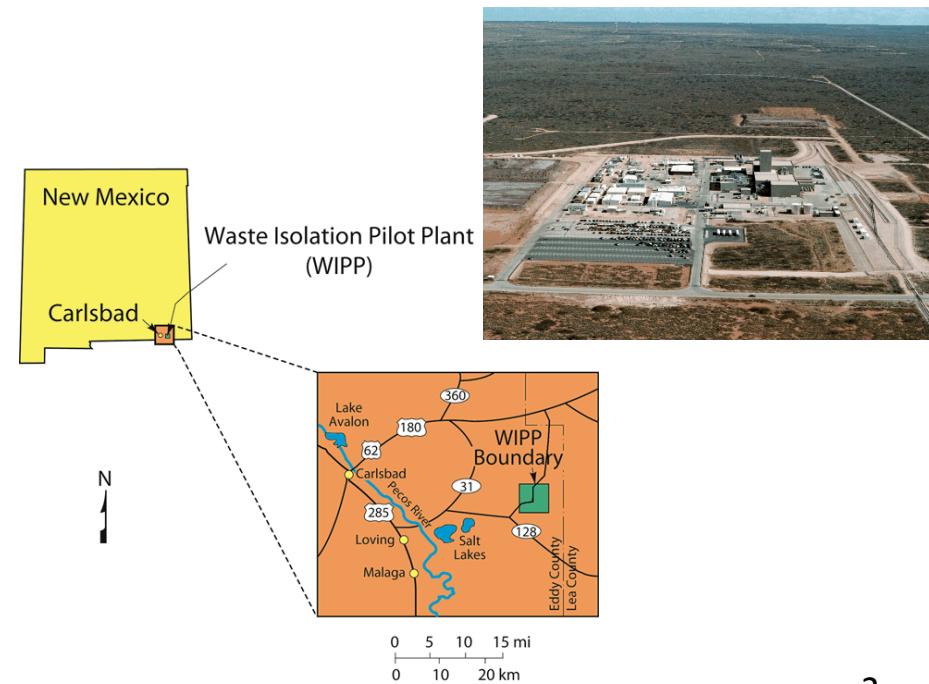
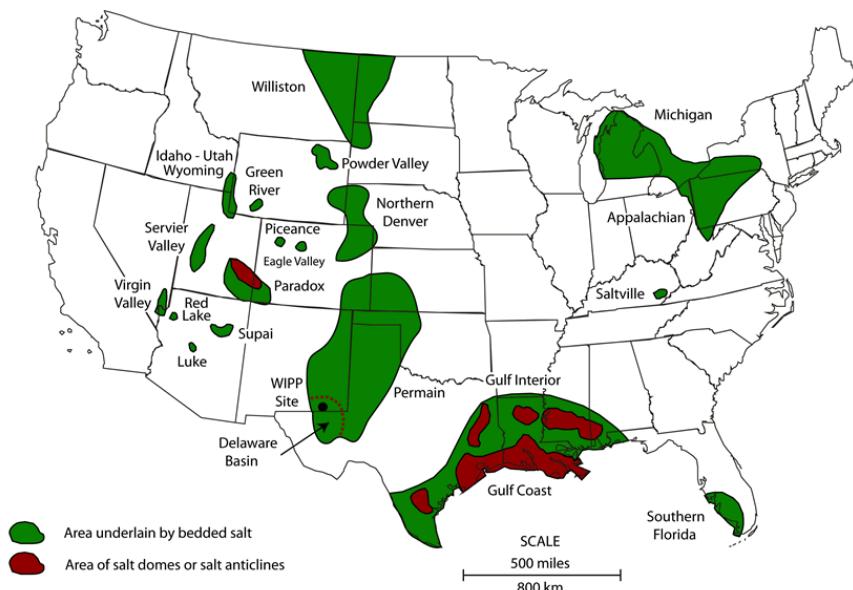
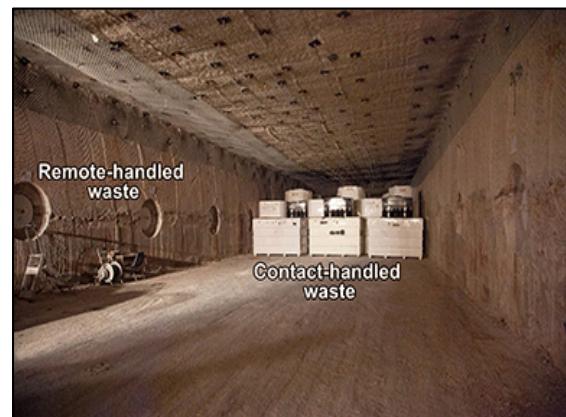


