Large-Scale DSMC Simulations ...

ComputationdaNSAFANErEL L

Michael Gallis & Steve Plimpton
Sandia National Labs

NASA Ames - December 2017

Center for Computing Research

i Sandia National Laboratories is a multi-mission laboratory managed and operated by
ﬁgt“iglr’cllal National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of /R Ml .\ b%ﬂ
. Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security ///’ V A
Laboratories sdministration under contract DE-NA0003525. Presentation: SAND2017-12447C

How SPARTA works in parallel

@ 3 kinds of data: particles, grid cells, surface elements
o hierarchical Cartesian grid with cells cut/split by surfs
o grid cells (and their particles) are load balanced (RCB)
o surface elements are not (yet) distributed

How SPARTA works in parallel

@ 3 kinds of data: particles, grid cells, surface elements
o hierarchical Cartesian grid with cells cut/split by surfs
o grid cells (and their particles) are load balanced (RCB)
o surface elements are not (yet) distributed

@ Each proc: clump of child cells + ghost cells within cutoff
@ One-pass communication per step, if cutoff long enough

Interesting features, current and future

o Adaptive gridding

@ Run on GPU, KNL via Kokkos
o Code extensibility

o Distributed surfaces

Adaptive gridding

e Hierarchical grid
o top-level is single grid cell = simulation box
o each parent cell has variable Nx by Ny by Nz child cells
e recurse as many levels as desired (64-bit cell IDs)
e oct-tree is 2x2x2 case, up to 15 levels

@ Each child or parent cell
considered independently

Adaptive gridding

e Hierarchical grid

top-level is single grid cell = simulation box

each parent cell has variable Nx by Ny by Nz child cells
recurse as many levels as desired (64-bit cell IDs)
oct-tree is 2x2x2 case, up to 15 levels

@ Each child or parent cell
considered independently

e Refinement/coarsening criteria:

e any per-grid value, current or time-averaged
e geometric: nearness to upwind surface elements
o flow: number of particles in cell,
mean-free-path = \ = {/27D2 ;n(Tyer/ T)*~1/2} 71

Parallel implementation

o Refinement is a local operation

e proc that owns a child cell can decide to refine, create new cells
e all procs can do this without communication
@ Coarsening may not be local operation
e if one proc owns all children, then local
e if multiple procs own children, communication needed

V SN

S~—x

3

4

Parallel implementation

o Refinement is a local operation
e proc that owns a child cell can decide to refine, create new cells
e all procs can do this without communication
e Coarsening may not be local operation
e if one proc owns all children, then local
e if multiple procs own children, communication needed
3

V SN
4

S~—x

@ Use rendezvous algorithm for non-local coarsening
e owner of each child may not know who owns other children
e everyone knows rendezvous proc, send child info to it
o Rendezvous processor
e owner of parent cell, assigned in round-robin fashion
e gathers info from all children, decides whether to coarsen
e communicates result to all procs owning child cells

(2]
Q
o
S
L
P
()
5]
N
Q
o
£
(9p)]

Simple 2d examples

For moving surfaces:
@ remove particles from any cell cut by element

@ assume move is slow enough to allow particles to re-equilibrate

3d flow around Apollo capsule

@ 74 million particles, initial coarse grid = 253 = 16K cells

@ Final 5-level refined grid = 6.5 million child cells
o Uniform grid at fully refined scale = 8003 = 512M cells

3d flow around Apollo capsule

@ 74 million particles, initial coarse grid = 253 = 16K cells

HiEH
HEe

B

@ Final 5-level refined grid = 6.5 million child cells
o Uniform grid at fully refined scale = 8003 = 512M cells

Run SPARTA on GPU, KNL via Kokkos

@ Work by Stan Moore and Dan Ibanez
o Kokkos: https://github.com/kokkos

e one solution for MPI4+-X programming model
o goal: (re)write application kernels only once,
run efficiently on variety of current/future hardware

Run SPARTA on GPU, KNL via Kokkos

@ Work by Stan Moore and Dan Ibanez
o Kokkos: https://github.com/kokkos
e one solution for MPI4+-X programming model
o goal: (re)write application kernels only once,
run efficiently on variety of current/future hardware
@ Two major components:
@ Data access abstraction via Kokkos arrays

@ optimal layout & access pattern for each device
e CPU, GPU, KNL, etc

@ Parallel dispatch of small chunks of work

@ auto-mapped onto back-end languages
o CUDA, OpenMP, etc

Run SPARTA on GPU, KNL via Kokkos

@ Work by Stan Moore and Dan Ibanez
o Kokkos: https://github.com/kokkos
e one solution for MPI4+-X programming model
o goal: (re)write application kernels only once,
run efficiently on variety of current/future hardware
@ Two major components:
@ Data access abstraction via Kokkos arrays

