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How SPARTA works in parallel

@ 3 kinds of data: particles, grid cells, surface elements
o hierarchical Cartesian grid with cells cut/split by surfs
o grid cells (and their particles) are load balanced (RCB)
o surface elements are not (yet) distributed
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@ 3 kinds of data: particles, grid cells, surface elements
o hierarchical Cartesian grid with cells cut/split by surfs
o grid cells (and their particles) are load balanced (RCB)
o surface elements are not (yet) distributed

@ Each proc: clump of child cells + ghost cells within cutoff
@ One-pass communication per step, if cutoff long enough



Interesting features, current and future

o Adaptive gridding

@ Run on GPU, KNL via Kokkos
o Code extensibility

o Distributed surfaces



Adaptive gridding

e Hierarchical grid
o top-level is single grid cell = simulation box
o each parent cell has variable Nx by Ny by Nz child cells
e recurse as many levels as desired (64-bit cell IDs)
e oct-tree is 2x2x2 case, up to 15 levels

@ Each child or parent cell
considered independently
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e Refinement/coarsening criteria:

e any per-grid value, current or time-averaged
e geometric: nearness to upwind surface elements
o flow: number of particles in cell,
mean-free-path = \ = {/27D2 ;n( Tyer/ T)*~1/2} 71



Parallel implementation

o Refinement is a local operation

e proc that owns a child cell can decide to refine, create new cells
e all procs can do this without communication
@ Coarsening may not be local operation
e if one proc owns all children, then local
e if multiple procs own children, communication needed
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@ Use rendezvous algorithm for non-local coarsening
e owner of each child may not know who owns other children
e everyone knows rendezvous proc, send child info to it
o Rendezvous processor
e owner of parent cell, assigned in round-robin fashion
e gathers info from all children, decides whether to coarsen
e communicates result to all procs owning child cells



(2]
Q
o
S
L
P
()
5]
N
Q
o
£
(9p)]



Simple 2d examples

For moving surfaces:
@ remove particles from any cell cut by element

@ assume move is slow enough to allow particles to re-equilibrate



3d flow around Apollo capsule

@ 74 million particles, initial coarse grid = 253 = 16K cells

@ Final 5-level refined grid = 6.5 million child cells
o Uniform grid at fully refined scale = 8003 = 512M cells
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@ Final 5-level refined grid = 6.5 million child cells
o Uniform grid at fully refined scale = 8003 = 512M cells



Run SPARTA on GPU, KNL via Kokkos

@ Work by Stan Moore and Dan Ibanez
o Kokkos: https://github.com/kokkos

e one solution for MPI4+-X programming model
o goal: (re)write application kernels only once,
run efficiently on variety of current/future hardware
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o goal: (re)write application kernels only once,
run efficiently on variety of current/future hardware
@ Two major components:
@ Data access abstraction via Kokkos arrays

@ optimal layout & access pattern for each device
e CPU, GPU, KNL, etc

@ Parallel dispatch of small chunks of work

@ auto-mapped onto back-end languages
o CUDA, OpenMP, etc



Run SPARTA on GPU, KNL via Kokkos

@ Work by Stan Moore and Dan Ibanez
o Kokkos: https://github.com/kokkos
e one solution for MPI4+-X programming model
o goal: (re)write application kernels only once,
run efficiently on variety of current/future hardware
@ Two major components:
@ Data access abstraction via Kokkos arrays

@ optimal layout & access pattern for each device
e CPU, GPU, KNL, etc

@ Parallel dispatch of small chunks of work
@ auto-mapped onto back-end languages
o CUDA, OpenMP, etc
@ Incremental rewrite of SPARTA kernels so they:
o use Kokkos data structures, fine granularity, thread-safe
e status: move, sort, collide, hierarchical grid, surfs
e not yet: reactions, many diagnostics, BC, etc



Single-node SPARTA performance on CPU, GPU, KNL

~
o
o

o))

o

o
T

Millions of particle-steps/sec

100+

Sphere: single node

~

111l

SandyBridge
Haswell
Broadwell
KNL

K80-1
P100-1

64K 256K 1M 2M 4M 8M16M  64M
Particle count




Strong-scaling SPARTA performance on CPU, GPU, KNL

Collide: strong scaling, 64M particles

300
o—e SandyBridge

(]
T 250} o—e Haswell
§ Broadwell
%200, o—e KNL
g o—e K80-1

(%]
%1507 e—e P100-1
5

Qo
% 1001 .—__.—’4/./0———0\.