Synthesis and Characterization of Chukanovite, $\text{Fe}_2\text{CO}_3(\text{OH})_2(\text{s})$: An Elusive Ferrous Iron Carbonate Hydroxide Mineral



Sungtae Kim, Charlotte Sisk-Scott, Heather Burton, Jandi Knox, Cassandra Marrs, and Jay Je-Hun Jang*

Sandia National Laboratories¹, Carlsbad, New Mexico, U.S.A.


*Corresponding author, E-mail: jjang@sandia.gov

Waste Isolation Pilot Plant (WIPP)

- The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been developed by the U.S. Department of Energy (DOE) for the deep geologic disposal of transuranic (TRU) waste.

- WIPP Performance Assessment calculations estimate the probability and consequence of potential mobile (dissolved and colloids) radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure.
- Steel (Fe) in waste containers and Lead (Pb) in shielded containers
- Anions – sulfide (S^{2-}), carbonate (CO_3^{2-}), etc.
- Organic ligands – citrate ($C_6H_8O_7$), EDTA
- ($C_{10}H_{16}N_2O_8$), oxalate ($C_2O_4^{2-}$), etc
- Updating WIPP thermodynamic database – Pitzer model

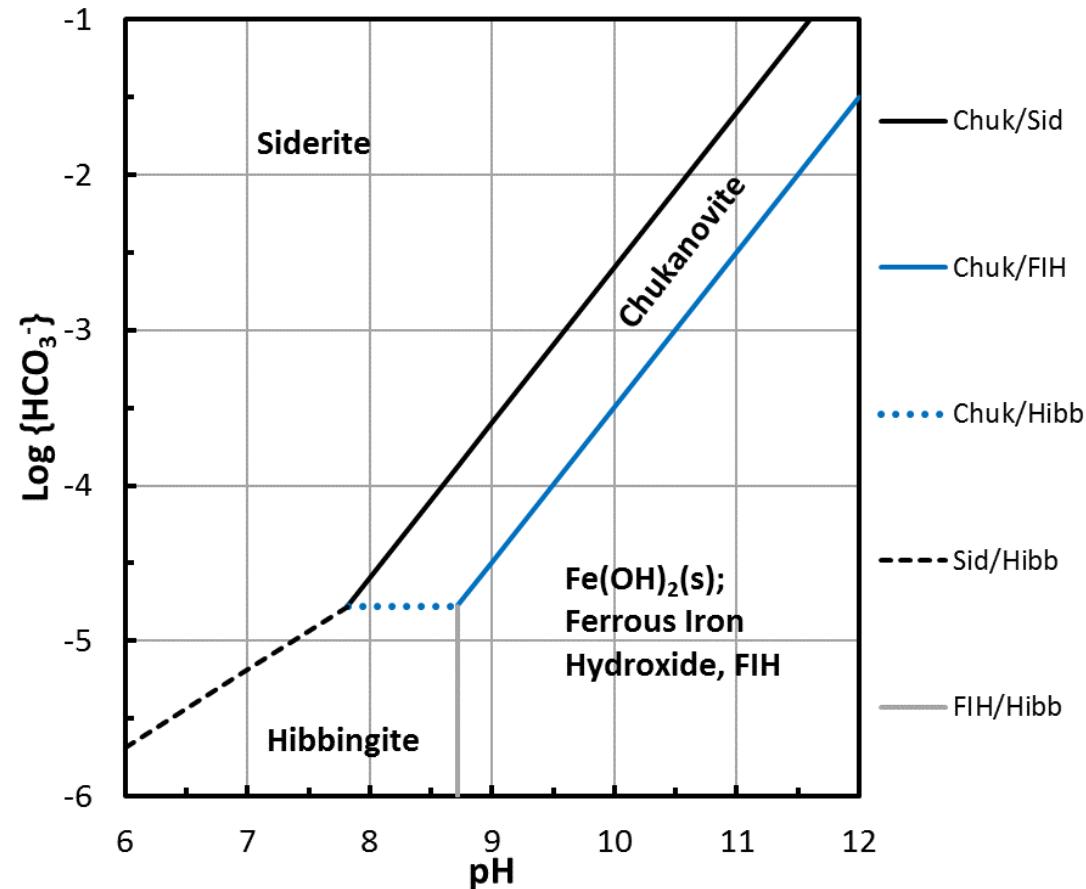
Chukanovite, $\text{Fe}_2\text{CO}_3(\text{OH})_2(s)$

