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Variational Bayesian Blind Image

Deconvolution: A Review
Pablo Ruiz, Xu Zhou, Javier Mateos, Rafael Molina and Aggelos K. Katsaggelos

Abstract

In this paper we provide a review of the recent literature on Bayesian Blind Image Deconvolution

(BID) methods. We believe that two events have marked the recent history of BID: the predominance

of Variational Bayes (VB) inference as a tool to solve BID problems and the increasing interest of

the computer vision community in solving BID problems. VB inference in combination with recent

image models like the ones based on Super Gaussian (SG) and Scale Mixture of Gaussians (SMG)

representations have led to the use of very general and powerful tools to provide clear images from

blurry observations. In the provided review emphasis is paid on VB inference and the use of SG and

SMG models with coverage of recent advances in sampling methods. We also provide examples of

current state of the art BID methods and discuss problems that very likely will mark the near future of

BID.

I. INTRODUCTION

Thousands of millions of pictures are taken everyday. If the claim in [1] is right, 880 billion photos were

taken in 2014. Every minute, 27,800 pictures are uploaded to Instagram, 208,300 photos are uploaded

to Facebook and more than one thousand to Flickr, and the trend, with a digital camera in every mobile
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phone, is probably exponentially increasing. The quality of these pictures varies widely from professional

to amateur, in which case in many instances the images are taken under adverse conditions, such as low

lighting or with motion between the camera and the scene, thus resulting in blurred images. While in

some cases the introduction of blur in photography is intentional, being a powerful element of visual

aesthetics, in most cases it is an undesirable effect degrading the quality of the image. Examples of the

intentional introduction of blur includes the silky water effect obtained by using a long exposure when

photographing a water flow (Fig. 1a), the bokeh effect obtained in parts of the scene lying outside the

depth of field (Fig. 1b) and used to focus the attention of the viewer on a specific subject, or the motion

blur effect (Fig. 1c) used to provide a sense of speed. Unintentional blur is caused by a number of causes,

the most important ones being: camera or subject motion while the shutter is open (Fig. 1d) which leads

to motion blur, out-of-focus (Fig. 1e) that blurs the whole the image or relevant parts of it or, simply,

the presence of the atmosphere (Fig. 1f) as is the case with astrophotograhy.

Not only commercial photography is affected by blur. Modern science makes an intensive use of

images in areas such as astronomy, remote sensing, medical imaging and microscopy and, in all of them,

imperfections and characteristics of the capture system lead to images degraded during the observation

process by blur, noise, and other degradations that diminish the quality and, hence, the value of the

captured images.

Image deconvolution is a mature topic that aims at recovering the underlying original image from its

blurred and noisy observations. Sometimes, the blur is completely or partially known or can be estimated

prior to the deconvolution process. For instance, in astronomical imaging, an accurate representation of

the blur can be obtained by imaging a single star first before photographing the astronomical object of

interest. In contrast, blind image deconvolution (BID) tackles the restoration problem without knowing

the blur in advance, leading to one of the most challenging image processing problems, since many

combinations of blur and “true” image can produce the observed image. To start with, deconvolution

is an ill posed problem in the Hadamard sense [2], that is, small variations in the data result in large

variations in the solution. The problem is exacerbated in the BID problem, since in addition, small

variations in the estimated blur can lead to large variations in the restored image.

BID is an underdetermined nonlinear inverse problem, which requires the estimation of many more

unknown variables than the available observed data. To find meaningful solutions, not only prior infor-

mation about the unknowns is crucial, but also a good and sound estimation approach. In this paper,

we provide a comprehensive survey of BID methods reported since the publication of the review [3],

with a focus on Bayesian approaches. In our opinion, since the publication of [3], Variational Bayes
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Fig. 1. Blurred pictures due to intentional blur: a) silky water effect by Geraint Rowland (https://www.flickr.com/photos/

geezaweezer/15327097294), b) bokeh by Rodrigo Gomez (https://www.flickr.com/photos/rgomez74/2970906336), c) motion blur

by Ernest (https://www.flickr.com/photos/viernest/3380560365). Blurred pictures due to unintentional blur: d) camera motion by

tunguska (https://www.flickr.com/photos/tunguska/103472115), e) out of focus by Nacho (https://www.flickr.com/photos/gonmi/

8193430914), f) atmosphere by Mike Durkin (https://www.flickr.com/photos/madmiked/43831827).

(VB) inference has emerged as a dominant approach for the solution of BID problems. VB inference

in combination with recently introduced image models, like the ones based on Super Gaussian (SG)

and Scale Mixture of Gaussian (SMG) representation, has led to the development of very general and

powerful tools to obtain clear images from blurry observations. We review the recent BID literature

with an emphasis on VB inference and the use of SG and SMG models but without ignoring recent

advances in sampling methods. We also provide examples of current state of the art BID methods and

discuss problems that very likely will mark the near future of BID. The paper is organized as follows.

In Section II, we briefly introduce the BID problem as well as the prior models. Section III shows the

variational Bayesian methodology and its advantages over other inference approaches. We also present

two representation models for variational inference, followed by the final BID algorithm. Section IV

discusses some important outstanding challenges regarding the applications of VB based BID methods

and BID as a whole research field. Experimental results are presented in Section V.
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II. BAYESIAN PROBLEM FORMULATION

A. Bayesian framework for BID

In BID the image formation model is usually assumed to be:

y = x⊗ h + n = Hx + n, (1)

where y ∈ RN is the observed blurred image (a column vector of N pixels), ⊗ represents the convolution

operation, x ∈ RN is the unknown original image, H ∈ RN×N is the convolution matrix obtained from

the also unknown blur kernel h ∈ RK and n ∈ RN is a noise term which is assumed to be i.i.d. Gaussian

with variance β−1. As discussed in section IV-D. other degradation models than the Linear and Spatially

Invariant model above are also utilized.

