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Emphasis on Scalable Methods for High-fidelity UQ on HPC () diom

Laboratories

Common theme across DOE/DOD M&S:

High-fidelity simulations: push forward SOA in computational M&S w/ HPC
- Severe simulation budget constraints (e.g., a handful of runs)
- Significant dimensionality, driven by model complexity (multi-physics,scale)

Compounding effects: mixed uncertainties, rare events, nonsmooth Qol

DAKOTA
Optimization

Steward Scalable Algorithms within ))> Uncerainy Guart.
D A K O TA Sensitivity Analysis

Core UQ Capabilities:

« Sampling methods: MC, LHS, QMC, et al. L,

* Reliability methods: local (MV, AMV+, FORM, ...),
global (EGRA, GPAIS, POFDarts)

» Stochastic expansion methods: PCE, SC, fn train
« Epistemic methods: interval est., Dempster-Shafer evidence

Black box:
Sandia simulation codes
Commercial simulation codes
Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),

Model Quantities
Parameters of Interest
MATLAB, Python, ModelCenter,
SIERRA (multiphysics)
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ﬁ Tailor OUU approaches to exploit features of specific UQ algorithms i
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4,7/ Optimization Under Uncertainty

Standard NLP Add resp stats s, (u, o, 2/f/p)
min F(d) optimize, accounting min /() Wzdv)vi“(d)
. . g >49g > Gu
st. g, < g(d) <gu | foruncertainty metrics St D = by
h(d) = hy (using any UQ method) dp <d<dy
ap < Ai Su(d) < au

dlgdgdu Ae su(d) = ay

Input design parameterization d

* Design vars may augment uncertain vars in simulation
* Inserted design vars: an optimization design var may be a

parameter of an uncertain dist, e.g., the mean of a normal di
Control response statistics to design for...
...robustness: ...reliability: ...combined/other:
min/constrain moments min/max/constrain p/ Pareto, inversion/model
M, 02, or z(B) range (tail stats, failure) calibration under uncertainty
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X
g Optimization Under Uncertainty

Standard NLP

min f(d)

st. g1 < g(d) < gu
h(d) = hy
dl < d<dy

optimize, accounting
for uncertainty metrics

(using any UQ method)

Add resp stats s, (u, o, 2/f/p)

min  f(d) + Wsu(d)
S.t. g1 < g(d) < gu
h(d) = hy
dp < d<duy
a; < A; su(d) < ay
Ae sy (d) = at

Input design parameterization

* Design vars may augment uncertain vars in simulation
* Inserted design vars: an optimization design var may be a
parameter of an uncertain dist, e.g., the mean of a normal

Control response statistics to design for...

...robustness:

min/constrain moments

M, 02, or z(f3) range

— J——

Epistemic/Mixed

...reliability:
min/max/constrain p/
(tail stats, failure)

[ -

...combined/other:
Pareto, inversion/model
calibration under uncertainty
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- <.>/ UQ with Reliability Methods

Mean Value Method

pg = g(px) ~
B . dg dg
0y = Z Z Covi ) (1) o) Rough
3., — Me—% _ statistics
Yedf - ~ : = p,—o0 3. "
zZ = pBd 9 BB — 2 g gec
13('('(1f pr— - ,“g | 2 = “g + Uy ‘d{"('.d'f
- Og . _/
MPP search methods Nt
Reliability Index N Failure Performance Measure
Approach (RIA) fegion Approach (PMA)

'I.ITU

minimize
subject to G(u) =2

Find min dist to G level curve
Used for fwd map z 2> p/p

u* - MPP

FORM

Nataf x = u:

>

ul
SORM

G(u)

O(z;) = F(z;)
7z = Lu

minimize +G(u)
subject to ul'u = 32

Find min G at f radius

Used for inv map p/g > z
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> RBDO Algorithms

Bi-level/Nested RBDO minimize  f minimize  f
. RIA subject to 3> f3 PMA ‘
+ Constrain RIA z & p/Bresult RBDO J P RBDO| subjectto 2 >z
« Constrain PMA p/B > z result or p<p
/'
. . Vaz = Vag
Analytic Bi-level RBDO 1 If d = distr param, then expand
 Analytic reliability sensitivities avoid VaBeqs = mvdg Vag = VaxVxg
numerical differencing at design level L, )
9 g Vapeisr = —&(—Bedr)VaBeds
\(lst order)

Sequential/Surrogate-based RBDO:
* Break nesting: iterate between opt & UQ until target is met. .
Trust-region surrogate-based approach is non-heuristic.

minimize f(de) + Vaf(de)T(d —d.) } 1st-order

: ‘ 3(d.)T (d — 3
subject to  3(d.) + VafB(d.)" (d —d.) = 3 (also 2"-order w/ QN)

or p(d.)+Vap(d:)T(d—d.) <p

%

2 [

” d— dc‘ ”:x. S Ak -2 -1 0 1 2
Unilevel RBDO: L min . £(d, p,y(d. p))
« All at once: apply KKT conditions of aug=(d. U1, 0N g
MPP search as equality constraints s. t. : GlR(ui, n) =0
* Opt. ir\creases in scgle (d,u) Butiowed — B8; > 0 | KKT
* Requires 2nd-order info for sl 1V aG Qs )| 4 0] VaGE(u,m) =0 | of MPP

derivatives of 1st-order KKT
6 = ||u| S

{ U National
d <d<d 'I‘ Laboratories
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) <o’ Issues with RBDO =<

Insight from parameter study over 30 uncertain
variable range for fixed design variables d,;*.
Dashed black line denotes g(x) = F,;,(x) = -5.0.

Fmin( AW, Sr )

actuation force

« AMV2+ and FORM converge to
different MPPs
(+ and O respectively) 274

* Issue: high nonlinearity leading to
multiple legitimate MPP solins.

-6.87

r

» Challenge: design optimization
may tend to seek out regions
encircled by the failure domain.
1st-order and even 2"9-order
probability integrations can
experience difficulty with this
degree of nonlinearity.

-15.13

residual stress S (MPa)

-19.26

.

