Persistent homology fingerprinting of microstructural controls

on larger-scale fluid flow in porous media
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Introduction

Algebraic topology offers powerful mathematical tools for describing structures
or shapes. Persistent homology analyzes the dynamics of topological features
and summarizes 1t by numeric values. The dynamics of topological features are
recorded as an interval between each feature’s birth and death.

We present a persistence homology analysis framework of 3D 1mage sets. We
demonstrate it over a focused 1on beam scanning electron microscopy dataset of
the Selma Chalk. We compute and extract structural characteristics of sampling
volumes via persistent homology and principal component analysis (PCA). We fit
a statistical model using the summarized values to estimate porosity, permeabil-
1ty, anisotropy, and tortuosity. The suggested framework efficiently predicts fluid
flow and transport properties based on geometry and connectivity.

Analysis pipeline

1. Persistent homology computation and vectorization

e Original Images — Binary images — Transformed grayscale images — Cu-
bical complexes — Persistence diagrams — Vectorized persistence diagrams

2. Sampling
e Vectorized persistence diagrams — Similarity metric — Determine SREV

3. Feature extraction

e Vectorized persistence diagrams — Principal component analysis

4. Modeling

e Prediction: Loadings — Fit a statistical model — Prediction
e Classification: Loadings — Classification

Data

We analyze a FIB-SEM dataset of the Selma Chalk, based on previously binarized
images used in the study by Yoon and Dewers [4]. We use previously calculated
parameters, which were calculated as a function of an increasingly-larger subvol-
ume. These include porosity, permeability, tortuosity, and anisotropy. There are
in total six different sizes of subvolumes: 1502, 3003, 400%, 5003, 600 x 520 x 600,
and 765 x 520 x 765.
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Figure 1: Slice of selma group chalk data (left) and binarized image (right)

Persistent homology computation and vectorization

Persistent homology computation We use the persistent homology computa-
tion framework used by Robins et al. [2, 1]. In Robins et al. [2], the geometric
characteristics of the binary image are defined by the Signed Euclidean Distance
Transform (SEDT). The SEDT assigns a numeric value to each pixel: negative
for pore and positive for grain. Its magnitude represents the Euclidean distance
between the pixel and the closest opposite status pixel; a large negative value in-
dicates a large pore size, and a large positive value indicates a large grain size.
Then, a cubical cell complex is defined based on the discrete Morse function. The
SEDT value of a cell 1s the maximum value of all of its vertices.

As we change the filtration value, k-cell components are added to the cubical
cell complex. That 1s, we add cells one by one in order of increasing SEDT
value, thus a cell 1s added when the current filtration value reaches the maximum
value of all of its vertices. By tracking the homology of the sequence of cubical
complexes, we can compute the persistent homology.

The barcodes for each dimension are reported separately: the zero, one, and two
dimensional homology groups. For each dimension’s barcode, the different quad-
rants of its image reveal different aspects of the rock. Figure 2 shows examples of

persistence diagrams, and Table 1 gives interpretations of corresponding regions
of persistence diagrames.
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Figure 2: Examples of persistence diagrams dimension O, 1, and 2

Dim. | Region Value of X (Birth) Value of Y (Death)
0 A | Size of pore (max radius) | Narrowest grain contact to other pores
B Size of pore (max radius) Pore throat radius
1 C Pore tube radius Grain contact radius
D Pore tube radius Non-convex pore throat radius
E Grain tube radius Pore contact radius
2 F Grain-contact radius Size of grain (max radius)

Table 1: Interpretation of persistence diagrams

Vectorization of persistence diagrams We convert persistence diagrams to im-
age vectors. The vectorization process has two advantages: 1) we may apply
1image analysis technique 2) we may compute the mean persistence diagram. We
bin the elements of the persistence diagram into 100 x 100 bins; each bin 1s an
output pixel. We count the number of dots that correspond to barcodes 1n each
bin and assign it as the output pixel intensity.

Sampling: determining SREV

The Representative Elementary Volume (REV) 1s the smallest volume for
which a measurement 1s representative of the whole. The statistical REV,
SREV, is a scale where the means of properties are constant, and their
variations are small. The sREV 1s closely related to defining the sam-
pling unit from the rock images, and the “right scale” for rock analysis.