Notice that although the BID problem is defined here in the image domain, it can also be easily

formulated in transformed domains, such as the derivative, wavelet, and curvelet domains. The use of

the filter space has gained popularity recently, however, there are still some open questions which need

to be addressed before deciding which one is the right domain to work on, see section IV-A.

From a Bayesian perspective, given the observed blurred image y, the goal is to infer the latent (hidden)

variables z = {x,h} and possibly the model parameters denoted by Ω. The image degradation model in

Eq. (1) can be written as:

p(y|z, β) = N (y|Hx, β−1I), (2)

where β is the precision parameter of the observation model, and possibly one of the model parameters

to be estimated.

It is well known that the inverse problem of Eq. (1) is ill-posed [3]. Therefore, additional information

on the latent variables and model parameters must be provided. The Bayesian paradigm introduces this

necessary information for the BID problem as a prior distribution p(z|Ω), which models the information

on z, and a prior p(Ω) on the model parameters. Sometimes the prior on the model parameters is called

hyperprior and the elements of Ω are called hyperparameters.

With these ingredients, the global modeling of the BID problem can be written as

p(z,Ω,y) = p(y|z,Ω)p(z|Ω)p(Ω). (3)

Before describing how inference is performed, we will now review the image, blur and hyperparameters

priors proposed for the BID problem since the publication of [3].
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Fig. 2. (a) and (b): examples of penalty functions ρ(s), where the MOG is obtained from Levin et al. [4]. (c): their corresponding

ρ′(s)/s. (d): plots of ρ′(s)/s, where an upper bounding is taken for visualization. Note that TV is replaced with anisotropic

TV (`1 prior) since isotropic TV cannot be shown in 1-D function.

B. Image prior models

An unquestionable landmark on the recent history of BID is the paper by Miskin and MacKay [5]. In

that work the authors propose the use of a mixture of Laplacians to restore cartoon images and utilize,

for the first time in the BID literature, VB inference (to be described later) to restore the observed image.

Later, Likas and Galatsanos [6] proposed a Gaussian prior to impose smoothness on the image and blur,

see also [7], and Fergus et al. [8] proposed a mixture-of-Gaussians (MOG) to impose sparsity.

The 2007 Bishop et al. [3] review on BID describes, among others, classical prior models such as

Conditional Autoregression (CAR) or Simultaneous Autoregression (SAR) used by Molina et al. [9] to

impose smoothness, or Total Variation proposed by Rudin, Osher and Fatemi [10] to impose piecewise-

smoothness. The TV prior model has been frequently used in BID, see for instance [11]–[15], see also

[16] and [17]. Fergus et al. [8] represents the first publication on the use of filtered versions of the original
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image to estimate image and blur. The use in [12] of majorization methods with variational inference and

diagonal covariance approximation led to a new way to approach BID in image processing (not widely

acknowledged in the computer vision community). As we will see in the following, the TV prior used

in [12] is a particular case of the use of Super Gaussian Distributions in BID.

Since the influential work of Fergus et al. [8], sparse prior models have attracted the attention of BID

researchers and are, in our opinion, rightly considered to be the state of the art representation in filtered

domains. It is a well known fact that when high-pass filters are applied to natural images, the resulting

coefficients are sparse; i.e., most of the coefficients are zero or very small while only a small number

of them are large (e.g., at the edges). This is a very important characteristic that should be taken into

account when restoring natural images.

The `p prior has been used in a large number of works such [12], [13], [18]–[21]. They use a prior

distribution based on the minimization of quasi-norms ‖ · ‖pp with 0 < p ≤ 1. Levin et al. [18] suggest

the use of p in the range [0.6, 0.8] for natural images.

The Super-Gaussianity property presented by Palmer in [22], was used in Babacan et al. [23] as the

building block to propose a general representation for sparse priors. As we will see, almost all previous

and very recently proposed prior models can be represented using SG. This representation is used in the

same work [23] to introduce two new image priors log and exp. Recent models like the one proposed by

Zhang and Wifp [24], or the Student-t prior recently proposed by Mohammad-Djafari [25] are particular

cases of SG distributions.

1) Sparse General Representation: A probability distribution is considered to be sparse when it is

Super Gaussian (SG) [22], i.e., compared to the Gaussian distribution, it has heavier tails, it is more

peaked, and has a positive excess kurtosis. These distributions are referred to as sparse since most of

the distribution mass is located around zero (hence strongly favoring zero values), but the probability of

occurrence of large signal values is higher compared to the Gaussian distribution.

Babacan et al. [23] propose the use of the following general framework to define the prior model

either in the image or the filter space. First they consider L high-pass filters {fγ}Lγ=1 (such as derivatives,

wavelets, curvelets, etc.) and define

xγ = fγ ⊗ x, γ = 1, . . . , L. (4)

Using these filters on the real underlying image the following prior model in the image space can be

defined

p(x) ∝
L∏
γ=1

N∏
i=1

exp (−αγρ(xγ(i))) , (5)
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where ρ(·) is an energy function symmetric around zero with ρ(
√
s) increasing and concave for s ∈ (0,∞)

[22] and αγ a scale parameter.

Alternatively, the filtered original images can be assumed to be independent. The following set of

independent priors is then considered

p(xγ) ∝
N∏
i=1

exp (−ρ(xγ(i))) , γ = 1, . . . , L. (6)

In this case, a set of blurred and noisy observations can be defined, associated with the filtered original

images

yγ = fγ ⊗ y = h⊗ fγ ⊗ x + fγ ⊗ n = h⊗ xγ + nγ , (7)

where nγ is assumed to be Gaussian independent noise with precision β. It is important to note that the

observations yγ , γ = 1, . . . , L, are assumed to be independent and they provide information on the blur

but not exactly on x but on its filtered versions.

