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Abstract

Olivine is the most abundant mantle mineral at depths relevant to oceanic crust production
through melting. It is also a liquidus phase for a wide range of mafic and ultramafic magma
compositions. We have experimentally investigated the effects of olivine crystallization and melt
composition on the fractionation of Fe isotopes in igneous systems. To test whether there is a melt
compositional control on Fe isotopic fractionation, we have conducted nuclear resonant inelastic
X-ray scattering (NRIXS) measurements on a suite of synthetic glasses ranging from 0.4 to 16.3
wt.% TiO,. The resulting force constants are similar to those of the reduced (fO, = IW) terrestrial
basalt, andesite, and dacite glasses reported by Dauphas et al. (2014), indicating that there is no
measurable effect of titanium composition on Fe isotopic fractionation in the investigated
compositional range. We have also conducted olivine crystallization experiments and analyzed the
Fe isotopic composition of the experimental olivines and glasses using solution MC-ICPMS.
Olivine and glass separates from a given experimental charge have the same iron isotopic
composition within error. This result is robust in both the high-Ti glass (Apollo 14 black) and low-
Ti glass (Apollo 14 VLT) compositions, and at the two oxygen fugacities investigated (IW-1,
IW+2). Additionally, we have determined that Fe loss in reducing one-atmosphere gas-mixing
experiments occurs not only as loss to the Re wire container, but also as evaporative loss, and each
mechanism of experimental Fe loss has an associated Fe isotopic fractionation.

We apply our results to interpreting Fe isotopic variations in the lunar mare basalts and
lunar dunite 72415-8. Our experimental results indicate that neither melt TiO, composition nor
equilibrium olivine crystallization can explain the observed difference in the iron isotopic
composition of the lunar mare basalts. Additionally, equilibrium iron isotopic fractionation

between olivine and melt cannot account for the “light” iron isotopic composition of lunar dunite
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72415-8, unless the melt from which it is crystallizing was already enriched in light iron isotopes.
Our results support models of diffusive fractionation to explain the light iron isotopic compositions
measured in olivine from a variety of rock types and reduced (fO, = IW-1 to IW+2) igneous
environments (e.g., lunar dunite and basalts, terrestrial peridotites and basalts, martian

shergottites).

1. Introduction

Analytical developments over the past decade have revealed that igneous rocks and
minerals display variations in the isotopic composition of non-traditional stable isotope systems
(i.e.,not C,H, N, O, S Teng et al., 2017, and references therein). The degree of mass-dependent
fractionation between stable isotopes has been attributed to factors such as oxidation state, bonding
environment, and volatility. While early studies focused on low-temperature stable isotopic
fractionation, a growing number of studies have revealed measurable isotopic fractionations
present in high temperature igneous systems (e.g., Beard and Johnson, 2004; Poitrasson et al.,
2004; Weyer et al., 2005; Williams et al., 2005; Teng et al., 2008, and subsequent studies).
Interpretations of these variations are often hampered by the paucity of equilibrium fractionation
factors between coexisting phases, which limits quantitative modeling of the relevant igneous
processes.

High-temperature stable isotopic fractionations have been used to elucidate planetary-scale
processes, such as the formation of the Moon, as well as smaller scale processes, such as the
differentiation of magma. In particular, high-precision studies of stable isotopes have resolved
isotopic differences between terrestrial and lunar samples for certain elements (e.g., Wang and

Jacobsen, 2016). However, for many isotopic systems, it is difficult to tell whether the Earth and
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Moon have different isotopic compositions because the processes of magmatic differentiation,
including lunar magma ocean crystallization and later magma generation and crystallization, have
imparted stable isotopic variations to lunar rocks that need to be understood and disentangled
before a claim can be made regarding the bulk composition of the Earth or Moon. The increased
precision of modern isotope analyses has resolved a “dichotomy” present between the bulk stable
isotopic compositions of the low-Ti and high-Ti mare basalts on the Moon (Figure 1). Specifically,
this dichotomy has been observed for Fe (Wiesli et al., 2003; Poitrasson et al., 2004; Weyer et al.,
2005; Craddock et al., 2010; Liu et al., 2010; Sossi and Moynier, 2017), with high-Ti mare basalts
being isotopically “heavy” compared to low-Ti basalts (8°°Fepignti > 0°°Fejow.1i). The dichotomy
was also observed for Mg (0*Mgpign1i < 02°Mgiow.mi; Sedaghatpour et al., 2013), Li (8"Linignti >
0’Lijwmi; Day et al., 2016), and Ti (8% Tinghti > 0*Tiwrni; Millet et al., 2016). Though the
difference in stable isotopic compositions between the high- and low-Ti basalts is well documented
analytically, the petrologic processes responsible for the lunar isotopic dichotomy remain elusive.

Despite increasing evidence for high-temperature isotopic fractionation in igneous rocks
(e.g., Dauphas and Rouxel, 2006; Dauphas et al., 2017), there is a paucity of experimental studies
of isotopic fractionation during magmatic differentiation of mafic compositions. The iron isotopic
compositions of igneous rocks have been extensively studied, and the documented isotopic
variations in igneous rocks are caused by a combination of partial melting (e.g., Williams et al.,
2005; Weyer and Ionov, 2007; Dauphas et al., 2009a; Dauphas et al., 2014; Williams and Bizimis,
2014), equilibrium and fractional crystallization (e.g., Teng et al., 2008; Dauphas et al., 2014;
Roskosz et al., 2015), and diffusive fractionation (e.g., Dauphas and Rouxel, 2006; Sio et al., 2013;
Oeser et al., 2015; Sio and Dauphas, 2016; Collinet et al., 2017). Experimental studies of

equilibrium Fe isotope partitioning at high temperature have investigated metal-silicate systems,
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fayalite-magnetite fractionation, as well as Fe isotopic fractionation between evolved rhyolitic
compositions and sulfides (e.g., Schuessler et al., 2007; Shahar et al., 2008; Poitrasson et al., 2009).
Additionally, Dauphas et al. (2014) investigated the Fe bonding structure in a suite of terrestrial
volcanic glass compositions ranging from basalt to rhyolite, concluding that Fe isotopic
composition is influenced by the redox state of iron and the silica content of the melt.