I I
-0.28 -0.2 -0.12 -0.04

width bias AW (um)
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o o Sandia
Stochastic Expansions: Polynomial Chaos & Stochastic Collocation ) tetioral

Polynomlal chaos: spectral prOJectlon using orthogonal polynomial basis fns

\1/0(5) = 1/,0(51) TJ)O(£2) = 1 Distribution ~ Density function Polynomial Weight function ~ Support range
R Z i) = (&) vo(&) = & E“{;ma' ﬁf# l::"mt:H; ((r)) el— [TCIM;JO]
O : Ua(€) = wol&)vi(&) = & S (e Yol pRSCey= P T
J uslng Us(€) = (1) vho(&) = 5%_1 Exponlmial 2n+5+1§(_az+1ﬁ+1) Laguerr:Ln((z)) ( )e_( +z) [[O,C;O]]
Uy(€) = v1(&1) (&) = 5152 Gamma lf(if;:) GeneralizgdLaguerreLSf)(r) % [0, 00]
Us(€) = vo(ér)va(l) = & -
* Estimate a; using regression or numerlcal mtegratlon (R, ;) 1

sampling, tensor quadrature, sparse grids, or cubature |7~ (¥3) <\If§>/QR‘I’J'Q(5)d5

Stochastic collocation: instead of estimating coefficients for N,
known basis functions, form interpolants for known coefficients R(&) = Z r;L;(€)
* Global: Lagrange (values) or Hermite (values+derivatives) =1

* Local: linear (values) or cubic (values+gradients) splines
* Nodal or Hierarchical interpolants

gs My M -
H = RO S Y () (Lh oo L)

k}#j j1=1 jnzl
Sparse interpolants formed using 2 of tensor interpolants

* Tailor expansion form:
— p-refinement: anisotropic tensor/sparse, generalized sparse
— h-refinement: local bases with dimension & local refinement

* Method selection: requirements for fault tolerance, decay, sparsity, error estimation
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Stochastic Sensitivity Analysis

« PCE/SC have convenient analytic features
— Expansions readily differentiated w.r.t. &

— Analytic moment expressions

IIZ

P
Z \II

« Augment w/ nonprobabilistic dimensions s

— Design, epistemic uncertain

 Approach 1: PCE/SC over prob. vars
for each set of nonprobabilistic vars
Moment sensitivity = expectation of response sensitivity

—

dR
ds <E>
do P
rr S

 Approach 2: PCE/SC over all variables

Np

R(&, s)

P
R(&,8) 2 ) a;U;(6,s)
7=0

j=1

. Z 'I‘jL

j(&,8)

KRr(s) =

IR

R =

d_p
ds
dR do?
AR N

r

\.

pR(8) =

r

\

N

z g

oh(s) =

<.
[I

P

ZTJ<L

1

P

N

1k=

NP

)||R(&) =D " riL;(€)
j=1
NP

KR = Ij'lUj

j=1
NP

a% = 7’]2uj — ;LQR
j=1

Np
Pt ds
N.

- dry,
Z 2w (e — ll)d—
k=1 s

Moment sensitivity = expectations over & +
differentiation of remaining polynomial in s

i€, 8))e

Lj(& s)L(&. ) — 1h(s)




@ Mool Stochastic Sensitivity Analysis

Laboratories

Ny

P
Z )||[R(&) =) 7L (6)

« PCE/SC have convenient analytic features
— Expansions readily differentiated w.r.t. &

|I2

— Analytic moment expressions J=1
agn - . . NP
« Augment w/ nonprobabilistic dimensions s i = o PR
— Design, epistemic uncertain j=1
P P
2 2
« Approach 1: PCE/SC over prob. vars oh = Z 202 | ok = S rw -k

for each set of nonprobabilistic vars

Moment sensitivity = expectation of response sensitivity

$) =D a;(s)W;(€) Co N

: dp dR an _ S w ark

- [ > ds = (—d > ds K ds

Np S < k;l

~\ .. do? P 4R do? z dry
R(€,s) = ri(s)L i a2 o _ wi (e — 1)k
(&, s) ; k(s)Lk(£) 7s 2; k<ds,\11k) \ 7 ;21%(7,1C i) T

—>Additional data requirements (dR/ds), but no additional dimensions
 Approach 2: PCE/SC over all variables

- a N N , Moment sensitivity = expectations over & +
S Za’ & s Z’J differentiation of remaining polynomial in s
J:
NP
J;LR za] JHR(S) = ;7‘3'([/]'(&3»5
:C N, N,
-f«-i 2 /0 N\ /T (& T (€ﬂs)>€_/-L2R(s)

- Additional dimensions, but no additional data requirements
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Robustness:

minimize

>
2> PCE-based and SC-based OUU
A . . . Reliability:
nalytic Bi-level:
« Analytic moment/reliability sensitivities minimize f
(avoid numerical derivs. at design level) subject to > 3
* Uncertain or Combined expansions -

(B initially based on moment proj)

Sequential/Surrogate-based:
» Break nesting: iterate between opt & UQ w/ (surrogate) linkage
* Uncertain expansions N

subject to

TR-SBO with local
data fit & multifidelity

( minimize f(se) + Vasf(se)T (s —se)
< subject to  B(se) + VeB(se)T (s —s.) > 3
8 e [st-order
I's—scll <A
I - e Also QN
minimize f(se) + Vef(se)' (s —se) nd_grder
< subject to  02(s.) + Ve02(s.)T (s —s.) < 72
~ HS_SCngAk J
Multifidelity (focused on UQ fidelity): - minimize
+ Optimize corrected LF UQ model over TR .
* LF = Combined expansion (over s), MVFOSM 4 subject to

* HF = Uncertain expansion (at single design pt) L
» Additive corrections enforce LF/HF consistency
. qst orcier & Bhi(s) Bio(s) + ag(s)
QN 2"d-order .
i’ (s) Tio(8) + g2 (s)

~  minimize

< subject to

%

f(s)
Ghi(s) > 3
|'s—sc ||, <AF
f(s)
ohi(s) < &2
|'s—se |l <AF Sandia
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P> uQ with Sampling Methods

Starting from distributions on the uncertain input values, draw observations
from each distribution, pair samples, and execute the model for each pairing
- ensemble of results yields distributions of the outputs

— Monte Carlo: basic random sampling

— Pseudo Monte Carlo: Latin Hypercube Sampling (LHS)

— Quasi Monte Carlo: Halton, Hammersley, Sobol sequences

— Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling
Advantage: Sampling is easy to implement, robust, and transparent.
Disadvantage: N-"? convergence, often impractical for p,,;, stats nonsmooth over d

Input Distributions Output Distributions ° sample mean and variance

N samples of X
N realizations of Y

e

Output 1

FaN

Output 2

.