Notice that the most popular recent prior models, such as TV, `p, or MOG are Super Gaussian

distributions (see Fig. 2 for some examples), and therefore can be represented using Eq. (5). Notice

also in Fig. 2, that log enforces sparsity very strongly due to its infinite peak at zero and heavy tails.

A sub-class of Super Gaussian distributions is the so called Scale Mixture of Gaussians (SMG),

proposed by Andrews and Mallows [26] and used as a general framework for BID in Babacan et al.

[23]. Here, associated with each filter γ and each pixel i we have

p(xγ(i)) =

∫
p(xγ(i)|ξγ(i))p(ξγ(i))dξγ(i), (8)

where p(xγ(i)|ξγ(i)) is a Gaussian distribution with precision ξγ(i). This model can also benefit from

the introduction of a global scale parameter αγ in Eq. (5).

SMG requires complete monotonicity of p(
√
s), i.e., (−1)np(

√
s)n ≥ 0 must be satisfied for all

n = 0, 1, 2, . . .. As can be seen in [22], this representation is more strict, in the sense that fewer classes

of sparse priors can be represented with it than using Eq. (5). Finding p(ξγ(i)) is in general a difficult

task; however, as we will see in Section III its full knowledge is not needed for our purposes. One

example of SMG is the Student-t prior proposed by Mohammad-Djafari [25]. It is clear that an MOG is

an SMG model and that spike and slab distributions on z ∈ R, p(z) = λδ(z) + (1− λ)N (z|0, σ2) [27]

are the limit of MOG models with two components, one of them with very small variance. Inference

with these models is complicated due to the image size; however variational inference can still be carried

out, see [28]. Notice that sparse promoting spike and slab and Bernoulli-Gaussian [27], [29] priors will
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very likely receive more attention by the BID community especially when estimating the blur in the filter

space.

C. Blur models

Although the above described prior models were proposed for the image, all of them can also be used

for the blur as well. The BID literature also contains specific blur models which we now describe. Molina

et al. [9] propose a Dirichlet prior for kernel modeling. Since the curvelet representation can take into

account both the continuity and sparsity of the motion blur kernel, Cai et al. [30] suggest the use of this

representation for this type of blur. Oh and Kim [31] propose a piecewise-linear model for motion blur

in order to reduce the dimensionality of the solution space and make the kernel estimation process more

robust.

Based on the assumption that the power spectrum of natural images drops quadratically as the frequency

increases Goldstein and Fattal [32] introduce a power spectrum prior on the blur kernel. Recently, a novel

convex blur regularizer based on the spectral properties of the convolution operators can be found in [33].

Since the spectral properties used are based on a linear and shift-invariant model without considering the

noise, these methods do not work well for spatially varying blurs and noisy observations.

Let us consider the observation model in Eq. (1) and assume that the original image x is known. In

this case we have N observations and aim at estimating K coefficients, where K is the size of the blur.

Since the image size is usually much larger than the blur size, N observations should be sufficient to

obtain a good blur estimate, even more so if L filtered observations are used. Based on the fact that

usually K << N , many authors [15], [23], [34], [35] have recently advocated the use of flat priors on

the blur, enforcing only its nonnegativity and normalization constraints.

D. Hyperparameters models

So far we have studied the distributions p(z|Ω), p(y|z,Ω) that appear in the Bayesian modeling of

the BID problem in Eq. (3). We complete this modeling by studying now the distribution p(Ω).

An important problem is the estimation of the vector of parameters Ω when they are unknown. To

deal with this estimation problem, the hierarchical Bayesian paradigm introduces a second stage, where

the hyperprior p(Ω) is also formulated.

For parameters, ω, corresponding to inverses of variances, the gamma distribution is used. It is defined

by:

p(ω) = Γ(ω|aω, bω) =
(bω)aω

Γ(aω)
ωaω−1 exp [−bωω] , (9)
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where ω > 0 denotes a hyperparameter, bω > 0 is the rate parameter, and aω > 0 is the shape parameter.

These parameters are assumed known. The gamma distribution has the following mean, variance, and

mode:

E(ω) =
aω
bω
,Var(ω) =

aω
b2ω
,Mode(ω) =

aω − 1

bω
. (10)

Note that the mode does not exist when aω ≤ 1 and that mean and mode do not coincide. The literature

also reports the use of non-informative prior models, p(Ω) ∝ constant, which can be considered as the

limits of the above described hyperpriors.

Finally, we would like to mention here that the SG and SMG formulations turn the parameter estimation

into a difficult task, especially when several filtered images are considered, since their partition functions

can not usually be calculated.

III. BAYESIAN INFERENCE

Once the observation and prior models have been described, in other words, once the elements of the

joint probability model in (3) have been specified, the goal now becomes the drawing of inference of the

unknown variables Θ = {z,Ω} given the observations.

In the Bayesian framework Θ is inferred calculating (or approximating) the posterior distribution

p(Θ|y), expressed using the Bayes’ rule as

p(Θ|y) =
p(Θ,y)

p(y)
=

p(y|Θ)p(z|Ω)p(Ω)

p(y)
. (11)

Unfortunately, since the integral p(y) =
∫

p(Θ,y)dΘ is not tractable, the above posterior cannot be

analytically calculated. Different estimation methods have been proposed to address this problem in the

BID context and we will now review them.