Evidence for mineralogical, compositional, and redox controls on Fe isotope partitioning
in igneous rocks highlights the importance of experimentally quantifying mineral-melt
fractionations for major rock-forming minerals. Olivine is a ubiquitous mineral on rocky,
differentiated planetary bodies. Even a small (<0.1%o) olivine-melt Fe isotopic fractionation could
significantly fractionate the Fe isotopes in mantle reservoirs during planetary differentiation; for
example, an olivine-melt fractionation 0°°Fe,jine - 0%°Fe e = -0.05%0 would increase the 8°°Fe of
a magma ocean by 0.1%o after 50% fractional crystallization of olivine. The measured iron isotopic
compositions of olivine separates are often used to interpret olivine-melt fractionations (e.g.,
Williams et al., 2005; Wang et al., 2015). Yet, naturally occurring minerals have complex
crystallization-cooling histories, and inferring an equilibrium fractionation factor from such
measurements is fraught with difficulties. The use of natural samples to determine olivine-melt
equilibrium iron isotopic fractionations is complicated by diffusion-driven, kinetic iron isotopic
fractionations (e.g., Teng et al., 2008; Teng et al., 2011; Sio et al., 2013). In terrestrial igneous
rocks, both Fe?* and Fe** coexist, which can cause equilibrium isotopic fractionation between melt
and olivine (i.e., Teng et al., 2008; Dauphas et al., 2009a). Redox-driven fractionation on Earth
may obscure the existence of equilibrium iron isotopic fractionation between olivine and Fe?*in
silicate melt. On the other hand, large Fe isotopic fractionations exist among lunar basalts in an

environment relatively free of Fe’*. The absence of Fe* on the Moon supports mechanisms of
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mineral fractionation, melt composition, and/or diffusive re-equilibration as cause for the observed
iron isotopic variation between the low- and high-Ti mare basalts. The iron isotopic fractionations
associated with these equilibrium and kinetic processes need to be well-characterized in order to
distinguish the effects of each process on the resulting iron isotopic compositions of igneous rocks.

To investigate the effects of melt composition and olivine crystallization on Fe isotopic
fractionation, we have experimentally determined the olivine-melt equilibrium partitioning of Fe
isotopes for a compositional suite of synthetic lunar volcanic glasses. We have implemented a dual
approach, combining independent techniques (MC-ICPMS and NRIXS) for determining
equilibrium Fe isotopic fractionations between high temperature phases. In focusing our
experimental study on compositions and oxygen fugacities relevant for lunar differentiation, we
investigated Fe isotopic fractionation in the case where Fe’* is of negligible abundance.
Furthermore, in experimentally examining the Fe isotope dichotomy between high-Ti and low-Ti
lunar mare basalts, we have examined whether the bulk titanium content of a melt exhibits a

compositional control on the resulting Fe isotope signature of the basalt.

2. Methods

We have investigated the equilibrium fractionation of Fe isotopes between olivine and melt
using two independent techniques. To determine the melt compositional control on Fe isotopic
fractionation between lunar melts and olivine, we have conducted nuclear resonant inelastic X-ray
scattering (NRIXS) measurements on a suite of synthetic glasses ranging from 0.4 to 16.3 wt.%
Ti0,. To evaluate the magnitude of iron isotopic fractionation at equilibrium between olivine and
melt, we have conducted olivine crystallization experiments and analyzed the Fe isotopic

composition of the experimental olivines and glasses using solution MC-ICPMS. Direct olivine
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crystallization experiments were conducted using two bulk compositions: a synthetic glass similar
to Apollo 14 VLT (very low Ti), and a synthetic Apollo 14 black glass (Table 1). Both of these
compositions have olivine as a liquidus phase at one atmosphere pressure.

In comparing the results of both the NRIXS and direct crystallization experimental
methods, we have determined the effect of equilibrium olivine crystallization and melt titanium
content on Fe isotopic fractionation during high-temperature igneous processes. Additionally, the
reducing experimental run conditions minimize Fe** content in the olivine and glass, making our

results directly applicable to lunar oxygen fugacity conditions (IW-2 to IW+1; Sato, 1973).

2.1. Starting materials

For the NRIXS measurements, synthetic lunar ultramafic volcanic glass compositions were
prepared from oxide powders to match the Apollo 16 green (0.39 wt.% TiO,), Apollo 14 yellow
(4.58 wt.% TiO,), Apollo 17 orange (8.63 wt.% TiO,), and Apollo 14 black (16.4 wt.% TiO,) glass
compositions given in Delano (1986) (Table 1). These glasses were chosen to span the range of
Ti0, content in the picritic lunar glass suite. Sodium and potassium were added to the mixtures as
carbonates (Na,CO;, K,CO,), calcium was added as CaSiOs;, and all other components were added
as single element oxides. In order to perform the NRIXS measurements, which are only sensitive
to the Mossbauer isotope *’Fe, >’Fe-enriched Fe,O; powder (96.64% >'Fe, Cambridge Isotopes)
was used. Oxides were mixed by hand under isopropanol in an agate mortar and pestle for 20
minutes.

For the olivine crystallization experiments, the starting materials were prepared to be
similar in composition to the synthetic Apollo 14 VLT (green) and Apollo 14 black glasses in

Delano (1986) (Table 1). Calcium was added as CaCO; for the green glass, and CaTiO; for the
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black glass. Compositions used for the olivine crystallization experiments contained natural Fe
isotope abundances and were mixed without the addition of Cr, Na, or K. Oxides, silicates,
carbonates, and titanates were mixed under isopropanol in a silicon-nitride ball mill for 3 hours.
Polyvinyl alcohol was added as a binding agent to the starting material mixtures for both the
NRIXS and olivine crystallization techniques. Once dry, 75 mg aliquots of each mixture were
pressed into cylindrical pellets of 4 mm diameter and 2 mm height in preparation to be melted in
the gas-mixing furnace. Great care was exercised to ensure that no cross-contamination took place
between the experiments involving enrichment in °’Fe and those with natural Fe isotopic
abundances. However, select experiments did exhibit slight enrichments in *’Fe (as detailed in the
Supplementary Material). By focusing on 0°°Fe, we minimize any potential effects of “Fe

contamination.

2.2. Experimental Methods

Lunar volcanic glass syntheses and olivine crystallization experiments were conducted in
vertical gas-mixing furnaces at Washington University in St. Louis. Sample pellets were fused to
rhenium loops and hung by a Pt wire thread in the furnace hot spot for the run duration.
Experimental samples were then quenched rapidly by melting the Pt hanging wire and dropping
the sample from within the furnace into a beaker of deionized water. The *’Fe-doped glass
syntheses were conducted for approximately 3 hours at 1400°C and an oxygen fugacity
corresponding to the iron-wiistite buffer (Table 2). Olivine crystallization experiments were
conducted at fO, values of IW-1 and IW+2 for durations of 6 hours, 1 day, and 4 days (Table 2).

The temperatures for the olivine crystallization experiments ranged from 1262 to 1269°C, with
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+1°C variation during a given experimental run (Table 2). These temperatures were optimal for
producing low modal abundances (10-20 wt.%) of large olivine crystals.

