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Goal: Develop efficient methods to determine resilient optimal controls and 
designs that mitigate high-consequence rare events.

Minimize probability subject to risk-adjusted constraints:

min
𝑧∈𝑍

𝑝𝜏 𝑆 𝑧 subject to ℛ 𝐽 𝑆 𝑧 , 𝑧 ≤ 𝑐0

Minimize risk subject to probabilistic constraints:

min
𝑧∈𝑍

ℛ 𝐽 𝑆 𝑧 , 𝑧 subject to 𝑝𝜏 𝑆 𝑧 ≤ 𝑝0

Notation: 𝑧 = control or design variable

𝑆 𝑧 = solution to system of ODEs/PDEs/DAEs

Tie to EQUiPS Project: Potential to enable risk-averse design of hydrofoils 
and scram-jet engines

To Date: Risk-averse topology optimization, risk-averse control of chemical 
vapor deposition reactors

Target Optimization Formulations
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• Uncertain loads, materials, etc. imply displacements are uncertain.

• Reliability formulation: Determine light-weight design with acceptable
probability of failure.

• Challenge: Constraints are nonsmooth and expensive to evaluate.

Structural Topology Optimization

Setup: The force or load 𝐹 𝜉 on the right part of the bracket 
is uncertain.  Additionally, there is an uncertain Dirichlet
condition on the displacement at the bolt location, see 𝑔 𝜉 .

Given compliance tolerance 𝜏, probability 𝑝0 ∈ 0,1 ,

min
0≤𝑧≤1

න
𝐷

𝑧 ⅆ𝑥 =: vol 𝑧

subject to prob න
𝐷

𝐹 ⋅ 𝑆(𝑧) ⅆ𝑥 ≤ 𝑝0

where 𝑆 𝑧 = 𝑢 solves the linear elasticity equations

−∇ ∙ 𝐸 𝑧 : 𝜀𝑢 = 𝐹, in D

𝜀𝑢 = 1
2
∇𝑢 + ∇𝑢⊺ , in 𝐷

𝑢 = 𝑔, on Γ𝐷

𝜀𝑢: 𝑛 = 𝑡, on 𝜕𝐷 ∖ Γ𝐷
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Control of Chemical Vapor Deposition Reactors
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In/Outflow
Consider the optimal control problem

min
𝑧

1

2
ℛ න

𝐷

∇ × 𝑈 𝑧 ⅆ𝑥 +
𝛾

2
න
Γ𝑐

𝑧 2 ⅆ𝑥

Where 𝑆 𝑧 = 𝑈 𝑧 , 𝑃 𝑧 , 𝑇 𝑧 = (𝑢, 𝑝, 𝑡) solves the 

Boussinesq flow equations

−𝜈∇2𝑢 + 𝑢 ⋅ ∇ 𝑢 + ∇𝑝 + 𝜂𝑡𝑔 = 0 in 𝐷

∇ ⋅ 𝑢 = 0 in 𝐷
−𝜅Δ𝑡 + 𝑢 ⋅ ∇𝑡 = 0 in 𝐷

𝑢 − 𝑢𝑖 = 0, 𝑡 = 0 on Γ𝑖

𝑢 − 𝑢𝑜 = 0, 𝜅
𝜕𝑡

𝜕𝑛
= 0 on Γ𝑜

𝑢 = 0, 𝑇 = 𝑇𝑏 on Γ𝑏

𝑢 = 0, 𝜅
𝜕𝑡

𝜕𝑛
+ ℎ 𝑧 − 𝑡 = 0 on Γ𝑐

• Uncertain viscosity, thermal conductivity, substrate temperature, etc. imply 
flow velocity, pressure and temperature are uncertain.

• Risk-Averse formulation: Determine wall temperature that minimizes the 
average of low-probability, large vorticity scenarios.

• Challenge: Objective function is not differentiable.
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• ℛ quantifies hazard --- Used in optimization as objective function or constraint

• ℰ quantifies nonzeroness --- Used in regression analysis, e.g., polynomial chaos

• 𝒱 quantifies displeasure for positive values --- Used to define risk via disutility

• 𝒟 quantifies nonconstancy --- Used to define risk via variability

Technical Overview

Risk Quadrangle: Connecting optimization and estimation

ℛ 𝑋 = 𝔼 𝑋 + 𝒟(𝑋)
= min

𝑡
𝑡 + 𝒱 𝑋 − 𝑡

𝒱 𝑋 = 𝔼 𝑋 + ℰ 𝑋 Error ℰRegret 𝒱

Deviation 𝒟Risk ℛ

O
p
ti
m

iz
a
ti
o
n E

stim
a
tio

n

𝒟 𝑋 = ℛ 𝑋 − 𝔼 𝑋
= min

𝑡
ℰ 𝑋 − 𝑡

ℰ 𝑋 = 𝒱 𝑋 − 𝔼 𝑋

Buffered Probability: Conservative surrogate for probability

• prob 𝑋 > 𝜏 counts failures regardless of degree (i.e., magnitude) of failure

• Buffered probability adds buffer region to 𝑋 > 𝜏 that accounts for tail weight

Has exceptional mathematical properties and is easy to compute
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1. Solved a variety of optimization problems with PDE constraints using risk 
measures, buffered probability and distributionally robust optimization:

• Optimal control of incompressible fluid flow with uncertain viscosity and inflow;

• Topological design of elastic structures subject to random external loads;

• Optimal control of a counter flow heat exchanger with random conductivities;

• Optimal contaminant mitigation subject to random sources and advection.