Probably the most widely used method in the literature is Maximum a Posteriori (MAP). Since

p(Θ|y) ∝ p(Θ,y) the maximum of the posterior distribution can be obtained by maximizing the joint

distribution p(Θ,y) with respect to Θ. However, as pointed out in the landmark papers by Levin et

al. [4], [34], MAP is not a suitable estimation procedure in BID problems, because the associated cost

function favors flat images for many sparse priors and leads to a delta blur estimate. To avoid the delta

blur solution, Perrone and Favaro [14] show that a delayed normalization [11] should be used while other

authors [36]–[38] suggest using non-dimensional sparsity measures.

Another very popular inference method is MAPh [39] [34] [40] [24]. Unlike MAP, this method

integrates the joint distribution with respect to x before estimating h and Ω, that is, blur and parameters
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TABLE I

COMPARISON OF INFERENCE METHODS

MAP MAPh VB MCMC

Has full posterior no partial yes yes

Has point estimates yes yes yes yes

Has uncertainty info no partial yes yes

Allows hidden data no yes yes yes

Complexity low low medium high

are estimated by maximizing the evidence [41]. The restored image is finally calculated by maximizing

the joint distribution, using the estimate values of h and Ω through the above integration on the image.

Variational Bayesian inference has been widely used in BID (see [4]–[8], [13], [20], [23], [24], [40]).

VB generalizes MAP and MAPh (see [42] for a proof) providing approaches for estimation of the

posterior distributions of x, h and Ω.

Together with the well established use of VB inference in BID, Markov Chain Monte Carlo (MCMC)

methods are also gaining popularity. MCMC is the most general method used to approximate a posterior

distribution, see [43] [44] [45] for details. The model in Eq. (3) is used to generate thousands of samples

of p(z,Ω|y), which are used to infer the posterior distribution. In theory, sampling methods can find the

exact form of the posterior distribution, but in practice they are computationally intensive (especially for

multidimensional signals such as images) and their convergence is hard to establish.

In computationally cost terms, VB is much more efficient than MCMC, and more expensive than MAP

or MAPh. The features of each method are summarized in Table I.

We now describe the application of VB and MCMC to BID.

A. Variational Inference in the image space for Super Gaussian priors

Since SG distributions are flexible enough to represent most of the image models used in the BID

literature, we restrict, without loss of generality, the VB description to this representation. Furthermore

we will formulate the inference in the image space; a detailed account of the use of SMG for the filter

representation can be found in [23].

As it has already been explained above, the posterior distribution cannot be calculated analytically using

the Bayes’ rule in Eq. (11). To approximate p(z,Ω|y), VB minimizes the following Kullback-Leibler
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divergence

KL(q(Θ)‖p(Θ|y)) =

∫
q(Θ) log

q(Θ)

p(Θ|y)
dΘ =

∫
q(Θ)

p(Θ,y)
dΘ + const. (12)

The Kullback-Leibler divergence is always non negative and is zero if and only if q(Θ) = p(Θ|y). Since

the minimizer q(Θ) = p(Θ|y) cannot be calculated, some assumptions on q(Θ) have to be made. One

possible assumption is that q(Θ) has a specific parametric form, e.g., a Gaussian distribution. Another

widely used assumption is that q(Θ) factorizes into disjoint groups, i.e.,

q(Θ) = q(x)q(h)q(Ω). (13)

This factorized form of variational inference is called mean field theory in physics [46].

Using Eq. (13), the KL divergence can be minimized with respect to each factor while holding the

other factors fixed. The optimal solution for each factor is then [47]

log q(θ) = E [ln p(Θ,y)]q(Θ̄) + const, (14)

where Θ̄ = Θ\θ is the set of unknowns excluding θ and E [ln p(Θ,y)]q(Θ̄) denotes the expectation taken

with respect to all the approximating factors Θ̄. This system of equations is solved by an alternating

minimization procedure, where each distribution q(θ) is iteratively updated using the latest distributions

of all the other factors. Since the KL divergence (12) is convex with respect to q(θ) [48], the convergence

of this alternating minimization procedure is guaranteed.

The penalty function ρ(·) defined in (5) can be represented as (see [49])

ρ (s) = inf
ξ>0

1

2
ξs2 − ρ∗

(
1

2
ξ

)
, (15)

where ρ∗ (ξ/2) is the concave conjugate function

ρ∗
(

1

2
ξ

)
= inf

s

1

2
ξs2 − ρ (s) . (16)

Furthermore, the infimum in (15) is achieved at ξ = ρ
′
(s)/s, as shown in [23]. Directly applying VB

inference using p(x,h,y) is unfeasible, since the expectation of the logarithm of the joint distribution

with respect to q(x) is intractable.

Since ρ(s) is the penalty associated to a SG distribution we can write

p(x) ≥ Z
L∏
γ=1

N∏
i=1

exp(−αγ(
ξγ(i)

2
x2
γ(i)− ρ∗(1

2
ξγ(i)))), ∀ξγ(i) > 0, (17)

where Z is a constant. This Gaussian like lower bound will allow the expectation of the joint distribution

to be calculated analytically. We have
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p(x,h,y) ≥ p(y|x,h)p(h)Z

L∏
γ=1

N∏
i=1

exp(−αγ(
ξγ(i)

2
x2
γ(i)− ρ∗(1

2
ξγ(i))))

= M(y,x,h, ξ), (18)

where ξ = {ξγ(i), γ = 1, . . . , L, i = 1, . . . , N} with all component positive.