%]

c
o
= 50}
=

0

1 2 4 8 16 32 64
Node count



SPARTA designed to be easy to extend

@ Virtual parent class defines interface to a capability
e Many child classes (features) can implement the interface
e Currently, ~50% of SPARTA code base is add-on child classes



SPARTA designed to be easy to extend

@ Virtual parent class defines interface to a capability
e Many child classes (features) can implement the interface
e Currently, ~50% of SPARTA code base is add-on child classes

Examples:
@ collision & reaction models = VSS, VHS, QK, TCE, hybrid
@ surface collision models = specular, diffuse, piston, vanish
@ surface reaction models = global, list of reactions/probabilities
e diagnostics (16) = various per-particle, per-grid, per-surf
o fixes (14) (operate while timestepping) = particle emission,
time averaging, load-balancing, move surfs, etc

fixes can define additional per-particle attributes:
ambipolar, polyatomic vibrational energy levels



SPARTA can be used as a library

At least two purposes:

@ Use SPARTA as a tool in a higher-level workflow
e can invoke multiple instances of SPARTA

@ Enable multi-physics or multi-scale models
@ couple to continuum or molecular collision models



SPARTA can be used as a library

At least two purposes:

@ Use SPARTA as a tool in a higher-level workflow
e can invoke multiple instances of SPARTA

@ Enable multi-physics or multi-scale models
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Software details:

C-style interface, callable from C+4++/C/Fortran/Python
Parallel python via mpi4py

Lib interface is easy to extend:
o add functions to library.cpp/h
e add wrapper methods to sparta.py for Python
Umbrella code/script can invoke SPARTA and
another code, pass info between them



SPARTA can be used as a library

At least two purposes:

@ Use SPARTA as a tool in a higher-level workflow
e can invoke multiple instances of SPARTA

@ Enable multi-physics or multi-scale models
@ couple to continuum or molecular collision models

Software details:

C-style interface, callable from C+4++/C/Fortran/Python

Parallel python via mpi4py

Lib interface is easy to extend:
o add functions to library.cpp/h
e add wrapper methods to sparta.py for Python
Umbrella code/script can invoke SPARTA and
another code, pass info between them

Caveat: not solving the hard coupling problem, just software issue



Distributed surface elements

50K triangles is good enough for the Mir space station, but ...
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Distributed surface elements

50K triangles is good enough for the Mir space station, but ...
Some crazy users want to model 10-100Ms of surface elements!

@ Currently each proc stores all surfs:
e easier to not worry when a surf overlaps many cells/procs

@ One surf = ~80 bytes + tallies = 100s GBs
e New option for proc to only store surfs in owned+ghost cells



Complicating factors

@ Load-balancing
e surfs now have to migrate with cells/particles
@ Per-surf-element statistics

o currenty tallying is via MPI_Allreduce()
e will need to do something more clever

Surface erosion:

e how to maintain topology
o more careful nearby particle deletion/creation

Do we need to store per-surf-element state 7

e multiple procs may contribute to one element'’s state
e how to insure state is up-to-date



Thanks and links

e Funding support: DOE/NNSA ASC and ATDM programs

e http://sparta.sandia.gov

@ SPARTA short course:
http://sparta.sandia.gov/tutorials.html

@ Stan Moore and Dan Ibanez (Sandia): Kokkos work
@ https://github.com/kokkos

@ Looking to collaborate on new ideas for SPARTA

@ magalli@sandia.gov, sjplimp@sandia.gov