- Fe(s) in excess of the waste at WIPP
- Anoxic corrosion produces Fe^{+2}
- Ferrous “Carbonate” “Hydroxide”
 - pH and alkalinity
- A candidate for solubility limiting solid for dissolved Fe^{+2}
 - Electrochemical potential
 - Masking of Fe^{+2} against the solubilizing (in)organic ligands, such as, EDTA^{-4} , Oxalate^{-2} , Acetate^{-} , citrate^{-3} , SO_4^{-2} , CO_3^{-2} , etc.
- Not much known, especially the synthesis condition and the stability vs. other ferrous iron minerals

Reactions	logK	Source
<u>Aqueous reactions</u>		
$H^+ + OH^- = H_2O$	13.99	Harvie et al. (1984)
$CO_3^{2-} + H^+ = HCO_3^-$	10.33	Harvie et al. (1984)
$CO_2(aq) + H_2O = H^+ + HCO_3^-$	-6.33	Harvie et al. (1984)
$FeOH^+ + H^+ = Fe^{+2} + H_2O$	9.31	Shock et al. (1997)
$Fe(OH)_2(aq) + 2H^+ = Fe^{+2} + 2H_2O$	20.82	Stumm and Morgan (1996)
$Fe(OH)_3^- + 3H^+ = Fe^{+2} + 3H_2O$	31.00	Baes and Mesmer (1976)
$Fe(OH)_4^{2-} + 4H^+ = Fe^{+2} + 4H_2O$	46.00	Baes and Mesmer (1976)
$FeCO_3(aq) + H^+ = Fe^{+2} + HCO_3^-$	4.83	Bruno et al. (1992)
$Fe(CO_3)_2^{2-} + 2H^+ = Fe^{+2} + 2HCO_3^-$	13.89	Kim et al. (2017)
<u>Dissolution</u>		
$NaCl(s) = Na^+ + Cl^-$	1.57	Harvie et al. (1984)
$CO_2(g) + H_2O = H^+ + HCO_3^-$	-7.81	Wagman et al. (1982)
$Fe(OH)_2(s) + 2H^+ = Fe^{+2} + 2H_2O$ (Ferrous Iron Hydroxide, FIH)	12.89	Kim et al. (2017)
$Fe_2Cl(OH)_3(s) + 3H^+ = 2Fe^{+2} + Cl^- + 3H_2O$ (Hibbingite)	17.08	Kim et al. (2017)
$FeCO_3(s) + H^+ = Fe^{+2} + HCO_3^-$ (Siderite)	-0.12	Kim et al. (2017)
$Fe_2CO_3(OH)_2(s) + 3H^+ = 2Fe^{+2} + HCO_3^- + 2H_2O$ (Chukanovite)	12.32	Kim et al. (2017)

Thermodynamics known so far ...