AL
N



OUU with Sampling A Nesora

Laboratories

Employ surrogate models for interpolation of noisy data due to under-resolved sampling
» Dakota TRMM using smoothing data fits at design level

+ SNOWPAC internally uses trust region management on low-order surrogates,
integrating estimates of noise

Stochastic DSA
* Independent design vars: Derivative of expectation = expectation of derivative

dp _ 1§dQ
ds N — ds

7 - lz@f)—wfg] J(o(N 1)

Gradient-based OUU can again be employed: analytic bi-level, 1st-order TRMM, etc.

For Scramjet OUU, multilevel and multilevel-multifidelity Monte Carlo extensions are used
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Data Fit

Trust-Region Model Management ) e
> Multifidelity = ROM
2 2
U/ L\ spamingron
1 \/:.-7*

-2

-2 -1 0 1 2

Data fit surrogates:

+ Global: polynomial regress., splines,
neural net, kriging/GP, radial basis fn

*+ Local: 1st/2nd-order Taylor
* Multipoint: TPEA, TANA, ...

Data fits in SBO

+  Smoothing: extract global trend
+ DACE: number of des. vars. limited

+ Local consistency should be
balanced with global accuracy

G
. .
Yey.
“

N\\ 7l

(1) \ B % . E.xfgcr;clied ROM
& NN/ 2_2_§\\\\\\\\§\“A<'tip:int//l/////// //;

ROM surrogates:

+ Spectral decomposition (str. dynamics)
+ POD/PCA w/ SVD (CFD, image analysis)

ROMs in SBO

+ Key issue: parametric ROM
—E- ROM, S-ROM, tensor SVD

+ Some simulation intrusion to re-project

Multifidelity surrogates:

« Coarser discretizations, looser conv.
tols., reduced element order

+ Omitted physics: e.g., Euler CFD,
panel methods

Multifidelity SBO

» HF evals scale better w/ des. vars.

* Requires smooth LF model + TR progressions resemble

* May require design vect. mapping local, multipoint, or global

+ Correction quality is crucial




TRMM - Multifidelity Case

Sequence of trust regions

Sandia
National
Laboratories

Algorithm 2 Compute correction

Ag, Ay, Ay, By, By, B, =0
if (correction order > 0) then
Ap = ﬁli(xc) - ﬁo(RIc)y
end if
if (correction order > 1) then
A =R [vﬁu(xc)l - Vﬁn(RXc),
end if
if (correction order > 2) then
Az = R|V2 f(x0) | RT = V2 fio(Rx,)
By = 1R | V2 fii(xo)

2R

end if

end procedure

procedure COMPUTE_CORRECTION(x,, R, f,,(x). fio(x))

R — Mvi
- T [V fio(Rxo) (RV fri(x))

B = 5 RIV fulxo)] - 222 fio(Rxe)

TR

Algorithm 3 Apply correction
procedure APPLY_CORRECTION(X, R, fu(X), fio(x))
(%) = Ag + AT (X - Rxo) + § (¥ — Rx)" Az (- Rxo)
B(X)= Bo + B} (x - Rx.) + 5 (X — Rx.)" By (¥ — Rx.)
if additive correction then
y=1

else if multiplicative correction then
y=0

else if combined correction then
Xp is from a previous iterate

Sdv N £ v N )

Algorithm 4 Compute trust region updates

procedure TR(xY, %, £(x), feom (X))

o= % where ®(x*) = MeritFn(f(x*)) and ®(x*) = MeritFn(foon(x%))

if of < 0 then
Reject step: x**! = x£
AT ARy,
else
Accept step: x¥*! = x*
if 0% < Neonrace then
Ak+| - Ak Veontraa
else ifl]expmd < # <2- Texpand then
Ak+l - Ak Vexpmd
else
AR+ — AR
end if
end if

Apply A¥! factor to global bounds to compute new TR bounds
If nested trust regions, truncate new TR bounds to parent bounds

end procedure

) + (1 - 7) fioX)B(X)




= = " gm . Sandia
Algorithm R&D: Multilevel-Multifidelity OUU )
Hybrid MG/Opt with recursive TRMM (w/ Monschke) '

Trust-region model management
« targets hierarchy of model forms (now an arbitrary number)
» each opt cycle performed on corrected LF model

Multigrid optimization (MG/Opt)

. . . . Algorithm 1 Multigrid Optimization
« targets hierarchy of discretization levels 1 procetus MGOP1T(k 7. 15, 1)
* multigrid V cycle to hierarchy of optimization solves -
5: else
« coarse optim. generates search direction for fine optim. e Rpe Fe0 = IO
. . . . : vik=1) — ¢ flk=1) xﬁk—” _ 7 fk) x](k!
* corrections + line search globalization = provable convergence . o =;LOPT((*4j,)ngl[»,v;:k_(”(x))_] Sy
10: e=P x.,k_” - x:k_”
11: xék) = x(,{:) + ae
Towards MLMF using MG/Opt with recursive TRMM
. end procedure

 both model forms & discretization levels

Model (1, 1) I I Model (1, 2) |
P
a) 1 fidelity and 1 level H

Model (2, 1) I Model (2, 2) |
Fine l
High-Fidelity 229 o _ ' '

H

Fidelity

Fidelity

b) 1 fidelity and 2 levels c) 2 fidelitiesand 2levels [ | ________ [ S S S
Fine Coarse Fine Coarse L M°de' (F')I _____ I Mme”F Z)I _______________________________
High-Fidelity 112 146 High-Fidelity 65 82 Discretization
Low-Fidelity 26 29