We then have ∫ ∫
q(x)q(h) log

q(x)q(h)

p(x,h,y)
dxdh

≤
∫ ∫

q(x)q(h) log
q(x)q(h)

M(y,x,h, ξ)
dxdh

=

∫ ∫ ∫
q(ξ)q(x)q(h) log

q(ξ)q(x)q(h)

M(y,x,h, ξ)
dxdhdξ, (19)

where q(ξ) is a degenerate distribution on ξ.

We then minimize the above integral on q(ξ), q(x), and q(h) assuming that q(h) is degenerate.

According to (14), we obtain

ĥ = arg max
h

E[log(M(y,x,h, ξ̂))]q̂(x), (20)

q̂(x) ∝M(y,x, ĥ, ξ̂), (21)

ξ̂ = arg max
ξ>0

E[log(M(y,x, ĥ, ξ))]q̂(x). (22)

B. Estimation of blur, image, and variational parameters

For the latent image, we obtain from (21),

log q̂(x) = −β
2
‖Ĥx− y‖22 −

1

2

L∑
γ=1

αγx
T
γ diag(ξ̂γ)xγ , (23)

which is a multivariate Gaussian with precision matrix

C−1
x = βĤT Ĥ +

L∑
γ=1

αγF
T
γ diag(ξ̂γ)Fγ , (24)

where Fγ is an N × N convolution matrix formed by the filter fγ , and Ĥ is an N × N convolution

matrix obtained from ĥ. The mean value x̂ is used as the estimate for x, which is obtained by solving

the following system of linear equations

C−1
x x̂ = βĤTy. (25)
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For the variational parameter ξ̂, we obtain from (22)

ξ̂γ(i)=
ρ

′
(νγ(i))

νγ(i)
, (26)

where νγ(i) =
√
E[x2

γ(i)], 1 ≤ i ≤ N , with the expected value calculated using the distribution q̂(x).

To estimate the blur we have

ĥ=arg min
h
‖Hx̂− y‖22 + hTDxh, (27)

subject toh(i) ≥ 0,

K∑
i=1

h(i) = 1, (28)

where Dx is a K ×K matrix given by

Dx(m,n) =

N∑
j=1

Cx(m+ j, n+ j). (29)

To estimate the variational parameters in Eq. (26) and the blur in Eq. (27), the matrix Cx is required.

This means that the N × N matrix C−1
x has to be inverted, a very time and memory demanding

task. Following [4] and [23], we approximate Cx as the inverse of the diagonal of C−1
x . This inverse

approximation is commented on in the open issues section IV-C.

The prior image model can also be made dependent on a global parameter, which models the general

scale behavior of the prior model. Its estimation is a very hard problem which can be approached under

some assumptions on the prior model, see [20].

C. Algorithm

The VB based blind deconvolution algorithm is presented in Alg. 1. However, as pointed out by

Fergus et al. [8], directly applying it to estimate the blur may end up in the local minima, especially

when the kernel support is large. To handle the large blur support problem, they suggest using a multiscale

approach, namely building an image pyramid and then applying the BID method at each scale, which

has proved to be very effective in BID problems. The rationale is that at the coarsest level, the blur is

reduced significantly, so that it is easy to estimate a kernel from the downsampled image. At the next

finer level, this kernel estimate is upsampled and can be used as a good initial guess for the single scale

BID. Repeating this process until the finest level, we can obtain a better kernel estimate. After kernel

estimation, we reconstruct the final sharp image using a non-blind deconvolution method (e.g., [50], [18],

[51]).

The computation in Alg. 1 is dominated by the solution of Eqs. (25) and (27). Since the most time

consuming part when solving these two equations is the 2-D convolution, the computational complexity
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Algorithm 1 Single Scale Bayesian Blind Deconvolution Using Super Gaussian Priors
Require: Observation y, noise level β, penalty ρ(s), prior weight α.

1: Initialization x = y, Cx = 0,

2: repeat

3: Initialize ξ

4: while not converge do

5: Update x by solving the linear system 25

6: Update ξ using Eq. (26)

7: Approximate Cx(i, i) with 1/C−1
x (i, i)

8: end while

9: Update h by solving the quadratic programming problem in Eq.(27)

10: until Convergence

is O(NK) or O(N log(N)), depending on the usage of spatial convolution or FFT, respectively. We

should mention that the computational complexity increases to an extremely large number, O(N3), if

C−1
x is inverted exactly. The number of iterations required for convergence depends on the image priors.

For example, the use of log prior leads to faster convergence than the use of `0.8 prior, because the log

prior is more edge preserving and sparsity promoting than the `0.8 prior. It is also shown in [38] that, for

the same optimization method and parameter settings, the use of the normalized `1 prior [38] results in

fewer iterations for convergence than the `1/`2 prior [36] in the kernel estimation step. Due to the use

of the covariance matrix, the VB BID method is slower than the MAP method [36] [37] [38], and much

slower than the edge prediction based methods [52] [53].

D. Sampling methods

Since the posterior distribution is not analytically available, sampling methods can be used to draw

a large number of samples from it, and Monte Carlo integration techniques provide tools which allow

performing inference on this dataset.

To simulate the posterior distribution Markov chains are used to develop different sampling methods.