@ optimal layout & access pattern for each device
e CPU, GPU, KNL, etc

@ Parallel dispatch of small chunks of work
@ auto-mapped onto back-end languages
o CUDA, OpenMP, etc
@ Incremental rewrite of SPARTA kernels so they:
o use Kokkos data structures, fine granularity, thread-safe
e status: move, sort, collide, hierarchical grid, surfs
e not yet: reactions, many diagnostics, BC, etc

Single-node SPARTA performance on CPU, GPU, KNL

~
o
o

o))

o

o
T

Millions of particle-steps/sec

100+

Sphere: single node

~

111l

SandyBridge
Haswell
Broadwell
KNL

K80-1
P100-1

64K 256K 1M 2M 4M 8M16M 64M
Particle count

Strong-scaling SPARTA performance on CPU, GPU, KNL

Collide: strong scaling, 64M particles

300
o—e SandyBridge

(]
T 250} o—e Haswell
§ Broadwell
%200, o—e KNL
g o—e K80-1

(%]
%1507 e—e P100-1
5

Qo
% 1001 .—__.—’4/./0———0\.

%]

c
o
= 50}
=

0

1 2 4 8 16 32 64
Node count

SPARTA designed to be easy to extend

@ Virtual parent class defines interface to a capability
e Many child classes (features) can implement the interface
e Currently, ~50% of SPARTA code base is add-on child classes

SPARTA designed to be easy to extend

@ Virtual parent class defines interface to a capability
e Many child classes (features) can implement the interface
e Currently, ~50% of SPARTA code base is add-on child classes

Examples:
@ collision & reaction models = VSS, VHS, QK, TCE, hybrid
@ surface collision models = specular, diffuse, piston, vanish
@ surface reaction models = global, list of reactions/probabilities
e diagnostics (16) = various per-particle, per-grid, per-surf
o fixes (14) (operate while timestepping) = particle emission,
time averaging, load-balancing, move surfs, etc

fixes can define additional per-particle attributes:
ambipolar, polyatomic vibrational energy levels

SPARTA can be used as a library

At least two purposes:

@ Use SPARTA as a tool in a higher-level workflow
e can invoke multiple instances of SPARTA

@ Enable multi-physics or multi-scale models
@ couple to continuum or molecular collision models

SPARTA can be used as a library

At least two purposes:

@ Use SPARTA as a tool in a higher-level workflow
e can invoke multiple instances of SPARTA

@ Enable multi-physics or multi-scale models
@ couple to continuum or molecular collision models

Software details:

C-style interface, callable from C+4++/C/Fortran/Python
Parallel python via mpi4py

Lib interface is easy to extend:
o add functions to library.cpp/h
e add wrapper methods to sparta.py for Python
Umbrella code/script can invoke SPARTA and
another code, pass info between them

SPARTA can be used as a library

At least two purposes:

@ Use SPARTA as a tool in a higher-level workflow
e can invoke multiple instances of SPARTA

@ Enable multi-physics or multi-scale models
@ couple to continuum or molecular collision models

Software details:

C-style interface, callable from C+4++/C/Fortran/Python

Parallel python via mpi4py

Lib interface is easy to extend:
o add functions to library.cpp/h
e add wrapper methods to sparta.py for Python
Umbrella code/script can invoke SPARTA and
another code, pass info between them

Caveat: not solving the hard coupling problem, just software issue

Distributed surface elements

50K triangles is good enough for the Mir space station, but ...

Distributed surface elements

50K triangles is good enough for the Mir space station, but ...
Some crazy users want to model 10-100Ms of surface elements!

Distributed surface elements

50K triangles is good enough for the Mir space station, but ...
Some crazy users want to model 10-100Ms of surface elements!

@ Currently each proc stores all surfs:
e easier to not worry when a surf overlaps many cells/procs

@ One surf = ~80 bytes + tallies = 100s GBs
e New option for proc to only store surfs in owned+ghost cells

Complicating factors

@ Load-balancing
e surfs now have to migrate with cells/particles
@ Per-surf-element statistics

o currenty tallying is via MPI_Allreduce()
e will need to do something more clever

Surface erosion:

e how to maintain topology
o more careful nearby particle deletion/creation

Do we need to store per-surf-element state 7

e multiple procs may contribute to one element'’s state
e how to insure state is up-to-date

Thanks and links

e Funding support: DOE/NNSA ASC and ATDM programs

e http://sparta.sandia.gov

@ SPARTA short course:
http://sparta.sandia.gov/tutorials.html

@ Stan Moore and Dan Ibanez (Sandia): Kokkos work
@ https://github.com/kokkos

@ Looking to collaborate on new ideas for SPARTA

@ magalli@sandia.gov, sjplimp@sandia.gov