SREYV determination If the
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persistence diagrams of sam-
pled subvolumes are simi-
lar to each other, then their
structural properties would
be consistent. We can de-
termine the resemblance by
comparing persistence dia-
grams. We suggest us- 0.7}
ing the structural similar-
ity (SSIM) [3], the similar- 061
ity measure for image which
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bust to perturbations. The
SSIM index of two images x
and y is defined as a multiplication of three components: the luminance [(z, y),
contrast ¢(x, y), and structure s(x,y). The SSIM varies from zero to one, where
one 1ndicates two 1mages x and y are 1dentical. We use the default setup so that

Figure 3: Average SSIM: Selma group chalk

SSIM(z, y) = Iz, y)* * c(x,y)” * s(z,y)”
(2pezfty + 0. m)(zaw +0.03)
(17 + 12 +0.01) (07 + 07 +0.03)

Instead of computing SSIM for the whole image, Wang et al. [3] suggests using a
local block. Similarly, we compute SSIM of the local blocks that have a non-zero
element.

SREV for Selma group chalk We compute persistent homology for six
differently-sized subvolumes. For each size, SSIM 1s computed between the mean
vectorized persistence diagram (1mage x) and every persistence diagram (image
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y) and average SSIM is reported. We use 5-by-5 sized local blocks in computa-
tion. Figure 3 shows the average SSIM values of three dimensions for six subvol-
umes. The dimension 2 persistence diagrams, related to size of grain, show the
biggest difference in Selma group chalk. There is no standard for deciding REV
using SSIM. We set the threshold to be 0.9 because Yoon and Deweres [4] finds
that the subvolume size 4007 is the SREV.

Feature extraction: principal component analysis

We extract features from persistence diagrams using principal component anal-
ysis. We subtract the mean (vectorized) persistence diagram from all the per-
sistence diagram vectors and compute the principal components. The principal
components form a basis to represent the vectorized persistence diagrams:

it persistence diagram of dim £ — mean persistence diagram of dim £

= Cjp1 * PCy1 + o * PCro + -+ + Cipp * PCly,
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After computing principal components, we select a subset of principal compo-
nents that explain at least 85% of total variabilities and discard the rest to achieve
a reduction 1n dimension.

We call the coefficients of the principal components the loadings. We can use
the set of loadings to summarize persistence diagrams. The Euclidean vector
v = {¢01, o2, - - - ¢ + Summarizes the i porous material.

3D rock Image — Persistence Diagrams — Euclidean Vector

Once we convert data into the Euclidean vector, we can then apply classical sta-
tistical approaches to make an inference. For example, the numeric values can be
used as an explanatory variable for a classification or regression.

Prediction of fluid flow and transport characteristics:
penalized regression

We would like to fit a model that explains the geometric properties (y variables)
using loadings obtained from the principal component analysis (x variables).
However, the number of loadings obtained for all dimensions 1s 3n, which 1s
larger than the number of samples n. Even after the dimension reduction via
PCA, the number of variables could be larger than the number of samples. We
call this the “small n large p” case, which can lead to over-fitting a model.

One of the solutions to the overfitting problem is to use a penalized regression.
We fit the same regression but give a penalty to the coefficients. LASSO i1s a
penalized regression model using a L penalty. The result of LASSO can be
obtained by solving
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It fits a regression and does variable selection at the same time. The advantage of
the LASSO model 1s that we can see which principal components play a role in
predicting fluid flow and transport properties.

Prediction of fluid flow of Selma group chalk We fit a model only for three
smallest sizes of subvolumes (1503, 3003, and 400°) because for the other sizes
the number of subvolumes is insufficient. We have 42, 23, and 23 subvolumes for
the sizes 150°, 3003, and 400°. We fit a LASSO model to predict four fluid flow
and transport properties: porosity ¢, permeability k, anisotropy A, and tortuosity
7. Because permeability and tortuosity are measured in x, vy, and z directions, we
define the representative permeability as a geometric mean (kg * ky * kz)l/ 3 and
the representative tortuosity as an arithmetic mean (7, + 7, + 7;)/3. To decide
the A\ in the LASSO model, we train the model with 3000 repetitions. The ratio
of training, validation, and test sets 1s 72%, 18%, and 10%, respectively.

Figure 4 summarizes prediction results. Porosity prediction results are fairly ac-
curate at all scales, from 150—400. Permeability prediction results show the sud-
den increase in predictive accuracy at size 400. Anisotropy prediction results
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exhibit the gradual increase in predictive accuracy between sizes 300 and 400.
The accuracy for anisotropy is not as good as for permeability. Tortuosity predic-
tion result displays a sudden increase in predictive accuracy at size 400 as with
permeability. At the sREV, the subvolume size of 400, we found that the mod-
els explained all four fluid flow and transport variables. Also, as we increase the
subvolume size, the predictions tend to be more accurate.

Fitted vs. Actual POR Size 150

Fitted vs. Actual POR Size 300 Fitted vs. Actual POR Size 400
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Figure 4: Prediction vs. actual plots of four geometric properties.
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