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@ Target Optimization Formulations

Goal: Develop efficient methods to determine resilient optimal controls and
designs that mitigate high-consequence rare events.

Minimize probability subject to risk-adjusted constraints:

anEl? pT(S(Z)) subject to R(](S(z),z)) < ¢y

Minimize risk subject to probabilistic constraints:

rglel? R(](S(z),z)) subject to pT(S(Z)) < Do

Notation: z = control or design variable
S(z) = solution to system of ODEs/PDEs/DAEs

Tie to EQUIPS Project: Potential to enable risk-averse design of hydrofoils
and scram-jet engines

To Date: Risk-averse topology optimization, risk-averse control of chemical
vapor deposition reactors
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DPA Structural Topology Optimization

Given compliance tolerance t, probability p, € (0,1),

Boundary

' dx =:vol
cond g(¢) 7 min JD z dx =:vol(z)

0=<z<1
subjectto prob <f F-S5(z) dx) < Po
D

l where S(z) = u solves the linear elasticity equations

—V-(E(z):eu) =F, inD
ForCing F(é—) U = %(Vu + VU,T), inD
u=g, on Iy

Setup: The force or load F(¢) on the right part of the bracket
is uncertain. Additionally, there is an uncertain Dirichlet su:n =t, ondD \ I'p

condition on the displacement at the bolt location, see g(¢).

« Uncertain loads, materials, etc. imply displacements are uncertain.
« Reliability formulation: Determine light-weight design with acceptable

probability of failure.
« Challenge: Constraints are nonsmooth and expensive to evaluate.
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DARPA Control of Chemical Vapor Deposition Reactors

Consider the optimal control problem
1 14
min—=R (j (VxU(2)) dx) + —j |z|% dx
z 2 D 2 r,

Where S(z) = (U(2), P(2),T(z)) = (u,p,t) solves the
Boussinesq flow equations
—vwWAu+ w-VYu+Vp+ntg=0 inD
V-u=90 inD
—kAt+u-Vt=0 in D

u—u; =0, t=0 onlIj
dt
u—u, =0, K%=0 on [,
u=20, T=T, onl,
dt
u=0, k—+h(z—t)=0 onl,
on

« Uncertain viscosity, thermal conductivity, substrate temperature, etc. imply

flow velocity, pressure and temperature are uncertain.
« Risk-Averse formulation: Determine wall temperature that minimizes the

average of /low-probability, large vorticity scenarios.
« Challenge: Objective function is not differentiable.
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@ Technical Overview

Risk Quadrangle: Connecting optimization and estimation
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= mln{t + V(X — t)}

V(X)=E

EX]+DX) 5 [ RiskR | +—[ Deviation D |

I

timizat

|
v

|

[X]+€(X)o[ Regret V ]4—»

Error €

m D(X) = R(X) — E[X]
= mln{E (X —t)}

uonewns

€0 = V() — E[X]

« R quantifies hazard --- Used in optimization as objective function or constraint

« £ quantifies nonzeroness --- Used in regression analysis, e.g., polynomial chaos
-V quantifies displeasure for positive values --- Used to define risk via disutility
« D quantifies nonconstancy --- Used to define risk via variability

Buffered Probability: Conservative surrogate for probability

PDF

qs = CVaRj; a=1-—p,

qs; = VaRj3

1 —ps

—

CDF -

{a o =
« prob(X > 1) counts failures regardless of degree (i.e., magnitude) of failure

« Buffered probability adds bHuifer region to {X > 7} that accounts for tail weight
— > Has exceptional mathematical properties and is easy to compute

For further dissemination, please contact D. P. Kouri

5



DPA Phase I Accomplishments

1. Solved a variety of optimization problems with PDE constraints using risk
measures, buffered probability and distributionally robust optimization:

Optimal control of incompressible fluid flow with uncertain viscosity and inflow;
Topological design of elastic structures subject to random external loads;
Optimal control of a counter flow heat exchanger with random conductivities;
Optimal contaminant mitigation subject to random sources and advection.