2. Our research bridges stochastic programming (financial mathematics) and 
PDE-constrained optimization (engineering design and control):

• Developed application-inspired risk measures and applied to the examples above;

• Established mathematical theory for buffered probability.

3. Risk-averse and probabilistic optimization is computationally feasible for 
large-scale multiphysics applications:

• Demonstrated with our PDE-OPT application development kit and the risk-averse optimization 
capabilities in our optimization libraries (ROL and PSG);

• Exploited high degree of concurrency in the optimization process by parallelizing over 
samples and linear algebra;

• Efficiently and accurately evaluated risk of PDE solution dependent quantities of interest using 
adaptive reduced basis and risk-informed sampling;

• Efficiently minimized risk using adaptive discrete density estimation,  optimization-based 
sampling and optimization algorithms that exploit inexactness.

Phase I Accomplishments
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Example: Optimal control of Burger’s equation using CVaR

̶ Problem size is small: 1D spatial domain, 4D stochastic domain

̶ PDE is nonlinear   ⟹ Objective function is not convex

̶ CVaR risk measure quantifies tail weight and is not differentiable

Application of an off-the-shelf nonsmooth opt. algorithm:

Required 𝒪 108 nonlinear and 𝒪 108 linearized PDE solves!

Application of smoothed ℛ with globalized Newton’s Method:

Required 𝒪 106 nonlinear and 𝒪 107 linearized PDE solves!

Solving real world problems is intractable without…

• Better nonsmooth optim. Algorithms or differentiable ℛ

• Adaptive/variable fidelity approx. in physical/stochastic space

Challenge: Risk and BP are Not Differentiable

𝜷 0.1 0.5 0.9

# iter 9,740 10,035 10,128
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A risk measure ℛ:𝒳 → ℝ ∪ +∞ is coherent if for 𝑋, 𝑋′ ∈ 𝒳 and 𝑡 ∈ ℝ

(C1) Subadditivity: ℛ 𝑋 + 𝑋′ ≤ ℛ 𝑋 + ℛ 𝑋′ , i.e., diversifying decreases risk

(C2) Monotonicity: ℛ 𝑋 ≥ ℛ 𝑋′ when 𝑋 ≥ 𝑋′ a.e., i.e., small value preference

(C3) Translation Equivariance: ℛ 𝑋 + 𝑡 = ℛ 𝑋 + 𝑡, i.e., deterministic is riskless

(C4) Positive Homogeneity: ℛ 𝑡𝑋 = 𝑡ℛ 𝑋 , ∀𝑡 > 0, i.e., permit change of units

Phase II Accomplishments

ℛ is coherent ⟺ ℛ 𝑋 = max𝜗∈𝔄 𝔼 𝜗𝑋
ℛ 𝑋 is a worst-case expected value  ⟶ Often not differentiable!

Epi-Regularized Risk Measures:
1. Smooth risk measure by regularizing the worst-case expectation

ℛε 𝑋 ≔ min
𝑌∈𝒳

ℛ 𝑋 − 𝑌 + 𝜀Φ Τ𝑋 𝜀 = max
𝜗∈𝔄

𝔼 𝜗𝑋 − 𝜀Φ∗ 𝜗 , 𝜀 > 0

2. ℛ𝜀 satisfies (C1), (C2), (C3), but not (C4), i.e., ℛ𝜀 𝑡𝑋 = 𝑡ℛ Τ𝜀 𝑡 𝑋

3. ℛ𝜀 is differentiable  ⟶ Can minimize using derivative-based optimization

Results: Provable 𝒪 𝜀 error, confirmed on nonconvex application!
CDF CDFError Error

Linear PDE Nonlinear PDE
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Associated with each risk measure ℛ and r.v. 𝑋

is a risk identifier

— Illuminates risky region in parameter space (red)

— Need accurate approximation of 𝑋 in risky region

— Use risk identifier to guide adaptive sampling

Adaptive Risk-Informed Modeling:

1. Construct local reduced basis models around current samples

ത𝑢 = σ𝑘 𝟙Ξ𝑘𝑢𝑘, where 𝑢𝑘 is a reduced basis model

2. Evaluate risk-informed QoI error within cell containing sample

ℛ 𝑔 𝑢ℎ − ℛ 𝑔 ത𝑢 ≤ 𝐾 σ𝑘max
ϑ∈𝔄

𝔼 𝜗𝟙Ξ𝑘𝜀𝑢
𝛼 , 𝜗 ∈ 𝔄 are risk identifiers

3. Choose new samples based on largest local QoI errors

4. Combine with inexact trust-region algorithm for efficient optimization

Result: Reduced high-fidelity PDE solves from 𝒪 106 to 𝒪 103 !

Phase II Accomplishments
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3D Results

Topology Optimization Control of CVD Reactor

?

Controlled velocity (arrows) and 
pressure (color bar) using entropic risk.

Minimal volume density that satisfies 
constraint on risk of compliance
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