Monschke, J. and E., "Multilevel-Multifidelity Acceleration of PDE-Constrained Optimization." AIAA SciTech 2017 (accepted).
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o Inner Optimization -~ Quasi-Newton w/ BFGS
——POESGlov 16
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Equivalent HF Simulations o 50 100 150 200 250 300 350 400 450
Fine-grid function evaluations

Scramjet OUU

Michael S. Eldred, Gianluca Geraci, Friedrich Menhorn, Youssef Marzouk

DARPA EQUIPS Livermore site visit, November 2017
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Integration of TAs 1, 2: Uncertainty Quantification Workflow (! =

Characterization of input uncertainties through assimilation of data

* Prior distributions based on a priori knowledge

» Observational data (experiments, reference solns.) = infer posterior distributions via Bayes rule
» Use of data can significantly reduce uncertainty in obj./constraints (priors are constrained)
* Design using prior uncertainties can be overly conservative
* Reduced uncertainty of data-informed UQ can produce designs with greater performance

)4
(0.0 0.2 0.4 0.6 0.8 1.0
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Integration of TAs 1, 2: Uncertainty Quantification Workflow (! =

Characterization of input uncertainties through assimilation of data

* Prior distributions based on a priori knowledge

» Observational data (experiments, reference solns.) = infer posterior distributions via Bayes rule
» Use of data can significantly reduce uncertainty in obj./constraints (priors are constrained)
* Design using prior uncertainties can be overly conservative
* Reduced uncertainty of data-informed UQ can produce designs with greater performance

) | -
%9 02 o4 06 08 10 bo o2 04 06 08 10 Y% 02 o1 06 08 10

Propagation of input uncertainties to response Qol
* Push forward of posterior distributions
» Compute statistics that reflect goals of DUU process (i.e., moments, failure probabilities)




Integration of TA3: Generic OUU Workflow ) e

Roll up of capabilities

e Inference

* Scalable forward propagation
* Surrogates

VY

\ 4

2

1

[%Jl() 0.2 0.4 0.6 0.8 1.0

4
%

1.5

T 1

0.5
0.0,
0.0 0.2 0.4 0.6 0.8 1.0




Integration of TA3: Generic OUU Workflow ) e

Roll up of capabilities Achieve desired statistical performance

* Inference * Common DUU goals:

* Scalable forward propagation * Robustness = minimize Qol variance

* Surrogates * Reliability = constrain failure probability

bA

= )

.5
0.0,
0.0 0.2 0.4 0.6 0.8 1.0




Integration of TA3: Scramjet OUU Workflow ) e

Offline: Formulation: gradient-free opt & UQ

* Inference for parametric + model form * SNOWPAC (error aware, crror controlled)

* GSA with ML-MF Adapt sparse quad « MLMC UQ for 2D {d/8,d/16} + error estimates
Online: * Error balance: mesh error ~ ML estimator variance

*  ML-MF parametric
* Mesh error, Model error

=

~
N

.5
0.0
0.0 0.2 0.4 0.6 0.8 1.0
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OUU Algorithms - Phase 1

Algorithms & infrastructure:

@ Dakota trust region model management (TRMM):

e TRMM incorporates multilevel-multifidelity in simulation, UQ, both
o Leverage RAPTOR model forms {2D, 3D} + discretizations {d/8, d/16}
@ Recursions for deep hierarchies (beyond bi-fidelity)

@ (S)NOWPAC derivative-free opt: deterministic/stochastic solvers

o NOWPAC — SNOWPAC: adapt TR to noise, GP’s to mitigate noise,
efficient GP regression via low rank approx (SoR, DTC, FITC)
e Performance eval against other common DFO solvers

@ Integration of (S)NOWPAC + Dakota

e NOWPACOptimizer: solver spec, input var transforms, constraint
mappings, final result logging, parallel config

o Abstract error est. in Iterator, Model: std errors in MC, MLMC stats

e Phase Il target for P2 OUU: SNOWPAC + MLMC




NOWPAC/ SNOWPAC rh) e

No adjoints — optim must be derivative-free or derivative-inferred

Nonlinear Optimization with Path-Augmented Constraints (NOWPAC)

@ TR approach for nonlinear constrained DFO

@ Non-intrusive optimization framework

@ New way of handling constraints using an inner boundary path
@ Provable convergence to a first order local optimal design

»

NOWPAC framework

@ Build fully linear surrogate models of
objective and constraints

Trust region

ctive function

obje

surrogate models

SNOWPAC introduces statistical error estimates + GP smoothing




Multilevel Standard Error estimation

@ MC std errors are well developed

@ Multilevel std errors are more involved (e.g., std error of variance)

i
var(62) = eX—:o Var(P2)— Var(PZ | )—2Cov(PZ, PZ )
Var(P?) = Nie (a0 —Var?(Qp) + Wwﬂ(w)

1

Cov(PZ, P2 ) Nie (E[P2P2_ || - Var(QoVar(@,_q)) +

E[PPF 1] = E[QFQF 1]-2E[Qe1]E[QFQe 1] +E?[Qp 1]E[QF] -2E[Q,]E[Q,Q7 ,]

+  AE[QlE[Qe 1]E[QeQp 1] +E? [QEIE[QF ;] —3E2 [Q]E? [Qe_1]

@ Multilevel std error for std deviation (no closed form for single level)
o Normally-distributed population

g

V2(N-1)

SE(5)=

e Function of a normally-distributed estimator (Delta Method)

SB®)= oo o (mat 3N (02)2)

@ Additional need for unbiased multilevel (4t") central moments
@ Harden for small sample sizes (e.g., 5 - 2 fail)

Mo E[QeQe 1] -E[QIE[Qe 1)

Ishigami (uniform input)

Sandia
National _
Laboratories

Bootstrap (1500 repetitions) —+—
SE estimator
SE estimator (unbiased kurtosis *
. §E estimator (Normal population) —=—

Standard Error (Standard Deviation)

10000




OUU Software Framework - Phase 1

Multilevel
Multifideli

l SNOWPAC l

(DAKOTA+SNOWPAC) - RAPTOR Interface
@ RAPTOR black box driver based on system/fork + file |/O
@ Asynchronous local concurrency with work directories