2. Our research bridges stochastic programming (financial mathematics) and
PDE-constrained optimization (engineering design and control):

Developed application-inspired risk measures and applied to the examples above;
Established mathematical theory for buffered probability.

3. Risk-averse and probabilistic optimization is computationally feasible for
large-scale multiphysics applications:

Demonstrated with our PDE-OPT application development kit and the risk-averse optimization
capabilities in our optimization libraries (ROL and PSG);

Exploited high degree of concurrency in the optimization process by parallelizing over
samples and linear algebra;

Efficiently and accurately evaluated risk of PDE solution dependent quantities of interest using
adaptive reduced basis and risk-informed sampling;

Efficiently minimized risk using adaptive discrete density estimation, optimization-based
sampling and optimization algorithms that exploit inexactness.
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G@ Challenge: Risk and BP are Nof Differentiable

Example: Optimal control of Burger’s equation using CVaR
— Problem size is small: 1D spatial domain, 4D stochastic domain
— PDE is nonlinear = Objective function is not convex
— CVaR risk measure quantifies ta// weight and is not differentiable

Application of an off-the-shelf nonsmooth opt. algorithm:
B | o1 0.5 0.9

#iter | 9,740 10,035 10,128
Required 0(108) nonlinear and 0(108) linearized PDE solves!

Application of smoothed R with globalized Newton’s Method:
Required 0(10°) nonlinear and 0(107) linearized PDE solves!

Solving real world problems is intractable without...
« Better nonsmooth optim. Algorithms or differentiable R
« Adaptive/variable fidelity approx. in physical/stochastic space
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G@ Phase II Accomplishments

A risk measure R: X —» R U {+} is coherent if for X, X' € X and t € R

(C1) Subadditivity: R(X + X') < R(X) + R(X"), i.e., diversifying decreases risk

(C2) Monotonicity: R(X) = R(X") when X > X' a.e., i.e.,, small value preference

(C3) Translation Equivariance: R(X + t) = R(X) + ¢, i.e,, deterministic is riskless

(C4) Positive Homogeneity: R(tX) = tR(X),Vt > 0, i.e,, permit change of units

[ R is coherent & R(X) = maxgeq E[9X] ]
R(X) is a worst-case expected value — Often not differentiable!

Epi-Regularized Risk Measures:
1. Smooth risk measure by regularizing the worst-case expectation
Re(X) = min (R(X —Y) + ed(X/e)} = ggg{m[ﬁx] —e®*(M)}, >0
2. R, satisfies (C1), (C2), (C3), but not (C4), i.e,, R.(tX) = tR.,(X)
3. R, is differentiable — Can minimize using derivative-based optimization

Results: Provable 0(y/¢) error, confirmed on nonconvex application!
CDF Error CDF . FErmor

0o 008 Cur Wl wr 0 001 0.02 003 004 0.05 0.06 0%
Linear PDE Nonlinear PDE
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@ Phase II Accomplishments

Associated with each risk measure R and r.v. X

iS a risk identifier

— Illuminates risky region in parameter space (red)
— Need accurate approximation of X in risky region
— Use risk identifier to guide adaptive sampling

Adaptive Risk-Informed Modeling:

1. Construct local reduced basis models around current samples
u = Y 1z, ux, Where uy is a reduced basis model

2. Evaluate risk-informed Qol error within cell containing sample

|fR (g(uh)) . R(g(ﬂ))| < K ¥, max E|91z, %], 9 € U are risk identifiers
3. Choose new samples based on largest local QoI errors
4. Combine with inexact trust-region algorithm for efficient optimization

Result: Reduced h|gh ﬁdehty PDE solves from 0(106) ‘to 0(103)'

\}“0
=

. S .
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Topology Optimization Control of CVD Reactor

Minimal volume density that satisfies Controlled velocity (arrows) and
constraint on risk of compliance pressure (color bar) using entropic risk.
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