All experimental run products were synthesized at oxygen fugacities that bracket the
oxygen conditions inferred for the Moon. These reducing conditions minimize the presence of
Fe**, which has been demonstrated to affect Fe isotope partitioning (e.g., Dauphas et al., 2014). A
controlled flow of H, and CO, gases buffered the oxygen fugacity throughout each experiment.
The fugacity was monitored with a Ca-doped zirconia oxygen probe using air as the reference gas.
The fO, was found to vary between 0.01 to 0.15 log units (10 standard deviation) during a given
experiment (Table 2).

Long experimental run durations aided in crystal growth, allowing for clean mechanical
separation of olivine grains for MC-ICPMS work. Olivine grains from our four-day experiments
exhibited a range in grain diameter from 20 to 100 ¢ m, compared to the 5 to 50 ym grain diameter
range for the one-day experiments (Figure 2). However, Fe loss from an experimental charge
increases with increased run duration (Table 2, Figure 3a). Thus, a four-day run duration was
deemed optimal for the olivine crystallization experiments needed to minimize Fe loss from the
experiment, while providing experimental olivines large enough to hand-separate for MC-ICPMS
measurements. To ensure that clean olivine and glass could be retrieved for MC-ICPMS work,
olivine and glass were separated from the four-day experiments. Quantitative analysis of the Fe

loss in these experiments is presented in Section 4.1.

2.3. Approach to equilibrium
The experimentally produced olivines are compositionally homogenous and do not exhibit

compositional zoning within the grains (Figure 2), and electron microprobe compositional
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analyses show low standard deviations amongst all analyzed grains in a given sample (Table 3).
Mineral-liquid Fe-Mg exchange coefficients (Kp™™¢, Table 2) for our olivine-bearing experiments
are a function of melt Ti content (0.32-0.34 for 0.06 wt.% TiO,; 0.23-0.26 for 18 wt.% TiO,) and
are consistent with the results of Krawczynski and Grove (2012). In addition, a time series of
experiments was conducted for each experimental starting composition (Apollo 14 VLT green
glass, Apollo 14 black glass) at each experimental oxygen fugacity (IW-1, IW+2) in order to
evaluate the effect of experimental Fe loss on the olivine-melt equilibrium. Experimental iron loss
increases with increased run duration and decreased oxygen fugacity (Table 2). Thus, the lowest
oxygen fugacity (fO, = IW-1) experiments experienced significant (up to 18%) Fe loss during the
four-day experiments (see discussion in Section 4.1). Despite the increased Fe loss, the mineral-
liquid Fe-Mg exchange coefficients for the four-day experiments are the same as those calculated
for the shorter duration experiments (Table 2), indicating that olivine-melt equilibrium was

maintained.

2.4. Analytical Methods
2.4.1. Electron Microprobe Analysis

Experimental run products were analyzed for major element abundances using the JEOL
JXA-8200 electron microprobe at Washington University in St. Louis. Standardization was
performed with a beam diameter of 20 wm on natural and synthetic glass and mineral samples. We
used the mean atomic number (MAN) method (Donovan et al., 2016) for wavelength dispersive
spectrometer background correction and measured the following elements: Si, Al, Ti, Cr, Fe, Mn,
Mg, Ca, Na, K. Each quantitative analysis used a 15 kV accelerating potential and 25 nA beam

current. Glass compositions were analyzed with a 20 um beam diameter, and olivine compositions

10
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were analyzed with a focused beam (~1 um diameter). Each compositional data point was reduced
using Probe for EPMA software. Averages of the analyzed glass and olivine compositions are
reported in Table 3. Only analyses with totals 98.5-101.5 weight percent (wt.%) are included in
the reported averages (with the exception of experiment JO21, for which the analytical totals were
on average 96.75 wt.% likely due to incomplete degassing of the carbonates in the starting
material). Olivine analyses were filtered to include only those with olivine stoichiometry (cation
total between 2.98-3.02 for 4 oxygen atoms). The same calibration was used for the compositional
analysis of the experimental wires, with pure Re, Fe, and Pt metal samples added as analytical

standards. The Re experiment wires were analyzed from core to rim with a 2 pm beam diameter.

2.4.2. Nuclear Resonant Inelastic X-ray Scattering Spectroscopy (NRIXS) Methods

Nuclear resonant inelastic X-ray scattering spectroscopy (NRIXS) was used to probe the
excitation modes of iron atoms and derive quantities needed to calculate equilibrium fractionation
factors. From the phonon excitation probability function, S(E), or the partial phonon density of
states, g(E), (itself derived from S), the force constant for the iron sublattice can be extracted (e.g.,
Dauphas et al., 2012; Dauphas et al., 2014; Liu et al., 2017) (also see Polyakov et al., 2007 for a
different approach based on the kinetic energy). Assuming that the bonds are harmonic and given
the high temperatures involved in magmatic processes, the reduced partition function ratio, or f3-
factor is calculated as a function of temperature from the mean force constant of the iron bonds,
(F) in N/m (the higher order terms needed to calculate iron B-factors at low temperature are given
in Table 4):

(R
1000 In g = 2904 Tz

ey
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At a given temperature, the equilibrium stable isotopic fractionation factor (€.g., Olminerar
ne) Detween two phases is related to the B-factor and Fe isotopic composition (6*Fe) for each

phase through:

1000 In@minerar-meit = 6°°Feminerar = 6°°Femere = 1000 nBrinerar — 1000 Iy
2)
Using the measured force constants for synthetic lunar glasses and olivine (Dauphas et al., 2014),
the equilibrium fractionation factor between olivine and melt can be theoretically determined using
equation (2), assuming that the iron force constant in the glass is not significantly different from

that of a melt of the same composition.

2.4.3. Multicollector-Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) Methods
The quenched experimental samples were crushed, and then individual phases were hand
separated for Fe isotopic analysis with a Thermo Scientific Neptune MC-ICPMS in the Origins
Lab at the University of Chicago. The instrument was upgraded in the course of its life by addition
of an OnToolBooster Jet pump, bringing it to specifications on par with the Neptune Plus model.
Olivine grains were hand-picked from the experimental samples under an optical microscope using
cross-polarized light to distinguish the birefringent olivines from the isotropic glass. Separated
olivine grains ranged between 30 and 100 y#m in diameter and contained minor amounts of glass,
present as thin layers on the edge of the grains. Glass separates were approximately 50-150 ym in
diameter, and the transparency of the glass allowed for separation of glass pieces that were free of

olivine grains.