Perhaps the most widely used sampling method is Gibbs sampling described by the Geman and Geman

in [54]. More recent methods are the Metropolis adjusted Langevin algorithms [55] and Hamiltonian

Monte Carlo [56].
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To better understand the sampling methods let us see an example of Gibbs sampling. If we can write

down analytic expressions for the conditional distributions of all the unknowns we wish to estimate,

given the others, we simply draw samples from each of the distributions in turn, conditioned on the most

recently generated samples values for the other parameters. In our case we want to simulate p(x,h,Ω|y);

the iterations would proceed as follows:

First iteration: x(1) ← p(x|h(0),Ω(0),y)

h(1) ← p(h|x(1),Ω(0),y)

Ω(1) ← p(Ω|x(1),h(1),y)

Second iteration: x(2) ← p(x|h(1),Ω(1),y)

h(2) ← p(h|x(2),Ω(1),y)

Ω(2) ← p(Ω|x(2),h(2),y)

... (30)

where the symbol ← means that the values are drawn form the distribution on the right. Once enough

samples have been collected, point estimates and other statistics of the distribution may be found using

Monte Carlo integration, for example the Minimum Squared Error estimator of the mean can be obtained

as x̂ = 1
J

∑J
j=1 x

(j), where J is the number of drawn samples.

Due to the expensive computational cost (which is even worse when it is applied to high-dimensional

data, such as images), the use of sampling methods in BID is not very extended. The works in this field

are focused on developing more efficient algorithms. Ge et al. [57] or Kail et al. [58] propose modified

versions of the Gibbs sampling, and Pereyra [35] uses the Langevin algorithm which uses convex analysis

to simulate efficiently the distributions.

IV. OPEN ISSUES

Before presenting some BID examples we would like to comment here on some open problems, either

on the Variational Bayesian BID (VBBID) or BID itself, that we believe will very likely be explored in

the near future:

A. Image space versus filter space

VB methods can be formulated in either the image or the filter space. Levin et al. [4] state that the

filter space has better performance for the MOG prior. Xu et al. [37] indicate that using the image space
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formulation for latent image estimation and filter space formulation for kernel estimation is better than

using the same spaces. In our opinion additional work is needed to establish the best spaces for image

and kernel estimation. The image space appears to be less sensitive to noise since the noise is amplified

in the filter space. Furthermore, the filter space is probably more computationally expensive than the

image space. On one hand, utilizing the same number of iterations and L derivative filters, the total

computation time in the filter space is about L times that of the image space. On the other hand, it is

shown in Cho and Lee [52] that the kernel estimation in the image space requires more iterations to

converge than in the filter space, since the symmetric matrix X̂T X̂ of the quadratic program in Eq. (27),

is not as diagonally dominant as
∑

γ X̂
T
γ X̂γ , where X̂ and X̂γ denote the convolution matrices formed

by x̂ and x̂γ , respectively. Based on the above two factors, it is conceivable that the image space is

computationally less expansive than the filter space, when L ≥ 2. Additionally, filter space methods have

access to more “observations” to estimate the blur, although with an unrealistic independence assumption

on them. The pros and cons of both approaches should be carefully analyzed.

B. Bottom-up approach

The bottom-up approach, first proposed by Babacan et al. [23], refers to formulating a weight update

scheme φ(ν) = ρ′(ν)/ν for the Gaussian prior approximation (without knowing explicitly the penalty

function) provided that φ(ν) is decreasing on (0,+∞). A crucial and very challenging question is how

to choose a good penalty function ρ or φ for VB blind deconvolution.

Wipf and Zhang [59] state that the preferred distribution is not the one reflecting the accurate statistics

of the latent image, but the one that is most likely to guide VB iterations to high quality global solutions

by strongly differentiating between blurry and sharp images. This implies choosing a φ that strongly

discriminates sharp and blurry images. To that end, φ should be strongly sparsity promoting and also

very edge preserving, such as φ(ν) = ν−p with (p ≥ 2).

We believe that a trade-off between preserving edges and promoting sparsity should be achieved when

dealing with noisy images. If noise is high, a very edge preserving φ(ν) cannot suppress it. Babacan et

al. [23] also suggest a more general form φ(ν) = (Fν)−p, where F is a linear operator (e.g., nonlocal

mean filter [60]). A variety of heuristics can easily be embedded through F to combat noise and increase

robustness. Finally, we emphasize that given a φ, the value of αγ should be chosen properly, as we will

show in the experimental section.
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C. Covariance approximation and general optimization issues

The covariance matrix Cx plays a very important role not only in the image estimation step but also in

the kernel estimation step. This matrix makes VB methods different from MAP methods. Intuitively, the

introduction of Cx in the estimation of the weights ξ makes their estimated values slightly smaller than

when the covariance is not considered. As a result, the edges are better preserved. Besides, in the kernel

estimation step, it provides an adaptive smoothness promoting regularization term which helps avoid the

delta kernel estimates.

Unfortunately, due to the high computational cost, Cx is approximated by the inverse of the diagonal of

the weighted deconvolution matrix C−1
x . Since C−1

x is not diagonal, the diagonal approximation definitely

introduces an error. The diagonal approximation is only reliable when β−1 and ξ are relatively large.

If both β−1 and ξ are small, this approximation is not that reliable. Another alternative is the mean

value approximation proposed by Babacan et al. [61], which replaces the weights ξγ with the average∑N
i=1 ξγ(i)/N , so that Cx is a circulant matrix associated with the kernel hCx

= F−1Λ−1
h , where F

denotes the 2-D DFT and Λh is a column vector formed by the eigenvalues of C−1
x . hCx

has a large

but finite support thanks to regularization and can be computed efficiently with the use of an FFT. This

approximation takes the non-diagonal elements information into account, but the important information

on the spatially variant weights is lost. The consequences of the use of the diagonal and mean value

approximation remain an open question. Better but also feasible approximations to Cx should also be

explored.