@ Detection and mitigation of failed simulations (e.g., residual
divergence, node failure)

@ Up to 3 levels of parallelism: optimizer, UQ, RAPTOR

o




OUU Demo - Phase 1

P1 (jet-in-crossflow) deployments:
@ PCBDO w/ combined exp: reuse of 2D/3D GSA data sets

Model o} Initial E[x] Initial E[¢]  Final E[x] FinalE[¢] Iter

2D .06 3.480e-1 6.356e-2 3.229e-1  6.000e-2 3
3D 013 1.377e-3 1.392e-2 1.212e-3 1.300e-2 2

@ Multifidelity TRMM with UQ/simulation resolutions

Iteration E[¢] % [#] E[x] Trust region ratio
o) 1142e-01  5.800e-03 9.848e-02 N/A
1 1.074e-01  5.646e-03  8.832e-02 1.443
2 1.003e-01 5.390e-03  7.790e-02 1.497

@ SNOWPAC closed-loop coupling with RAPTOR P1 code

Objective function f = Es[Vy[¢]] -+ aVE[Vy[¢]]

— f

== EaV,|¢])

— ViN,ie1
SOowPac oplismum




OUU Demo - Phase 1

P1 (jet-in-crossflow) deployments:

@ PCBDO w/ combined exp: reuse of 2D/3D GSA data sets
Model o} Initial E[x] Initial E[¢]  Final E[x] FinalE[¢] Iter

2D .06 3.480e-1 6.356e-2 3.229e-1  6.000e-2 3
3D 013 1.377e-3 1.392e-2 1.212e-3 1.300e-2 2

@ Multifidelity TRMM with UQ/simulation resolutions

Iteration E[¢] V3 [&] E[x] Trust region ratio
o) 1142e-01  5.800e-03 9.848e-02 N/A
1 1.074e-01  5.646e-03  8.832e-02 1.443
2 1.003e-01 5.390e-03  7.790e-02 1.497

@ SNOWPAC closed-loop coupling with RAPTOR P1 code

1
- Objective function f = Ee[Vy[$]) +aVi[Vy[g])

— f
= EalV,lgl)
= ViVigl
0.0015] i A s ecoptisum,

P1 (jet-in-crossflow) deployments:

@ Qol trends for {2D,3D} {d/8,d/16} are well correlated
— MLMF is effective
— High turbulence levels will likely require {d/32,d/64}

@ Deployments are promising, but interesting design trade-offs are

ﬁ lacking — move on to P2 with combustion ﬁ




P2 Stochastic Optimization, SNOWPAC/MLMC/RAPTOR Case 1

i\

Minimal / insufficient time windowing, Unknown combustion behavior
AFRL WPAFB site visit — finalize OUU formulation:

max

£ [nthermal]

s.t. p[¢burn S 07] S .01
1 [xshocktrain <4 "/n] < .01

plA

press

> .05 % fyess] < 01

P2 OUU demo in progress: MLMC analyses at initial design points

E[mthermall E[ébum] E [ shocktrain]
Nominal 0.018494 4 3.7542e-08 0.10151 £ 1.1309e-06 74744 + O.
Ad, 0.018804 4 5.6828e-08 | 0.098653 £ 1.5642e-06 74744 + O.
Ad, 0.018682 + 6.1177e-08 0.10254 4-1.8430e-06 74744 £+ O.
Adg 0.018739 £ 1.2493e-07 0.10285 + 3.7635e-06 | 26.033 +133.06
Ady 0.018434 +2.2739e-08 0.10117 £ 6.8503e-07 74744 £+ O.
Ads 0.019003 + 2.8257e-08 0.10430 4+ 8.5124e-07 21637 +95.363
Step 1 pending pending pending

Table: History to date for statistical Qols from MLMC analyses in P2 OUU for

design variables d = { global equiv ratio, fuel ratio, .,, inj locn,, inj locn,, inj angle, }.

Sandia
National _
Laboratories




P2 Stochastic Optimization, SNOWPAC/MLMC/RAPTOR Case 1 () itom _
Minimal / insufficient time windowing, Unknown combustion behavior

AFRL WPAFB site visit — finalize OUU formulation:

max E [nthermal]
s.t. Plopum < 0.7] < .01
p[xshocktrain <4 Zn] < .01
p[Apress > .05 % :U’press] <.01
P2 OUU demo in progress: MLMC analyses at initial design points
E[mthermall E[ébum] E [z shocktrain]
Nominal 0.018494 + 3.7542e-08 0.10151 £ 1.1309e-06 74744 + O.

Ad, 0.018804 + 5.6828e-08 | 0.098653 4-1.5642e-06 74744 + O.
Ad, 0.018682 + 6.1177e-08 0.10254 4-1.8430e-06 74744 1+ O.
Adsy 0.018739 + 1.2493e-07 0.10285 + 3.7635e-06 26.033 +£133.06
Ady 0.018434 + 2.273%e-08 0.10117 4 6.8503e-07 74744 1+ O.
Ads 0.019003 + 2.8257e-08 0.10430 4 8.5124e-07 21.637 +95.363
Step 1 pending pending pending

Table: History to d Phase Il planned work:

design variables d @ Increase resolution as enabled by large-scale HPC: include 3D,
increase FTTs, tighten ML tolerances, include chance constraints, etc.

ﬁ @ Integrate emerging capabilities from TAs 1,2 — comprehensive OUU i




FY18Q1: RAPTOR




Deterministic Optimization for P2, RAPTOR Case 2
Tuned time windows, insufficient combustion - maximize ¢,,,,

Motivation:

» For the initial configuration of the 2D d/8 code some of
the realizations failed to ignite

» We performed a deterministic optimization in order to
find an initial design for which the combustion was
attained

Optimization features:

» Deterministic design in a 5 dimensional space

Primary inj loc
Secondary inj loc
Primary inj angle

Design parameter Range
Global Eqv ratio [0.5-0.8]
Primary-Secondary ratio [0.25-0.35]

[0.231-0.2564]
[0.40755-0.43295]
[5-25]

» Optimization at nominal (stochastic) conditions

» 54 total 2D d/8 evaluations: 32 corners + 22 internal

points

» Surrogate-based optimization: Gaussian Process
(Surfpack) + linear trend (in order to capture

large-scale variations)

Objective

Deterministic Optimization

Sandia
m National _
Laboratories

0.1 4 T T T T T T T T T T T IL
.

