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Many geophysicists concur that an orthorhombic elastic medium, characterized by three
mutually orthogonal symmetry planes, constitutes a realistic representation of seismic
anisotropy in shallow crustal rocks. This symmetry condition typically arises via a dense
system of vertically-aligned microfractures superimposed on a finely-layered horizontal
geology:

.

From Tsvankin, 1997, Geophysics. From Schoenberg and Helbig, 1997, Geophysics.

However, various geological deformation processes will rotate the symmetry planes away
from alignment with the global XYZ coordinate planes:

Mathematically, the elastic stress-strain constitutive relations for an orthorhombic body
contain nine independent moduli. In turn, these moduli can be determined by observing (or
prescribing) nine independent P-wave and S-wave phase speeds along different directions
(Brown, 1989):

The anisotropic elastic velocity-stress system, a set of 9 coupled, first-order, linear,
inhomogeneous PDEs forms the mathematical basis for our explicit time-domain finite-
difference (FD) numerical algorithm. All partial derivatives are discretized with centered
and staggered FD operators that are 2nd-order in time and 4th-order in space:

Summary

Present algorithmic 
assumption:  3 principal 
axes of orthorhombic 
elastic modulus tensor 
aligned with global XYZ 
coordinate axes.

Rotated principal axes 
lead to significant 
algorithmic complications! 
Subject of future R&D.

6 P-Wave Speeds / Directions: 6 S-Wave Speeds / Directions:

Our initial test modeling utilizes the 
“standard model” of a VF+TI (vertical
fractures + transverse isotropic) elastic 
model of Schoenberg and Helbig (1997), 
plus its TI and isotropic counterparts.

Conclusions
Explicit time-domain finite-difference numerical algorithm demonstrates known anisotropic seismic phenomena of:

1) Complex wavefront shapes,  2) Pressure / rotation propagating with both P / S speeds,  3) Split (fast and 
slow) shear waves,  4) SH energy (Wz) is generated for an explosion source in this 1-D layered structure (in 
an isotropic medium, no SH energy would be seen

Completed synthetic predictions for DAG-1 azimuthally anisotropic and orthorhombic model of site.

Limitations
1) No published anisotropy models of site,  2) Used best estimated 1-D layered structure

Future work:

Source scaling will be estimated from prior SPE data and DAG

Model Creation
Model 
•1051 x 1051 x 353 grid points.
•4 m grid point spacing.
•Free-surface boundary along X-Y plane at z=0 m.
•40 m thick CPML on all boundaries except free surface.
•Explosion source at z = 388 m.
•Source is Error Function (3rd integral of Ricker wavelet), 5 Hz frequency 
shifted 100 ms.
•No published anisoptrophy models of site

Two Cases
•Unmodified data from THOR I and II.
•Modified data with Z-axis wave speeds reduced 10 % to see effect of greater 
wave speed differential.
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Pressure Wave Results

Particle Rotation Rate Results
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Particle Velocity Results
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True Relative Amplitude Trace Plots
10% Reduction of Initial Vertical 
Axis (Z-axis) Wave Speed InputsInitial Wave Speed Inputs

• Existing anisotropic wave speed data for dry alluvium 
deposits were not located in literature search

• P- and S-wave speeds were adapted from preliminary 
Seismic Hammer Project (THOR 1 and THOR 2) results. 

• Velocity model comprises a 1-D series of constant 
velocity layers

Assumed Model Wave Speeds
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