12



271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

Olivine and glass separates were then dissolved for MC-ICPMS analysis. The starting
material powders, used experiment wires, and “total samples” (experimental sample left after
minor glass and olivine separate removal) were also dissolved and measured to aid in interpretation
of the measured isotopic compositions (see Section 4.1). Following the routine sample dissolution
protocol of the Origins Lab (e.g., Dauphas et al., 2009b; Craddock and Dauphas, 2011), we
digested 10-40 mg of each sample through hot-plate acid dissolution with mixtures of concentrated
HF-HNO;-HClO, and HCI-HNO;-HCIO,. An additional dissolution step using aqua regia (3:1
ratio of HCI-HNOs) was used for the starting material powders, Re wires, and “total samples”.
This step was repeated three times to ensure all of the Fe had been dissolved from the samples.
However, a white residue (rich in TiO, and AL, O;), remained after two weeks of dissolution for
the starting material powders and “total samples”. Analysis of the white residues by electron
dispersive spectroscopy confirmed that there was no Fe present, indicating that the dissolution
effectively removed all Fe from the samples despite the remaining white residue. After the heated
dissolution steps, each sample was dried out (the samples with visible residues were centrifugated
and the supernatants were used), then dissolved in 6M HCl in preparation for Fe column chemistry.

The sample solutions were purified for Fe through column chemistry following the routine
methods of the Origins Lab at the University of Chicago (e.g., Dauphas et al., 2004; Dauphas and
Rouxel, 2006; Dauphas et al., 2009b). The iron isotopic compositions of the sample solutions were
measured using the standard-bracketing method of Dauphas et al. (2009b), and are reported as
0°Fe relative to IRMM-524, whose isotopic composition is identical to IRMM-014 (Craddock

and Dauphas, 2011).

3. Results
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Here we report experimentally determined mean force constants of iron bonds in synthetic
glass samples and iron isotopic compositions of synthetic olivine and glass separates. Iron isotopic
fractionation factors determined from the force constants and iron isotopic compositions
demonstrate an absence of resolvable iron isotopic fractionation during olivine crystallization in

reducing (fO, = IW-1 to IW+2) conditions.

3.1. NRIXS Results

The force constants calculated from NRIXS spectra on our synthetic lunar glasses show
that within error, the lunar glasses have the same force constant, averaging to a value of 195 + 22
N/m (Table 4). This similarity in force constants over the 0.4 — 16.3 wt.% TiO, range of our
synthetic glasses suggests that Fe isotopic fractionation is not a function of melt Ti content (Figure
4). Further, the mean force constants of our synthetic suite of lunar glasses are similar to the force
constants generated for reduced (fO, = IW) terrestrial basalts (197 £ 8 N/m) in Dauphas et al.
(2014). The force constants from the synthetic lunar glasses are also similar to the previously
determined iron force constant for olivine (Fogs , Fe** absent) of 197 + 10 N/m (Dauphas et al.,

2014).

3.2. Olivine Crystallization Experiments

The measured Fe isotopic compositions of the experimental glass and olivine separates
indicate that there is no measurable fractionation between olivine and glass (Table 5). The isotopic
difference between the starting material, experiment wire, and olivine and glass separates can be
explained by the fractionation of Fe isotopes during experimental Fe loss to the Re wire and

through evaporation (Section 4.1). The iron isotopic composition of the starting material powders
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(Table 5) is controlled by both the iron isotopic composition of Fe,O; (used in all starting
compositions) and Fe metal sponge (used only in starting compositions #010 and #011) (Appendix
Table 1). To further illustrate the isotopic relationship among all experimental parts, the measured
Fe isotopic compositions have been plotted in Figure 5. For each experiment, the olivine Fe
isotopic composition is indistinguishable from that of the glass. The measured compositions thus
indicate that olivine does not significantly fractionate iron isotopes when crystallizing from lunar

melt compositions at lunar-like fO,.

4. Discussion
4.1. Quantitative analysis of experiment iron loss

The four-day olivine crystallization experiments experienced up to 18% total Fe loss (Table
2). We estimated the amount of total Fe loss using a mass balance of the measured phase
compositions and the bulk starting composition of the experiment (Krawczynski and Olive, 2011).
A rhenium wire was used in all of the experiments to minimize the diffusive Fe loss to the metal
loop at reduced oxygen fugacities (Borisov and Jones, 1999). The experimental runs at fO, = IW+2
experienced less Fe loss than those at fO, = IW-1 (9% vs. 18% Fe loss, Table 2). The total amount
of iron lost from our experiments under reducing conditions is consistent with the estimated loss
in experiments ran at similar conditions by Borisov and Jones (1999). Electron microprobe
analyses of the Re wires after completion of the experiments (Figure 3b, Appendix Table 2) yield
Fe concentrations within the range of those measured in Re wires from Borisov and Jones (1999).
The Re wire is always enriched in the light isotopes of iron, which is consistent with the fact that
transport through the wire is diffusive, and light isotopes of iron diffuse faster than heavier ones

(Mullen, 1961; Roskosz et al., 2006; Dauphas, 2007; Richter et al., 2009; Van Orman and
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Krawczynski, 2015). However, the Fe mass balance between the wire and sample cannot account
for all of the sample Fe loss.

To account for the effect of Fe loss on the measured Fe isotopic compositions of the samples,
we measured the Fe isotopic compositions of the bulk starting material, experiment wire, and the
sample material remaining after olivine and glass separates were removed (Table 5). Owing to
their similar Fe isotopic compositions, removal of minor olivine and glass fractions from the
sample did not change the bulk isotopic composition of the remaining sample material (un-
separated glass and olivine, hereafter referred to as “total sample”). For each of the olivine
crystallization experiments, the isotopic compositions (6°°Fe) of the total sample were higher than
that for the bulk starting material. Open system behavior of Fe and isotopic fractionation between
the bulk starting material and the total sample can be explained by Fe loss to the Re wire and
evaporative Fe loss in the gas-mixing furnace. Using the measured iron isotopic compositions of
the bulk starting material, experiment wire, and the total sample, we were able to quantify the mass
of Fe lost and the associated Fe isotopic fractionation for both mechanisms of Fe loss occurring
during an experimental run.

The incorporation of Fe into Re wire during the experiment induced some Fe isotopic
fractionation, with the wire having a lighter iron isotopic composition than the total sample (Table
5, Figure 5). Roskosz et al. (2006) demonstrated that experimental iron loss to Pt wires fractionates
iron isotopes. In that study, kinetic fractionation of Fe isotopes produced an isotopically light Pt
wire (relative to the experimental sample) in short duration experiments. In longer duration
experiments, Fe isotopes equilibrated between the Pt wire and experimental charge producing an
isotopically heavier Pt wire, which presumably represented the equilibrium partitioning of stable

Fe isotopes between Pt and melt. Similar to the Pt wire results of Roskosz et al. (2006), the Re
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wires from our experiments are isotopically lighter than the experimental samples. This is most
likely associated with diffusive transport of iron, as it is well-documented in a variety of systems
that light isotopes diffuse faster than heavier ones (e.g., Richter et al., 2009; Van Orman and
Krawczynski, 2015), resulting in light isotope enrichment in the reservoir that experiences net Fe
gain (i.e., the Re wire) relative to the source (i.e., the silicate melt). Owing to this kinetic
fractionation, iron isotopes are more fractionated between the Re wire and total sample in the
experiments that experienced less iron loss (fO, = IW+2). That is, as more Fe diffuses into the Re
wire, the fractionation between the wire and the sample decreases. Only one sample (HO55) has a
Re wire iron isotopic composition that is heavier than the iron isotopic composition of the bulk
starting material, however the wire is still isotopically lighter than the glass. Owing to the presence
of a thin glass coating on the HOS55 wire, it is possible that a minor amount of experimental glass
was dissolved along with the wire during preparation for iron isotope measurement. This would
result in a measured iron isotopic composition for the wire that is heavier than the iron isotopic
composition of the wire without glass.