0.12 + ® |
0.1 .

o
0.08 ‘“.o 1
0.06 | /‘..-M |
0.04 - » .
Pbum ®
Obijective
0'02 M 1 1 1 1 1 1 1 J 1 1 1

1 5 9 13 17 21 25 29 33 37 41 45 49 53

id

» Final design point [¢p,, = 0.126079]

Design parameter Range
Global Eqv ratio 0.5
Primary-Secondary ratio 0.25308
Primary inj loc 0.231
Secondary inj loc 0.40755
Primary inj angle 15.0005




Deterministic Optimization for P2, RAPTOR Case 3
Tuned time windows, repaired combustion = max 7., S-t. ¢y, >=.719

Motivation:

» For the latest version of the 2D d/8 code we wanted to
obtain an initial design for the constrained optimization
problem

» Constraint allowable ¢y, > 0.19

Optimization features:

» Deterministic design in a 5 dimensional space

Primary inj loc
Secondary inj loc
Primary inj angle

Design parameter Range
Global Eqv ratio [0.5-0.8]
Primary-Secondary ratio [0.25-0.35]

[0.231-0.2564]
[0.40755-0.43295]
[5-25]

» Optimization at nominal (stochastic) conditions
» 32 total 2D d/8 evaluations (corners)

» Surrogate-based optimization: Gaussian Process
(Surfpack) + linear trend (in order to capture
large-scale variations)

Objective and constraint

Sandia
ﬂhlmmm

Laboratories

Deterministic Optimization (latest code 2D d/8)

0.4 T T T T T T T
Ncomb u L
 Poum @ N
Objective ...ll
0.35 + Constraint ..-.ll-.
0.3 |
0.25
[ ]|
IIIII-........
0.2 | P
0.15 1 1 1 1 1 1 1
1 4 8 12 16 20 24 28 32

» Final design point [1,,mp = 0.313936, ¢p,rn = 0.19]

Design parameter Range
Global Eqv ratio 0.63645
Primary-Secondary ratio 0.35
Primary inj loc 0.231
Secondary inj loc 0.424862
Primary inj angle 25




FY18Q1: Model problem




SUPERSONIC DuUcCT
CASE CONFIGURATION AND FEATURES

Geometry parametrization (HiFIRE inspired) in gmsh to add a wedge before the cavity — 5 parameters
Inflow conditions subject to uncertainty (same scramjet inlet conditions) — 3 parameters (P, Ty and M)
2 Geometrical parametrization in order to obtain 2 resolutions: COARSE and MEDIUM

Number of points: 2800 COARSE Vs 9600 MEDIUM

Execution time: 30 s COARSE Vs 300 s MEDIUM

Yy vyvyYyVvYY

Objective: Pressure loss (inlet outlet)

in 1 in
Pross = ( v / utPo(y>dy> /Pl

» Constraint: Average temperature along the cavity centerline

1
T:—/ T(x)dx
c= I Lc()

CFD settings (SU2)
» Multigrid solver: 4 levels — V cycle

» Convective numerical method: Jameson-Turkel-Schmidt

(JST)

» Spatial discretization: 2nd order with Venkatakrishnan
limiter



SUPERSONIC DucCT
COARSE SOLUTION — EXECUTION TIME 30 S

Pressure

- 2.038e+03




SUPERSONIC DucTt
MEDIUM SOLUTION — EXECUTION TIME 300 S

Pressure

1.896e+5

1.264e+5

- 2.038e+03
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OUU OPTIMIZATION - SETUP
Design: X = [hb,It, Itp, lb, xb]"

0.5<hb <25
7.5 <1t <115
25 <Iltp <45
175 <1b £ 205
79.5 < xb <855

. - T
Uncertain: g = [po,in, To,in, Min]

Po,in~ N (1.48e6, (7.4€3)?)
Ton~ N (1550,7.752)
M,,~ N(2.51,0.012552)

Deterministic: Stochastic:

pikoss(f*: 67) = min ploss(f' C_I)) ﬁikoss 55*»‘7) = min[E[ploss(f» C_i)]
S.t.593 < T,,,(X,q) <605 | s.t.593 < E[T,.4,(%,q)] < 605




Sandia
m National _
Laboratories

OUU OPTIMIZATION - SETUP

Problems and solution methods:

« Deterministic: ﬁ%%%%@g%v
- Dakota + NOWPAC ROAEERIN
. Medium grid N st
« Stochastic:
« Dakota + SNOWPAC+ MC Estimator coarse
« 20 samples
* Medium grid

« Dakota + SNOWPAC + MLMC Estimator
« 25+ 5 samples coarse grid
« 5 samples medium grid

Pa

A\
K

N

Same initial design: ¥ = [2.,11.,3.,18.,85] medium

Computational cost:
» Coarse grid: ~ 30s/evaluation
* Medium grid: ~ 4min/evaluation
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Deterministic OPTIMIZATION - Results

0.53 ijectl\(e | | 615 | | Cpnstral‘nt | |
-=- Evaluations -=- Evaluations
— Optimization Path .! — Constraint Path
610}, .
0.52 1 ,':
z
0 > 6050 .
0 @© "1 k]
o 0.51} o o] Fl
o o )
) 5 ' "
a 4@ 600} ool
v 0.50¢ 8. T
a £ 595}
()
-~ = —
- ’ Iy ) ~
0.49 \-l |"\‘ 590!
048 ——6 20 30 40 50 60 70 8% 10 20 30 40 50 60 70
Optimization step Optimization step

Pressure
4.702e+03 66728 1.3e+5 1.9e+5 2.528e+05
|||

Pressure

4.702e+03 66728 1.3e+5 1.9e+5 2.528e+05
IETELAE

9e+5
| LLLLLLLL LLL LLL L il 111 MR REEEER L B R R

Optimization Path Evaluations
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Stochastic MC OPTIMIZATION - Results