Notice that the image estimation step involves solving a nonconvex problem when the penalty function

is nonconvex, e.g., ρ(s) = sp/p (0 < p < 1). Assuming that the covariance term in ξ is ignored, it has

been shown in [21] that the IRLS method which alternatively solves the linear equations in (25) and

updates the weights by (26), definitely converges to a stationary point. Since the problem is nonconvex,

the initial weights can make a difference in the final result, especially for the extremely nonconvex

functions like log. A typical choice for the initial weights is the use of a large constant (e.g., 104, see

[4] [23]). It is conceivable that a ξ whose large values are located at the blur region may lead to a good

stationary point, as the blur will be removed accurately. Since it is hard to know the blur region, finding

such a good initial weights is not a trivial task in BID. Finally, we would like to mention that the linear

equations (25) can be efficiently solved by ADMM [21] (Alternating Direction Method of Multipliers,

see [62] for a comprehensive review), provided that the blur is spatially invariant.

Together with the IRLS method [21], other nonconvex optimization methods including variable splitting
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and look-up-table based method [63], `1-decomposition based method [64], and recently the smoothing

trust region methods [65] [66] have also been applied to image deconvolution.

D. Spatially varying blur and other modeling problems

In this paper we have assumed that the blur is the same across the image. However, as shown in

[67], even the camera optical system generates a considerable amount of spatially varying (SV) blur. In

general, spatially varying degradation can be modeled as

y(s) =
∑
u

h(s, s− u)x(u) + n(s), (31)

where y(s) is the value of the observed image at position s, x(u) is the value of the unknown ideal image

at position u, h(s, s− u) is the blur affecting the image, that depends on each image pixel position, and

n(s) is the noise. When SV BID is addressed, some restrictions are applied to the way the blur varies in

Eq. (31) in order to make the problem feasible. Such restrictions include the assumption that the blur is

piecewise-invariant or piecewise smooth spatially varying, that is, the blur varies smoothly in the image,

or that the blur is piecewise constant and location dependent, that is, different regions in the image have

different blurs but the blur is spatially-invariant in each region. Another typical restriction is to assume

that the type of the blur is known, for example, it is due to camera shake, or to consider images of a

certain type, such as images with text [68] or star fields [69].

One approach to SV BID is to divide the image into non-overlapping patches where the blur is

assumed to be stationary, apply a BID method on each patch independently, and merge the restored

patches to obtain the final image. If the patches are not predefined, this approach casts the SV BID

into a segmentation problem [70] in which the simpler case is to consider just two regions, a focused

foreground and a out-of-focus background [71]. If the patches overlap and the blur varies smoothly on

the image, the degradation model in Eq. (31) can be approximated as

y(s) =
∑
r

∑
u

hr(s− u)wr(u)xr(u) + n(s), (32)

where wr(u) ≥ 0,
∑

r wr(u) = 1, are weights allowing the smooth blending of the overlapping patches

[72]. The advantage of this model is that it allows for an efficiently implementation using the Efficient

Flow Filter (EFF) method [73] and also for different types of blur. On the other hand, its accuracy

depends on the accuracy of the estimated kernel and may produce large errors if the kernels are not

precisely estimated. In [74] the EFF method is extended to handle TV priors and a method to detect

and replace erroneous blurs is proposed making it more robust. Another method to estimate smoothly
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varying blurs, with applications to star field images, is propossed in [69]. The method estimates the blur

at certain image positions and uses SVD to remove outliers and estimate a smooth PSF field from the

individual PSFs.

If only camera-shake blur is considered, the Projective Motion Path approach [75] models the SV

degradation as the average of multiple sharp images, each one corresponding to one of all possible

camera poses, that is,

y(s) =
∑
i

x(Hiu) + n(s), (33)

where Hi are homographies, that is, combinations of rotations and translations, that project the sharp

image given a camera orientation. The homographies can be obtained from auxiliary sensors attached to

the camera, such as gyroscopes (see [76] and section IV-E), and high speed low resolution cameras [77],

or they are estimated with the image [78].

A similar approximation is considered in [79] where the SV degradation is modeled as a weighted

sum of sharp images obtained at all possible camera poses, that is,

y =
∑
i

w(i)Cix + n, (34)

where Ci is the matrix that applies the homography Hi to the image x and w(i) weights the i-th projection

depending on the time spent by the camera at the i-th pose during the capture time. In [80], VB is used

to estimate both the image x and the weights w(·). The drawback of this approach is that is resource

demanding since it has to compute and store all the projections. To alleviate this problem, [81] proposes

an iterative method that, at each iteration, restricts the solution space to a small set of camera poses

which the camera motion trajectory is most likely to belong to.

Despite all these advances, more research is still needed to solve the general SV BID problem as

described by Eq. (31).

Even without mentioning the spatially variant nature of the blur, the linear model in Eq. (1), utilized

by most BID methods, is not a realistic one for real-life images. Common violations include the presence

of defective sensor pixels, saturated pixels [82], a nonlinear camera response curve [83], or non additive

white Gaussian noise [84], [85] which, if not properly handled, may generate ringing artifacts when

restoring the image even if the blur is accurately estimated [86]. We believe that developing methods

that explicitly handle such model violations will improve the applicability of BID to real problems.

These modeling problems are alleviated with the use of more than one images. Considering color and,

in general, multichannel images, remedies, to a great extend, the ill-posed nature of blind deconvolution

[87]. Using image pairs with different properties facilitates blur estimation and helps handle saturated
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pixels and other camera imperfections. For instance, in [88] a near-infrared image is captured together

with a visible blurred image and, in [89], [90] a low exposure sharp but noisy image is used to improve

the restoration results. If video is available, techniques can take into account the motion between frames

[91]–[93] to tackle the deblurring problem. Of interest is also the approach in [94] where a single high-

quality image is obtained from a sequence of images distorted by atmospheric turbulence. Having several

images also allows blind image deconvolution to be addressed simultaneously with other problems, such

as, super-resolution (see, for instance, [95] or [96]) or high dynamic rage (HDR) imaging [97].