Although loss of Fe to the Re wire fractionates Fe isotopes and produces a heavier Fe isotopic
composition for the total sample relative to the bulk starting material, the total amount of Fe
incorporated into the wire cannot account for the magnitude of Fe isotopic fractionation between
the two, nor the bulk Fe loss. Similar to Fe loss to the Re wire, evaporative Fe loss would
preferentially deplete the experiments in lighter Fe isotopes, resulting in greater 0°°Fe for the
olivine, glass, and total sample compared to the bulk starting material.

To assess the extent of both evaporative Fe loss and Fe loss to the Re wire, we calculated an
isotopic mass balance of the measured experiment parts (starting material, wire, and total sample)

and, by difference, the Fe that evaporated during the experiment. For example, using the isotopic
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measurements (Table 5) for each part of experiment HOS6 we can estimate a 8°°Fe for the Fe lost

by evaporation:

s Festarting material — Z(ng X 6 Fei)

i

3)
where i denotes a reservoir of the experiment (wire, total sample, gas), where Xp. represents the
mass fraction of the initial Fe present in each reservoir, 0*°Feuing materiats 0°°Feiotal samples O °Feyire are
measured values, and 0%°Fe,, Xp."'e, Xp @ sample X 25 can then be calculated from mass balance
constraints (results presented in Figure 6). Xp 0%l sample js equivalent to one minus the percent total
Fe loss estimated from mass balance of the measured phases and the experimental starting
composition (Krawczynski and Olive, 2011). For HO56, which experienced 18% total Fe loss,
Xpelotalsample = () 82 (Figure 6b). Xg."i is calculated using the ICP-MS Fe concentration measurement
of the dissolved wire (ug, Table 5) and the estimated mass of Fe in the starting material (75 mg
pellet, wt.% FeO for starting composition, Table 1). For HO56, Xg.* = 0.04. Following this, Xg.2*
can be calculated assuming Xg, 0@l sample 4 X wire - X 2as = 1 Thus, for H056, X2 = 0.14. From this
calculation, we conclude that 14% of the initial Fe in the starting material was lost by evaporation
during the experiment.

The last unknown of equation (3) is the “iron isotopic composition” of the Fe lost through
evaporation (0%Fe,,), or rather the net isotopic fractionation that resulted from the evaporation.
To estimate the evaporative fractionation, we solve equation (3) for 8°°Fe,, using the Xg. values
calculated above (Figure 6b) and the measured d°°Fe values for the experiment parts (Table 5). For
HO56, the resulting isotopic composition associated with the evaporated gas is 0°°Feg,= -2.01%o,

and the bulk isotopic fractionation factor iS Olexperiment-vapor = 1.0028. Our estimates of the evaporative
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isotopic fractionation based on the mass balance of our measured experimental run products (bulk
Qlexperiment-vapor) Tange from 1.0002 to 1.0028, with the smallest fractionation between experiment and
vapor (1.0002) existing for experiment JO12, the high-Ti (black glass) composition conducted at
IW+2. The experiment-vapor fractionation in our gas-mixing furnace experiments is smaller than
that in a vacuum furnace because the Fe vapor pressure is higher, which dampens the isotopic
fractionation (Richter et al., 2002; Richter, 2004; Dauphas and Rouxel, 2006; Richter et al., 2007;
Richter et al., 2009; Dauphas et al., 2015). Most likely, the evaporative Fe loss proceeded through
a Rayleigh distillation. Using the Olexperimentvapor Calculated for each experiment, we have modeled
the change in the iron isotopic composition of the experimental sample as iron is lost by
evaporation (Figure 7).

For experiments conducted at fO, = IW-1, on average 5% of the Fe starting material was
lost to the Re wire (average Xg."'= 0.05), while this value is negligible at IW+2 (Figure 6b).
Additionally, 13% of the Fe starting material was lost via evaporation at IW-1 (average Xp.&* =
0.13) and 8% of the starting material Fe was lost by evaporation at IW+2 (average Xg.t* = 0.08).
In one-atmosphere gas-mixing furnace experiments, Fe loss has generally been considered as loss
to the container (e.g., Re or Pt wire), while volatile element loss (e.g., Na, K) has been attributed
to vaporization (Corrigan and Gibb, 1979; Donaldson and Gibb, 1979; Grove, 1981; Borisov and
Jones, 1999). Our results indicate that at IW-1, ~75% of the estimated Fe loss occurred via
evaporation, and only 25% of the Fe loss can be attributed through loss to the Re wire. At IW+2,
the estimated Fe loss is due to ~95% evaporative loss and ~5% loss to the Re wire.

To further assess the potential for evaporative isotopic fractionation at our experimental
run conditions, we have calculated the evaporative flux of Fe (Jr,) from the sample using the Hertz-

Knudsen equation:
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Ure (PIl"]e - PIgle)

2TMpoRT

Fe

“4)
in which J is the evaporative flux in moles cm? s, a is the evaporation coefficient, M is molecular
weight, P¥ is equilibrium vapor pressure for the element considered, P* is the ambient pressure for
the element considered, R is the universal gas constant (J mol! K!), and T is temperature (K).
Following the methods outlined in Fedkin et al. (2006), we calculated the equilibrium vapor
pressure of Fe assuming both Fe and FeO species exist in the gas, and the only contribution of Fe

to the furnace gas atmosphere is from the experimental sample:
v _ psample __
Pre = Pg, = Preo + Pre

)
The partial pressures of the gases evaporated from the molten experimental sample are then

calculated from the volatilization reactions:

FeOquy — FeOy

(6)
FeOq) > Feg) +3 0z (g)
(7
The equilibrium constants, k, for reactions (6) and (7) are constructed from the thermodynamic
data in the JANAF tables (Chase, 1996) and used to calculate the equilibrium vapor pressure of
Fe:

Psample k7aFeO

= k¢Qpeo +
F 6Y“FeO
° Jr0,

®)
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where ar.o 1s the activity of FeO in the molten experimental sample, and fO, is the oxygen fugacity
of the experiment. We used the rhyolite-MELTS code (Ghiorso and Sack, 1995; Asimow and
Ghiorso, 1998; Gualda et al., 2012) to calculate the activity of FeO in the silicate liquid for each
experimental starting composition at the experimental temperature and oxygen fugacity. Using
equation (8), we calculate Pr "' which is then used to calculate the evaporative flux, J,, from
equation (4). Assuming the gas flow in our furnace is efficient in removing any Fe gas that is
released into the furnace from the sample, we set the ambient vapor pressure of Fe (P¢) equal to 0.
Then, the only unknown needed to solve for the evaporative flux (Jr.) using equation (4) is the Fe
evaporation coefficient (ar). The evaporation coefficients we used in equation (4) to calculate
evaporative Fe loss that matches the estimated evaporative Fe loss from our samples are op =
2.5x1073 at IW-1, and ar, = 6.3x102 at IW+2 (see Supplementary Material for additional detail).
Through isotopic measurement and mass balance calculations of our experiments, we have
demonstrated that isotopic fractionation during evaporation and loss to the experimental container
are essential considerations for experimental studies of isotope partitioning. Despite this open
system behavior, the olivine and glass phases were always in equilibrium, as diffusion in the melt
is fast (at 1265°C, anhydrous basaltic melt Dr. ~ 10! m?/s; Zhang et al., 2010), and 10-50 ym
diameter olivine grains would diffusively equilibrate at the experimental run temperature and
duration. For example, at experimental conditions of 1265°C and IW+2, a 50 ym olivine grain
would equilibrate with respect to Fe and Mg in approximately 50 hours (McDougall and Harrison,
1999; Dohmen and Chakraborty, 2007). The olivine and glass separates showed deviation from
the starting material, but had identical isotopic composition to that of the “total sample” which

diffusively maintained equilibrium. Thus, the measured Fe isotopic compositions of the olivine
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and glass can accurately be compared to interpret the olivine-melt Fe isotopic fractionation during

olivine crystallization.

4.2. Factors controlling iron isotopic fractionation on the Moon

We have applied our results to test whether the lunar iron isotope “dichotomy” observed
between the high- and low-Ti basalts can be explained by olivine crystallization or melt titanium
content.

From our complementary NRIXS and olivine crystallization experiments, we have
concluded that any equilibrium fractionation of iron isotopes between olivine and melt at lunar-
like oxygen fugacities is not resolvable within analytical uncertainties. Olivine-melt Fe isotopic
fractionation factors for the lunar volcanic glasses were determined from our measured force
constants on the glass suite and the olivine NRIXS results from Dauphas et al. (2014) (Figure 8).
Our result from the MC-ICPMS olivine crystallization study is consistent with the Fe isotopic
fractionation factors predicted by the NRIXS measurements on olivine (Dauphas et al., 2014) and
the suite of lunar volcanic glasses (this study), in that there is not a resolvable iron isotopic
fractionation. Some major element variations in lunar mare basalts can be attributed to differences
in source compositions having experienced varying degrees of olivine fractionation (Shearer et al.,
2006, and references therein). Additionally, extensive crystallization of the lunar magma ocean
involving significant fractionation of olivine has been previously hypothesized as a mechanism for
generating the isotopically heavy source regions for the high-Ti basalts (Wang et al., 2015).
However, because olivine does not fractionate iron isotopes to a measureable extent, varying
degrees of equilibrium olivine crystallization can be eliminated as a potential mechanism for

generating the mare basalt iron isotope dichotomy. The fractionation of phases other than olivine,
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such as clinopyroxene and ilmenite, are likely more important in interpreting both the major
element and isotopic compositions of the lunar mare basalt suites.

Both of our experimental approaches indicate that the difference in melt titanium content
between low-Ti and high-Ti mare basalts cannot explain the observed iron isotope dichotomy.
Partitioning of Fe into olivine has been shown to be a function of Ti content (Longhi et al., 1978;
Xirouchakis et al., 2001; Krawczynski and Grove, 2012). Titanium influences the coordination
environment of Fe** in silicate melt by forming Fe-Ti complexes, and as a result, Fe is
preferentially incorporated into the melt relative to olivine (Krawczynski and Grove, 2012).
However Fe isotope partitioning does not appear to correlate with melt titanium content, as
demonstrated by our NRIXS force constant measurements (Table 4, Figure 4) and our olivine
crystallization experiments from both the low-Ti and high-Ti glass compositions. Despite the
different coordination of Fe2+ for different Ti contents. Though the major element partitioning of
Fe into olivine is affected by Fe?*-Ti complexes in silicate melt, the isotopic partitioning of Fe is
not affected by melt titanium content. We conclude that Fe?* coordination in silicate melts has a
minimal effect on iron isotopic fractionation. In contrast, Dauphas et al. (2014) demonstrated that
melt compositional parameters such as silica content and the redox state of iron (i.e., Fe** content)
influence the Fe bonding structure, and consequently, the iron isotopic composition, in a suite of

terrestrial volcanic glass compositions ranging from basalt to rhyolite.

4 .3. Iron isotopic composition of lunar dunite 72415
Olivines from lunar dunite 72415 are considerably lighter than the mare basalts (8°°Fe i
=-0.35 + 0.20%0, Wang et al., 2015; Sossi and Moynier, 2017). These values, if representative of

equilibrium fractionation from a parent melt isotopically similar to the mare basalts (8°°Fe = 0%o
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to +0.2%o), differ from the predicted Fe isotopic fractionation of this study. The absence of
resolvable equilibrium iron isotopic fractionation between olivine and lunar melts in our
experiments supports a non-equilibrium model for generating the light iron isotopic composition
of the lunar dunite.

As Fe begins to diffuse into olivine, the isotopes of Fe with lighter mass will be
preferentially enriched, creating a “light” iron isotopic composition (Teng et al., 2008; Dauphas et
al., 2010; Teng et al., 2011; Sio et al., 2013; Sio and Dauphas, 2017). The lunar dunite is highly
magnesian (Fogs — Foge, Dymek et al., 1975), and any Fe that diffuses into the olivine will greatly
affect the mass balance of Fe isotopes in the dunite. Diffusive iron isotopic fractionation modeling
that reproduces the observed Fe-Mg zoning profiles in lunar dunite olivine grains, can produce
iron isotope signatures as low as 0°°Fe = -0.21%o and -0.3%. (Wang et al. 2015). Further, kinetic
isotopic fractionation models of Fe-Mg interdiffusion and olivine crystallization (Teng et al., 2008;
Teng et al., 2011; Sio et al., 2013; Oeser et al., 2015; Collinet et al., 2017; Sio and Dauphas, 2017)
reproduce isotopic fractionations as large as 1%o observed in olivine grains.

