROMs in SBO
• Key issue: parametric ROM

– E- ROM, S-ROM, tensor SVD
• Some simulation intrusion to re-project
• TR progressions resemble 

local, multipoint, or global

à ROM

• Extended ROM
• Local
• Multipoint

• Spanning ROM
• Tensor SVD



TRMM – Multifidelity Case

Sequence of trust regions



Algorithm R&D: Multilevel-Multifidelity OUU
Hybrid MG/Opt with recursive TRMM (w/ Monschke)

Trust-region model management
• targets hierarchy of model forms (now an arbitrary number)
• each opt cycle performed on corrected LF model

Multigrid optimization (MG/Opt)
• targets hierarchy of discretization levels
• multigrid V cycle to hierarchy of optimization solves
• coarse optim. generates search direction for fine optim.

• corrections + line search globalization à provable convergence

Towards MLMF using MG/Opt with recursive TRMM
• both model forms & discretization levels

Monschke, J. and E., "Multilevel-Multifidelity Acceleration of PDE-Constrained Optimization." AIAA SciTech 2017 (accepted).
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Scramjet	OUU
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Model-form 
uncertainty

Inference PropagationPrior
uncertainty

data data

Integration of TAs 1, 2: Uncertainty Quantification Workflow

Characterization of input uncertainties through assimilation of data
• Prior distributions based on a priori knowledge
• Observational data (experiments, reference solns.) à infer posterior distributions via Bayes rule

• Use of data can significantly reduce uncertainty in obj./constraints (priors are constrained)
• Design using prior uncertainties can be overly conservative
• Reduced uncertainty of data-informed UQ can produce designs with greater performance



Model-form 
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Inference PropagationPrior
uncertainty
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Integration of TAs 1, 2: Uncertainty Quantification Workflow

Characterization of input uncertainties through assimilation of data
• Prior distributions based on a priori knowledge
• Observational data (experiments, reference solns.) à infer posterior distributions via Bayes rule

• Use of data can significantly reduce uncertainty in obj./constraints (priors are constrained)
• Design using prior uncertainties can be overly conservative
• Reduced uncertainty of data-informed UQ can produce designs with greater performance

Propagation of input uncertainties to response QoI
• Push forward of posterior distributions
• Compute statistics that reflect goals of DUU process (i.e., moments, failure probabilities)



Model-form 
uncertainty

Integration of TA3: Generic OUU Workflow

Roll up of capabilities
• Inference
• Scalable forward propagation
• Surrogates

Inference

Propagation

Parameter
uncertainty

Model-form 
uncertainty Inference

data data

data data



Model-form 
uncertainty

Integration of TA3: Generic OUU Workflow

Roll up of capabilities
• Inference
• Scalable forward propagation
• Surrogates

Inference

Propagation

Parameter
uncertainty

Model-form 
uncertainty Inference

data data

data data

Design 
Optimization

Achieve desired statistical performance
• Common DUU goals:

• Robustness à minimize QoI variance
• Reliability à constrain failure probability



Model-form 
uncertainty

Integration of TA3: Scramjet OUU Workflow

Offline:
• Inference for parametric + model form
• GSA with ML-MF Adapt sparse quad
Online:
• ML-MF parametric
• Mesh error, Model error

Propagation

Parameter
uncertainty

Model-form 
uncertainty

Inference

data data

Design 
Optimization

Formulation: gradient-free opt & UQ
• SNOWPAC (error aware, error controlled)
• MLMC UQ for 2D {d/8,d/16} + error estimates
• Error balance: mesh error ~ ML estimator variance

Mesh 
Error

Inference



Review (FY16-FY17)





NOWPAC/	SNOWPAC



Multilevel	Standard	Error	estimation









P2 Stochastic Optimization, SNOWPAC/MLMC/RAPTOR Case 1
Minimal / insufficient time windowing, Unknown combustion behavior
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FY18Q1: RAPTOR



Deterministic Optimization for P2, RAPTOR Case 2
Tuned time windows, insufficient combustion à maximize fburn



Deterministic Optimization for P2, RAPTOR Case 3
Tuned time windows, repaired combustion à max hcomb s.t. fburn >= .19