0.56 Obje‘ctlve | | 660 | | Constralnt | |
H -~ Evaluations ! -~ Evaluations
. . — Optimization Path 650¢ . —— Constraint Path|]
0.54f " oy n
e S 640} "
5 o ::
e ? 630 i
2 0.52 *é’ I
d g 620 o
p S 610l A s .
© 0.50] =2 " L N .
= S 1 i
e '
0.48}
: : ‘ : : 580 : : ‘ : :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Optimization step Optimization step

Pressure Pressure
4.822e+03 67223 1.3e+5 1.9e+5 2.544e+05 4.822e+03 67223 1.3e+5 1.9e+5 2.544e+05

\‘\\\‘\{w\\\\\\\ HH‘\_\_}HHH\ LLLLLL LLBLLLL I (5]

Optimization Path Evaluations
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Stochastic MLMC OPTIMIZATION - Results

0.55 Obje‘ctlve | | 630 - | Constralnt | |
-- Evaluations 62 . il == Evaluations
0.54 {| — Optimization Path ] 3 " il —  Constraint Path||
: 2620
w» 0.53F b > i
0 . 8
o . o 615¢
v 0.52 | =
> ! £ 610}
9 0.51} ;" g
t 050 :: g 605
e ¥ = 600}
= ' 1 %
049’ 1 " “ L1\ (] 595
. 1 " . & ~ L = i
0.48| -~ N1 v 590}
I, v
1]
0'470 10 20 30 40 50 60 5850 10 20 30 40 50 60
Optimization step Optimization step

Pressure Pressure
2,073e+03 65265 1.3e+5 1.9e+5 2.548e+05 1.634e+03 64936 1.3e+5 19e+5 2.548e+05
N T A | LLLLLLLLL
i i

S T

Pressure Pressure

2.073e+03 65265 1.3e+5 1.9e+5 2.548e+05 1.634e+03 64936 1.3e+5 1.9e+5 2.548e+05
| I il 1]

LLLLLLL LA
i

Optimization Path Evaluations
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OUU OPTIMIZATION — Results Summary

Reminder:
 Initial design: % =[2.,11.,3.,18.,85]T 05<hhb<25 175<1b <205
« Constraint: 5.t.593 < Tegy/E[Teqn] < 605 75<Ilt<115 795 <xb <855
25 <Iltp <45
. . Final . .
Final Design S Final ~ Runtime/
Problem . Objective . .
X . Constraint | Total Evaluations
ploss/ploss
Deterministic | [1.72, 10.5, 2.79, 18.12, 80.26] | 0.48771833 ST o lga
edium, serial
Stochastic 595.03 24h
MC [2.07, 9.28, 2.5, 20.5, 79.5] | 0.478597896 1200 Medium, 4 parallel
Stochastic I
[2.09, 7.5, 3.67, 18.35, 79.5] | 0.47607471 594.23 1800 Coarse, 4 parallel
MLMC i
300 Medium, 4 parallel
« Different final designs Multimodal  Lower bound constraint active
« Similar final objectives objective  Box constraints active
» Feasibility restoration visible in stochastic « Computational speed up due to
optimization asynchronous evaluations in MC

« Slower convergence for stochastic optimization and MLMC

From here, move towards robust/reliable designs
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Dakota Workflow Details (time permitting)




DeExB9 0B R

environment,

# graphics
tabular_data
method_pointer = 'OPTIM'

# begin opt specification #

method,
id_method = 'OPTIM'
model_pointer = 'OPTIM_M'
snowpac
seed = 25041981
max_iterations = 100

# max_function_evaluations = 1000

# convergence_tolerance = le-4
trust_region

initial_size = 0.15
minimum_size = 1.0e-6
contract_threshold = 0.25
expand_threshold = 0.75
contraction_factor = 0.50
expansion_factor = 1.50

# output debug

model,

id_model = 'OPTIM_M'

nested
variables_pointer = 'OPTIM_V'
sub_method_pointer = 'UQ'

0 responses_pointer = 'OPTIM_R'
primary_response_mapping = 1. 0. 0. 0.
secondary_response_mapping = 0. 0. 1. 0.

variables,

id_variables = 'OPTIM_V'

continuous_design = 5
initial_point 2. 11. 3. 18. 85
upper_bounds 2.5 11.5 4.5 20.5 85.5
lower_bounds 8.5 7.5 2.5 17.5 79.5
descriptors ‘hb' '’ 'uip' ‘! 'xb'
#scale_types ‘none’
#scales 0.1

responses,

# minimize mean Weight

# s.t. mean_S <= 0

# mean_D <= 0

id_responses = 'OPTIM_R'

objective_functions = 1

nonlinear_inequality_constraints = 1 # default upper bounds < 0.0
nonlinear_inequality_lower_bounds =
nonlinear_inequality_upper_bounds = 6085

no_gradients

no_hessians

#primary_scale_types = 'none'

#primary_scales = 0.1

# begin UQ specification #
= Dok ilmc.out 1% L42 SUN:2974 (Fundamental)

DeExB8 9 & B R ries

# begin UQ specification #

method,
id_method = 'UQ"'
model_pointer = 'HIERARCH'
multilevel_sampling
pilot_samples = 25 5
final_moments central
max_iterations = 0

seed = 12347

#sample_type random # use MC error estimates
# fixed_seed

output silent
# final_moments central

model,
id_model = 'HIERARCH'
variables_pointer = 'UQ_V'
responses_pointer = 'UQ_R'
surrogate hierarchical
ordered_model_fidelities = '2D'

model,

id_model = '2D'

variables_pointer = 'UQ_V'

interface_pointer = 'UQ_I'

responses_pointer = 'UQ_R'

simulation

solution_level_control = 'mesh_density'