Models of lunar dunite (72415-72418) petrogenesis detail the potential petrologic
processes involved in generating a kinetic origin for the isotopically light dunite signature. Early
petrologic investigations of the lunar dunite identified it as an early lunar magma ocean cumulate
(e.g., Dymek et al., 1975). In contrast, Ryder (1992) concluded that the lunar dunite crystallized at
shallow depths less than 1 km. The early lunar magma ocean cumulate hypothesis was invoked by
Wang et al. (2015) to explain the isotopically light iron isotopic compositions of the dunite. If the
lunar dunite is an early lunar magma ocean cumulate, then, assuming equilibrium conditions, the
composition from which the dunite is crystallizing must already be isotopically light; 6°°Fe = -0.35

+ 0.20%o.
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One way an isotopically light dunite source composition could potentially be generated is
by an early core formation and metal-silicate partitioning. Experimental and analytical studies of
metal-silicate iron isotope partitioning have suggested that metal is isotopically heavier (AFe e
sticae = +0.1%o0) than coexisting silicate (Poitrasson et al., 2005; Shahar et al., 2015; Elardo and
Shahar, 2017). However, a number of investigations (e.g., Schuessler et al., 2007; Poitrasson et
al., 2009; Hin et al., 2012; Shahar et al., 2016; Liu et al., 2017) have concluded that no significant
iron isotopic fractionation occurs between metal and silicate in equilibrium. The disagreement
results from the significant differences in starting compositions, phases, capsule materials, and
experimental conditions between studies. Assuming an equilibrium iron isotopic fractionation did
exist between metal and silicate, if the dunite source were once deep enough to be in isotopic
equilibrium with the lunar core, it would have a relatively light iron isotopic composition.
However, the estimates for the bulk mantle iron isotopic composition of the Moon after core
formation (e.g., minimum 0°°Fe = -0.15%oc; Elardo and Shahar, 2017), still cannot explain the
magnitude of light iron isotopic compositions measured in the lunar dunite by equilibrium metal-
silicate fractionation alone.

Another alternative method of generating isotopically light olivine in the lunar dunite is
partial melting. Iron isotope studies of terrestrial peridotites, which are the residues of partial
melting and depletion, show a correlation between iron isotopic compositions and depletion,
becoming lighter at higher extents of partial melting (Williams et al., 2005; Weyer and Ionov,
2007; Williams et al., 2009; Williams and Bizimis, 2014). It is possible that the iron isotopic
composition of the lunar dunite is a result of partial melting, however the existing models of lunar
dunite petrogenesis (i.e., Dymek et al., 1975; Ryder, 1992; Shearer et al., 2015) identify the dunite

as being of cumulate origin, not an ultra-depleted residue of partial melting.
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Considering the potential models for lunar dunite petrogenesis, kinetic fractionation via
Fe-Mg interdiffusion seems likely to have occurred, and this mechanism could easily explain the
light Fe isotopic compositions measured in the lunar dunite olivines. Regardless of whether the
lunar dunite is a deep magma ocean cumulate (Dymek et al., 1975) or shallow cumulate (Ryder,
1992; Shearer et al., 2015), the Mg-rich nature of the dunite ensures it would have interacted with
a higher Fe/Mg melt before and/or during its ascent to the lunar surface/sub-surface. In this way,
iron diffusion into the dunite is a plausible occurrence during every proposed model of dunite
formation. Iron diffusion into the Fe-poor olivine of the lunar dunite would decrease the 0>°Fe
composition, producing the negative d*Fe values measured by both Wang et al. (2015) and Sossi

and Moynier (2017).

4 4 Considerations for High-Temperature Iron Isotopic Fractionation on Earth and Mars

The results of our olivine crystallization experiments indicate that the absence of a
measureable equilibrium iron isotopic fractionation between olivine and melt is robust over fO, =
IW-1 to IW+2 in both the low-Ti (green glass) and high-Ti (black glass) compositions. Thus, we
can apply our results for the synthetic lunar glass compositions to olivine-bearing systems on Earth
and Mars with a similar range in oxygen fugacity, keeping in mind that there could be melt
compositional controls in addition to that of TiO, determined in this work.

Estimations for the oxygen fugacity of Earth’s upper mantle from spinel peridotites lie
within QFM=+2 (IW+1.5 to IW+5.5 at magmatic temperatures), with select abyssal peridotites and
peridotite massifs extending to QFM-3 (~IW+0.5) (Frost and McCammon, 2008, and references
therein). Garnet peridotites are more reducing than spinel peridotites, with the majority of fO,

estimations falling between IW-1 and IW+2 (Frost and McCammon, 2008). Additionally, the
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oxygen fugacity of martian basalts is estimated to be QFM-3 to QFM-1 (~IW to IW+3) (Herd et
al., 2002). Considering these estimates of magmatic oxygen fugacity, the IW-1 to IW+2 range of
our experiments is relevant to garnet peridotites, as well as the most reduced spinel peridotites and
martian basalts.

Iron isotopic compositions of terrestrial peridotites are 8> °Fe = -0.1%o to +0.15%¢ (Dauphas et
al., 2017). The range of peridotite iron isotopic compositions are considered to be a result of melt
extraction based on the correlation between iron isotopic composition and depletion, with iron
isotopic compositions of residues becoming lighter at higher extents of partial melting (Williams
et al., 2005; Weyer and lonov, 2007; Williams et al., 2009; Williams and Bizimis, 2014).
Alternatively, the heavy isotopic enrichment in the melt relative to the residue may be a result of
Fe** in the melt (Dauphas et al., 2009a; Dauphas et al., 2014). For instance, the difference between
the iron isotopic compositions of spinel and garnet peridotites has been attributed to the contrasting
behavior of Fe** during melting (Williams et al., 2005). Experimental determinations of mineral-
melt iron isotopic fractionations for additional minerals (i.e., pyroxene, spinel) are needed in order
to fully model the evolution of iron isotopic compositions during partial melting, as there exists
experimental evidence for equilibrium iron isotopic fractionation between spinel and olivine

(Shahar et al., 2008; Roskosz et al., 2015).