FY18Q1: Model problem









OUU	OPTIMIZATION	- SETUP

Design:
0.5 ≤ ℎ𝑏 ≤ 2.5
7.5 ≤ 𝑙𝑡 ≤ 11.5
2.5 ≤ 𝑙𝑡𝑝 ≤ 4.5
17.5 ≤ 𝑙𝑏 ≤ 20.5
79.5 ≤ 𝑥𝑏 ≤ 85.5

𝑥⃗ = ℎ𝑏, 𝑙𝑡, 𝑙𝑡𝑝, 𝑙𝑏, 𝑥𝑏 4

Uncertain: 𝑞⃗ = 𝑝6,78, 𝑇:,78,𝑀78
4

𝑝6,78~	𝒩 1.48𝑒6, 7.4𝑒3 B

𝑇:,78~	𝒩 1550, 7.75B
𝑀78~	𝒩 2.51, 0.01255B

Deterministic:

𝑝C6DD∗ 𝑥⃗∗, 𝑞⃗ = min 𝑝C6DD(𝑥⃗, 𝑞⃗)
𝑠. 𝑡. 593 ≤ 𝑇LMN 𝑥⃗, 𝑞⃗ ≤ 605

	

Stochastic:

𝑝OC6DD∗ 𝑥⃗∗, 𝑞⃗ = min𝔼[𝑝C6DD(𝑥⃗, 𝑞⃗)]
𝑠. 𝑡. 593 ≤ 𝔼[𝑇LMN 𝑥⃗, 𝑞⃗ ] ≤ 605

	

𝒙𝒃

𝒍𝒕

𝒍𝒃

𝒉𝒃

𝒍𝒕𝒑



OUU	OPTIMIZATION	- SETUP

Same initial design:
Computational cost:
• Coarse grid: ~ 30s/evaluation
• Medium grid: ~ 4min/evaluation

𝑥⃗ = 2. , 11. , 3. , 18. , 85 4

Problems and solution methods:
• Deterministic:

• Dakota + NOWPAC
• Medium grid

• Stochastic:
• Dakota + SNOWPAC+ MC Estimator

• 20 samples
• Medium grid

• Dakota + SNOWPAC + MLMC Estimator
• 25 + 5 samples coarse grid
• 5 samples medium grid

coarse

medium



Deterministic	OPTIMIZATION	- Results

Optimization Path Evaluations



Stochastic	MC	OPTIMIZATION	- Results

Optimization Path Evaluations



Stochastic	MLMC	OPTIMIZATION	- Results

Optimization Path Evaluations



OUU	OPTIMIZATION	– Results	Summary

Problem Final Design 
𝒙∗

Final 
Objective 
𝒑𝒍𝒐𝒔𝒔∗ /𝒑\𝒍𝒐𝒔𝒔∗

Final 
Constraint

~ Runtime/
Total Evaluations

Deterministic [1.72, 10.5, 2.79, 18.12, 80.26] 0.48771833 593.18 18h
70 Medium, serial

Stochastic 
MC [2.07, 9.28, 2.5, 20.5, 79.5] 0.478597896 595.03 24h

1200 Medium, 4 parallel

Stochastic 
MLMC [2.09, 7.5, 3.67, 18.35, 79.5] 0.47607471 594.23

15h
1800 Coarse, 4 parallel
300 Medium, 4 parallel

Reminder:
• Initial design:
• Constraint: 

𝑥⃗ = 2. , 11. , 3. , 18. , 85 4

𝑠. 𝑡. 593 ≤ 𝑇LMN/𝔼[𝑇LMN] ≤ 605

• Different final designs
• Similar final objectives
• Feasibility restoration visible in stochastic 

optimization
• Slower convergence for stochastic optimization

• Lower bound constraint active
• Box constraints active
• Computational speed up due to 

asynchronous evaluations in MC 
and MLMC

Multimodal 
objective

0.5 ≤ ℎ𝑏 ≤ 2.5
7.5 ≤ 𝑙𝑡 ≤ 11.5
2.5 ≤ 𝑙𝑡𝑝 ≤ 4.5

17.5 ≤ 𝑙𝑏 ≤ 20.5
79.5 ≤ 𝑥𝑏 ≤ 85.5

From here, move towards robust/reliable designs



Dakota	Workflow	Details	(time	permitting)





• Black box driver based on fork + file I/O
• Asynchronous local concurrency with work directories
• Multiple levels of parallelism: optimizer, UQ, SU2



Deterministic MC



MLMC