0 solution_level_cost = 0.1 1.0 # relative cost of 2DCoarse, 2DFine
variables,

id_variables = 'UQ_V'
continuous_design = 5
normal_uncertain = 3

means = 1.48E+6 1550E+0 2.51
std_deviations = 0.0074E+6 7.75E+0 0.01255 # 0.5% std
descriptors = 'pP' T 'Ma’

discrete_state_set string = 1
initial_state = 'COARSE'
set_values = 'COARSE' 'MEDIUM'
descriptors = 'mesh_density'

interface,

id_interface = 'UQ_I'

fork asynchronous evaluation_concurrency = 4
analysis_driver = 'run_DAK2SU2_interface.sh'
parameters_file = 'params.in'
results_file = 'results.out'
file_save file_tag
#file_tag file_save

responses,
id_responses = 'UQ_R'
response_functions = 2
no_gradients

no_hessians

End DAKOTA input file

— k= ilmc.out 3% L10@ SVN:2974 (Fundamental) |
I | AA—




Legend:

Input Input
Available ToDo

Script Secript

Output Output

Flow:
Given: { input_mesh.in ’ ‘ input_uq.in J;

- scram_2d_geo( input_mesh.in ) create_inv_wedge_inp( input_uq.in )
modifies
{ scram_2d.geo ’ {inv_wedge_l-ll.l,C[_samph_i].cng
 Black box driver based on fork + file I/O
*  Asynchronous local concurrency with work directories grmsh( seram 24.gc0)
*  Multiple levels of parallelism: optimizer, UQ, SU2
[ scram_2d.su2

/1

SU2( scram_2d.geo , inv_wedge_ HLLC[_sample_i].cfg )

N

=

~

extract_Qol( input_uq.in, scram_2d.geo , inv_wedge_HLLC[_sample_i].cfg )

\

[ surface_flow.csv ’

/

output.out

|
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Osing Dakota input file 'dakota_su2_nowpac.in'
Writing new restart file dakota.rst

>>>>> Executing environment.

>>>>> Running nowpac iterator.

Begin UQ_I Evaluation 1

Parameters for evaluation 1:
2.0000000000e+00 hb
1.1000000000e+01 1t
3.0000000000e+00 Ltp
1.8000000000e+01 b
8.5000000000e+01 xb
MEDIUM mesh_density

blocking fork: run_DAK2SU2_interface.sh params.in.l results.out.l

Active response data for UQ_I evaluation 1:

Active set vector = { 11}
5.1986449332e-01 obj_fn
5.9890487703e+02 nln_ineq_con_1

Begin UQ_I Evaluation 2

Parameters for evaluation 2:
2.3000000000e+00 hb
1.1000000000e+01 1t
3.0000000000e+00 Ltp
1.8000000000e+01 b
8.5000000000e+01 xb
MEDIUM mesh_density

blocking fork: run_DAK2SU2_interface.sh params.in.2 results.out.2

Active response data for UQ_I evaluation 2:
Active set vector = { 11}
5.2606601776e-01 obj_fn
6.1195189499e+02 nln_ineq_con_1

Begin UQ_I Evaluation 3

Parameters for evaluation 3:
2.0000000000e+00 hb
1.0400000000e+01 1t
3.0000000000e+00 Ltp
1.8000000000e+01 b
8.5000000000e+01 xb
MEDIUM mesh_density

blocking fork: run_DAK2SU2_interface.sh params.in.3 results.out.3

Active response data for UQ_I evaluation 3:
Active set vector = { 11
— (11}

—-:—— dakota_su2 .out 5% L77 SVN-2974 (Fundamental)
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Using Dakota input file 'dakota_su2_snowpac.in'
Writing new restart file dakota.rst

>>>>> Executing environment.

>>>>> Running snowpac iterator.

ﬁestedModel Evaluation 1: running sub_iterator
=)

NonD random Samples = 2@ Seed (user-specified) = 12347

Blocking synchronize of 2@ asynchronous UQ_I evaluations
First pass: initiating 4 local asynchronous jobs
Second pass: scheduling 16 remaining local asynchronous jobs

Active response data from sub_iterator:

Active set vector= {1010}
5.2004116715e-01 mean_rl
6.0016183017e+02 mean_r2

NestedModel Evaluation 1 results:

Active response data from nested mapping:

Active set vector = { 11}
5.2004116715e-01 obj_fn
6.0016183017e+02 nln_ineq_con_1

NestedModel Evaluation 2: running sub_iterator

NonD random Samples = 20 Seed not reset from previous LHS execution

Blocking synchronize of 2@ asynchronous UQ_I evaluations
First pass: initiating 4 local asynchronous jobs
Second pass: scheduling 16 remaining local asynchronous jobs

Active response data from sub_iterator:

Active set vector= {1010}
5.2419844639e-01 mean_rl
6.1227624902e+02 mean_r2

NestedModel Evaluation 2 results:

Active response data from nested mapping:

Active set vector = { 11}
5.2419844639%e-01 obj_fn
6.1227624902e+02 nln_ineq_con_1

N . jakota_su2_snowpac_medium.out 6% L1290 SVN-2074 (Fundamental)




MLMC | )
DeEx 0 9w romw™ ahoratories

>>>>> Executing environment.

>>>>> Running snowpac iterator.

NestedModel Evaluation 1: running sub_iterator

MLMC pilot sample:

NonD random Samples = 25 Seed (user-specified) = 12347

Blocking synchronize of 25 asynchronous UQ_I evaluations
First pass: initiating 4 local asynchronous jobs
Second pass: scheduling 21 remaining local asynchronous jobs

NonD random Samples = 5 Seed not reset from previous LHS execution

Blocking synchronize of 1@ asynchronous UQ_I evaluations
First pass: initiating 4 local asynchronous jobs
Second pass: scheduling 6 remaining local asynchronous jobs

Blocking synchronize of @ asynchronous UQ_I evaluations

MLMC iteration 1 sample increments:
98683
12172

Active response data from sub_iterator:

Active set vector = {1010}
5.2149926761e-01 mean_rl
5.9745882158e+02 mean_r2

NestedModel Evaluation 1 results:

Active response data from nested mapping:

Active set vector = { 11}
5.2149926761e-01 obj_fn
5.9745882158e+02 nln_ineq_con_1

NestedModel Evaluation 2: running sub_iterator

MLMC pilot sample:

NonD random Samples = 25 Seed not reset from previous LHS execution

mm B!0cking synchronize of 25 asynchronous UQ_T evaluations -
-:—— dakota_su2_mlmc.out 5% L167 SVN-2974 (Fundamental) |