Finally, to conclude this section on modeling, we would like to mention the need to model what a

good restoration is. We believe that more BID software applications will be developed if the quality of

a restored image can be assessed, without human intervention, before presenting it to the user.

E. Deconvolution in mobile devices

The ubiquity of mobile devices, such as smartphones and tablets, and the not-so-high quality of

their cameras make the restoration of images taken with those devices a succulent market. Running

the deconvolution process on mobile devices is, nevertheless, difficult given their limited computational

power. Some commercial applications that claim to remove blur from images are available for the different

platforms (see DeblurIt Pro or Photo Fix de Blur for Android or Photo Doctor for iOS). However

they seem to deal only with out-of-focus blur with a manually selected radius and implement simple

deconvolution algorithms.

Smartphones and tablets are more than simple cameras. They usually have other built-in sensors to

capture the device position and trajectory and the capability of processing images. Hence, some methods

are being proposed to perform deconvolution on those devices. In an effort to take advantage of the

sensors present on the mobile phones, Šindelář and Šroubek [98] used the information provided by the

gyroscope to keep track of the device motion while taking the picture and, hence, obtain an estimation of

the blur by rendering the camera trajectory on the image plane. This blur estimate is used to deconvolve

the image by a simple Wiener filter. An extension considering spatially variant blur and rolling shutter

compensation is presented in [99].

A similar approach was used in [100] where the blur is obtained from a combination of the kernel

estimated from the fusion of gyroscope, magnetometer and accelerometer measurements and a Gaussian

kernel with small variance to take into account the out-of-focus blur due to the motion of the camera

from the finger movement on pressing on the screen. Additionally, to minimize artifacts on faces, a face

detection algorithm is applied to the image and an SVM classifier is trained and used to select between
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deblurring followed by denoising or sharpening the image, depending on the face characteristics.

Using a developer tablet modified by attaching a USB connected external gyroscope, a multi-image

deconvolution which captures and combines multiple frames in order to make deblurring more robust and

tractable is proposed in [101]. Blur is obtained from the gyroscope data and multi-image deconvolution

is performed by minimizing
n∑
i=1

‖yi −Hix‖2 + λ‖∆x‖p, (35)

where λ is a regularization parameter and ∆ is the gradient operator. The authors conclude that this

deconvolution procedure outperforms, in most situations, the align-and-average strategy, that is, averaging

multiple noisy images captured using a short exposure time, and hence blur-free, aligned using the

gyroscope data. The optimization problem in Eq. (35) was first utilized in the work by Katsaggelos

[102].

F. Implementation issues

Since BID methods need to estimate both image and blur, they usually take a significant amount of time.

Apart from developing mathematically efficient methods to compute blur and image estimates, efficient

implementations are needed to speed up the algorithms. Nowadays, most computers are equipped with

graphical processing units (GPUs) that have several GFLOPS of computing power. Massive computing

using these GPU or hybrid CPU+GPU computing can dramatically improve the speed of the algorithms.

Most of the deconvolution implementations using GPUs are based on their capability to accelerate an

FFT, with the CUDA framework and the CUFFT library [103] being the most popular implementation.

Some BID methods have been implemented using GPUs with great success as proved in [104] where

the time needed to blindly deconvolve an 8 MPixel image using the method in [105] is reduced from

55.6s to 13.8s. The EFF spatially variant blind image deconvolution method in [73] runs about ten times

faster using GPU than using only CPU.

Several efforts have also been carried out to use GPU computing in non-blind image deconvolution. For

instance, Zhang et al. [106] performed real-time high definition 720p video processing with a Wiener

filter using an NVIDIA GeForce GTX 460 GPU and Holder et al. [107] obtained an acceleration of

1:5 compared to CPU of the Richardson-Lucy algorithm on an NVIDIA Geforce GT640M. The GPU

implemention of the non-blind Krishnan-Fergus [63] algorithm presented in [108] runs at 15 frames per

second on 710× 470 pixels color images on an NVIDIA GeForce GTX 260.
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Fig. 3. Cumulative histograms of the error ratios across the dataset [39]

V. EXPERIMENTS

We test the performance of 5 image priors, including log, `0.8, MOG, TV and bu3, where the parameters

for MOG are borrowed from Levin et al. [4] and bu3 is referred to the bottom-up approach [20] [23] with

φ(ν) = ν−3 (corresponding to ρ(x) = −x−1). We choose the widely used dataset [39] which consists of

32 images generated by 4 groundtruth images with 8 motion blurs. For the priors log, `0.8, MOG, TV

and bu3, we set αγ to 1, 10, 1, 20 and 0.1 respectively. After obtaining the kernels, we use the non-blind

deconvolution method [18] with the same parameters used in [4] to reconstruct the final image.

Fig. 3 presents the success percent of 6 methods (ours with 5 different priors and Levin et al. [4])

in the sense of error ratio metric (ratio between sum of squared difference errors of the restoration with

the estimated kernel and the restoration with the groundtruth kernel, see [39] for more details). As we

can see, the log prior has the best performance, with over 80% good restorations (error ratio ≤ 2) and

90% successful restorations (error ratio ≤ 3 is regarded as successful restoration, according to Levin et

al. [4]), followed by bu and MOG. `0.8 and TV also have good performance with about 80% and 70%

successful restorations. It should be emphasized that, a suitable αγ is crucial for the different priors to

work well. Fig. 4 shows some selected results for visual evaluation.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Selected results on dataset [39] for visual comparison. (a) Blurred. (b) Groundtruth. (c) TV. (d) `0.8. (e) Levin et al.

[4]. (f) MOG. (g) bu3. (h) log.
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