5. Conclusion

Olivine separates are often enriched in lighter iron isotopes relative to coexisting minerals and
the bulk rock (e.g., terrestrial peridotites, Beard and Johnson (2004); Poitrasson et al. (2004);
Williams et al. (2005); terrestrial basalts, Teng et al. (2008); Teng et al. (2010); Sio et al. (2013);

lunar basalts, Poitrasson et al. (2004); Wang et al. (2012); Wang et al. (2015); martian basalts,
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Collinet et al. (2017)). Considering the olivine-melt fractionation results presented in this work,
the only known mechanism capable of fractionating iron isotopes to a measureable degree is
diffusive fractionation (Dauphas et al., 2010; Teng et al., 2011; Sio et al., 2013; Oeser et al., 2015;
Sio and Dauphas, 2016; Collinet et al., 2017). Thus, the olivine grains enriched in light Fe isotopes
in mafic rocks are not a result of primary igneous crystallization, but rather a diffusive
fractionation, potentially related to re-equilibration (Teng et al., 2011; Sio et al., 2013; Oeser et
al., 2015) or simultaneous Fe diffusion and crystal growth (Sio and Dauphas, 2016; Collinet et al.,
2017). A diffusive fractionation mechanism is further supported by existing isotopic
disequilibrium between coexisting mineral pairs in peridotite samples (Beard and Johnson, 2004;
Roskosz et al., 2015). This disequilibrium in peridotites has been hypothesized as a result of
multiple phases of melt extraction, melt percolation, melt-rock reaction, or metasomatism (Beard
and Johnson, 2004; Williams et al., 2005; Macris et al., 2015; Roskosz et al., 2015; Zhao et al.,
2017).If the light iron isotopic compositions of terrestrial peridotites can conclusively be attributed
to metasomatism, then the light iron isotopic composition of the lunar dunite (discussed in Section
4.3) may also be a result of metasomatism, as metasomatism has been invoked to explain chemical

trends and petrographic textures observed in the lunar dunite (Shearer et al., 2015).
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Figure Captions

Figure 1. Iron isotopic compositions plotted as a function of TiO, Red points represent terrestrial
basalts and andesites, and blue points represent lunar basalts. The terrestrial suite is similar in Fe
isotopic composition to the low-Ti basalts, however high-Ti basalts have greater *°Fe values. The
observed fractionation between low- and high-Ti lunar mare basalts appears to be bi-modal,
although it is uncertain if this modality is due to sampling bias, as basalts with intermediate Ti
concentrations have not been frequently measured. Compositions and isotope measurement errors
(95% confidence interval) are from (Wiesli et al., 2003; Poitrasson et al., 2004; Weyer et al., 2005;
Teng et al., 2008; Dauphas et al., 2009b; Schuessler et al., 2009; Craddock et al., 2010; Liu et al.,

2010; Wang et al., 2015; Sossi and Moynier, 2017).

Figure 2. Back scattered electron image of two olivine crystallization experiments. Both
experiments were conducted at fO, = IW+2. Experiment durations were 1 day (left) and 4 days
(right). Experimental olivine crystals (dark gray) in the 4-day experiment (~50 ym diameter) are
larger than those grown in the 1-day experiment (~20 ym). Additionally, the olivine grains are
compositionally homogenous, i.e., there is no visible Fe zoning within the grains at the + 0.5 wt.%

FeO level.

Figure 3. a) Back scattered electron image of two Re wires. The wires were mounted in epoxy
post-experiment and polished to create a measureable cross section. Both wires were used in
experiments conducted at fO, = IW-1. Experiment durations were 6 hours (left) and 4 days (right).
Experimental Fe loss to the Re wire increases with time, producing a thicker Fe-enriched layer

(dark gray) while the core of the Re wire remains Fe-free (light gray).
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b) Electron microprobe core-to-rim Fe (wt.%) profile in a Re wire from a 4-day experiment

conducted at fO, = IW-1.

Figure 4. Force constants from a suite of melt compositions plotted as a function of TiO, content.
Red points represent the reduced (fO, = IW) terrestrial basalt, andesite, and dacite glasses from
Dauphas et al. (2014), and blue points represent the synthetic lunar volcanic glass compositions
measured in this work. There is no correlation between force constants and TiO, content within

the investigated 0.4 - 16.3 wt.% TiO, compositional range.

Figure 5. Iron isotopic compositions for each experiment part from Table 5 reported as AFe .-
total sample (O°°F€par — O Feua sample) - Error bars represent 95% confidence interval. Green symbols
indicate a synthetic green glass starting composition, and black symbols indicate a synthetic black

glass starting composition. Olivine and glass pairs from a given experiment are highlighted.

Figure 6.

a) A schematic diagram illustrating the Fe mass and isotope distributions detailed in Section 4.1
for experiment HO56. The labeled percent values at each branch represent the percent of the initial
Fe attributed to a given experiment reservoir. Measured iron isotopic compositions of each
experiment reservoir are mass balanced to explain the effect of Fe loss on the iron isotopic
composition of the total sample. Iron isotopic compositions and fractionations in italics indicate
calculated (not measured) values. Percent initial Fe for olivine and glass separates is calculated
using the olivine and glass proportions given in Table 2 (83% glass, 17% olivine for HO56) and

the calculated percent initial Fe for the total sample (Xg'0@ sample = 1 — Xglo). A similar calculation
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was performed for each experiment using the measured iron isotopic compositions for all the

experiment reservoirs (starting material, olivine, glass, total sample, experiment wire).

b) A stacked bar graph indicating the X, calculated for each Fe reservoir for each experiment. The
bracketed labels below the experiment names indicate the oxygen fugacity of the experiment (IW-
1 or IW+2). Additionally, the legend identifies which reservoirs constitute Fe loss (wire, gas) and

“total sample” Fe (olivine, glass).

Figure 7. The iron isotopic evolution of an experimental sample as evaporative Fe loss proceeds
through Rayleigh distillation, as calculated using Olexperiment-vapor fOr €ach experiment. The iron
isotopic composition is reported as A*Fegmpier — starting material (0 °F€sampler — O™ Feyurting materia) USING
0°°Feqarting material from Table 5. 0°°Fegmpe+ represents the iron isotopic composition of the “total
sample” after accounting for the iron isotopic fractionation associated with Fe loss to the Re wire
(Section 4.1, Figure 6). This correction was performed to isolate the effect of evaporation on the
heavy iron isotopic enrichment that occurs during the experiment, however both losses (to wire,
to vapor) would occur simultaneously throughout the experiment. Green symbols indicate a
synthetic green glass starting composition, and black symbols indicate a synthetic black glass
starting composition. The shape of the symbols reflects the fO, of each experiment as indicated in
the legend. Each modeled line is labeled with the corresponding Olexperiment-vapor Us€d in the Rayleigh

distillation equation.

Figure 8. Equilibrium mineral-melt fractionation of iron isotopes for olivine plotted as a function

of temperature. The blue line represents the difference between the average beta factor calculated
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from the NRIXS mean force constants for our synthetic lunar glasses and the beta factor for olivine
(Fos,) from Dauphas et al. (2014). The blue shading represents the error associated with the
calculated beta factors. The difference between the iron isotopic compositions of olivine and glass
separates in each crystallization experiment (Table 5) are plotted with the associated measurement
errors (95% confidence interval). Green symbols indicate a synthetic green glass starting
composition, and black symbols indicate a synthetic black glass starting composition. The inset in
the bottom right is the same data plotted in the main figure, with the x-axis expanded on the
experiment run temperatures. There is no resolvable difference between olivine and the synthetic
lunar glass suite under equilibrium conditions, as evidenced by our experimental results from both

the NRIXS and ICPMS approaches.
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