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How SPARTA works in parallel

3 kinds of data: particles, grid cells, surface elements
hierarchical Cartesian grid with cells cut/split by surfs
grid cells (and their particles) are load balanced (RCB)
surface elements are not (yet) distributed

Each proc: clump of child cells + ghost cells within cutoff

One-pass communication per step, if cutoff long enough
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Interesting features, current and future

Adaptive gridding

Run on GPU, KNL via Kokkos

Code extensibility

Distributed surfaces



Adaptive gridding

Hierarchical grid

top-level is single grid cell = simulation box
each parent cell has variable Nx by Ny by Nz child cells
recurse as many levels as desired (64-bit cell IDs)
oct-tree is 2x2x2 case, up to 15 levels

Each child or parent cell
considered independently

Refinement/coarsening criteria:

any per-grid value, current or time-averaged
geometric: nearness to upwind surface elements
flow: number of particles in cell,

mean-free-path = λ = {
√

2πD2
refn(Tref/T )ω−1/2}−1
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Parallel implementation

Refinement is a local operation
proc that owns a child cell can decide to refine, create new cells
all procs can do this without communication

Coarsening may not be local operation
if one proc owns all children, then local
if multiple procs own children, communication needed

7 7

4 7

3 3

proc 23

Use rendezvous algorithm for non-local coarsening
owner of each child may not know who owns other children
everyone knows rendezvous proc, send child info to it

Rendezvous processor
owner of parent cell, assigned in round-robin fashion
gathers info from all children, decides whether to coarsen
communicates result to all procs owning child cells
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Simple 2d examples

For moving surfaces:

remove particles from any cell cut by element

assume move is slow enough to allow particles to re-equilibrate
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3d flow around Apollo capsule

74 million particles, initial coarse grid = 253 = 16K cells

Final 5-level refined grid = 6.5 million child cells

Uniform grid at fully refined scale = 8003 = 512M cells
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Run SPARTA on GPU, KNL via Kokkos

Work by Stan Moore and Dan Ibanez

Kokkos: https://github.com/kokkos
one solution for MPI+X programming model
goal: (re)write application kernels only once,

run efficiently on variety of current/future hardware

Two major components:
1 Data access abstraction via Kokkos arrays

optimal layout & access pattern for each device
CPU, GPU, KNL, etc

2 Parallel dispatch of small chunks of work

auto-mapped onto back-end languages
CUDA, OpenMP, etc

Incremental rewrite of SPARTA kernels so they:

use Kokkos data structures, fine granularity, thread-safe
status: move, sort, collide, hierarchical grid, surfs
not yet: reactions, many diagnostics, BC, etc
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Single-node SPARTA performance on CPU, GPU, KNL
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Strong-scaling SPARTA performance on CPU, GPU, KNL
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SPARTA designed to be easy to extend

Virtual parent class defines interface to a capability

Many child classes (features) can implement the interface

Currently, ∼50% of SPARTA code base is add-on child classes

Examples:

collision & reaction models = VSS, VHS, QK, TCE, hybrid

surface collision models = specular, diffuse, piston, vanish

surface reaction models = global, list of reactions/probabilities

diagnostics (16) = various per-particle, per-grid, per-surf

fixes (14) (operate while timestepping) = particle emission,
time averaging, load-balancing, move surfs, etc

fixes can define additional per-particle attributes:
ambipolar, polyatomic vibrational energy levels
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SPARTA can be used as a library

At least two purposes:

Use SPARTA as a tool in a higher-level workflow
can invoke multiple instances of SPARTA

Enable multi-physics or multi-scale models

couple to continuum or molecular collision models

Software details:

C-style interface, callable from C++/C/Fortran/Python

Parallel python via mpi4py

Lib interface is easy to extend:

add functions to library.cpp/h
add wrapper methods to sparta.py for Python

Umbrella code/script can invoke SPARTA and
another code, pass info between them

Caveat: not solving the hard coupling problem, just software issue
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Distributed surface elements

50K triangles is good enough for the Mir space station, but ...

Some crazy users want to model 10-100Ms of surface elements!

Currently each proc stores all surfs:
easier to not worry when a surf overlaps many cells/procs

One surf = ∼80 bytes + tallies ⇒ 100s GBs

New option for proc to only store surfs in owned+ghost cells
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Complicating factors

Load-balancing

surfs now have to migrate with cells/particles

Per-surf-element statistics
currenty tallying is via MPI Allreduce()
will need to do something more clever

Surface erosion:

how to maintain topology
more careful nearby particle deletion/creation

Do we need to store per-surf-element state ?

multiple procs may contribute to one element’s state
how to insure state is up-to-date



Thanks and links

Funding support: DOE/NNSA ASC and ATDM programs

http://sparta.sandia.gov

SPARTA short course:
http://sparta.sandia.gov/tutorials.html

Stan Moore and Dan Ibanez (Sandia): Kokkos work

https://github.com/kokkos

Looking to collaborate on new ideas for SPARTA

magalli@sandia.gov, sjplimp@sandia.gov