I	j	α_1/α_2^A	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	C^ϕ	Source
Na^+	Cl^-	2.0/12.0	0.0765	0.2664	0.0	0.00127	Harvie et al. (1984)
Na^+	OH^-	2.0/12.0	0.0864	0.253	0.0	0.0044	Harvie et al. (1984)
Na^+	HCO_3^-	2.0/12.0	0.0277	0.0411	0.0	0.0	Harvie et al. (1984)
Na^+	CO_3^{2-}	2.0/12.0	0.0399	1.389	0.0	0.0044	Harvie et al. (1984)
H^+	Cl^-	2.0/12.0	0.1775	0.2945	0.0	0.0008	Harvie et al. (1984)
Fe^{+2}	Cl^-	2.0/12.0	0.37324	1.13499	0.0	-0.02152	Moog et al. (2004)
Na^+	$Fe(CO_3)_2^{2-}$	2.0/12.0	-0.230	6.26	0.0	0.0	Kim et al. (2017)


I	j	θ_{ij}	Source	k	ψ_{ijk}	Source
Na^+	H^+	0.036	Harvie et al. (1984)	Cl^-	-0.004	Harvie et al. (1984)
Cl^-	OH^-	-0.05	Harvie et al. (1984)	Na^+	-0.006	Harvie et al. (1984)
Cl^-	HCO_3^-	0.03	Harvie et al. (1984)	Na^+	-0.015	Harvie et al. (1984)
Cl^-	CO_3^{2-}	-0.02	Harvie et al. (1984)	Na^+	0.0085	Harvie et al. (1984)
OH^-	CO_3^{2-}	0.1	Harvie et al. (1984)	Na^+	-0.017	Harvie et al. (1984)
HCO_3^-	CO_3^{2-}	-0.04	Harvie et al. (1984)	Na^+	0.002	Harvie et al. (1984)
Na^+	Fe^{+2}	0.10945	Moog et al. (2004)	Cl^-	-0.01605	Moog et al. (2004)

I	j	λ_{ij}	Source
$CO_2(aq)$	H^+	0.0	Harvie et al. (1984)
$CO_2(aq)$	Na^+	0.1	Harvie et al. (1984)
$CO_2(aq)$	Cl^-	-0.005	Harvie et al. (1984)

^A α_1 and α_2 are pre-set constants used in the Pitzer activity coefficient equation. α_1 and α_2 apply for only cation-anion binary pair. α_2 is not applied when $\beta^{(2)}$ is zero or not used. Unit for α_1 and α_2 is $kg^{1/2} \cdot mol^{-1/2}$.

Mineral boundary	Equation ^A
$\text{Fe}_2\text{CO}_3(\text{OH})_2(\text{s})$ vs. $\text{Fe}(\text{OH})_2(\text{s})$	$\log\{\text{HCO}_3^-\} = -\log\{\text{H}^+\} + 2\log\{\text{H}_2\text{O}\} - 13.46$
$\text{Fe}(\text{OH})_2(\text{s})$ vs. $\text{Fe}_2\text{Cl}(\text{OH})_3(\text{s})$	$\log\{\text{Cl}^-\} = -\log\{\text{H}^+\} + \log\{\text{H}_2\text{O}\} - 8.70$
$\text{Fe}_2\text{Cl}(\text{OH})_3(\text{s})$ vs. $\text{Fe}_2\text{CO}_3(\text{OH})_2(\text{s})$	$\log\{\text{HCO}_3^-\} = \log\{\text{Cl}^-\} + \log\{\text{H}_2\text{O}\} - 4.76$
$\text{Fe}_2\text{Cl}(\text{OH})_3(\text{s})$ vs. $\text{FeCO}_3(\text{s})$	$\log\{\text{HCO}_3^-\} = 0.5\log\{\text{Cl}^-\} + 0.5(-\log\{\text{H}^+\} + 3\log\{\text{H}_2\text{O}\} - 17.32)$
$\text{Fe}_2\text{CO}_3(\text{OH})_2(\text{s})$ vs. $\text{FeCO}_3(\text{s})$	$\log\{\text{HCO}_3^-\} = 2\log\{\text{H}_2\text{O}\} - \log\{\text{H}^+\} - 12.56$

Chukanovite
looks elusive ...

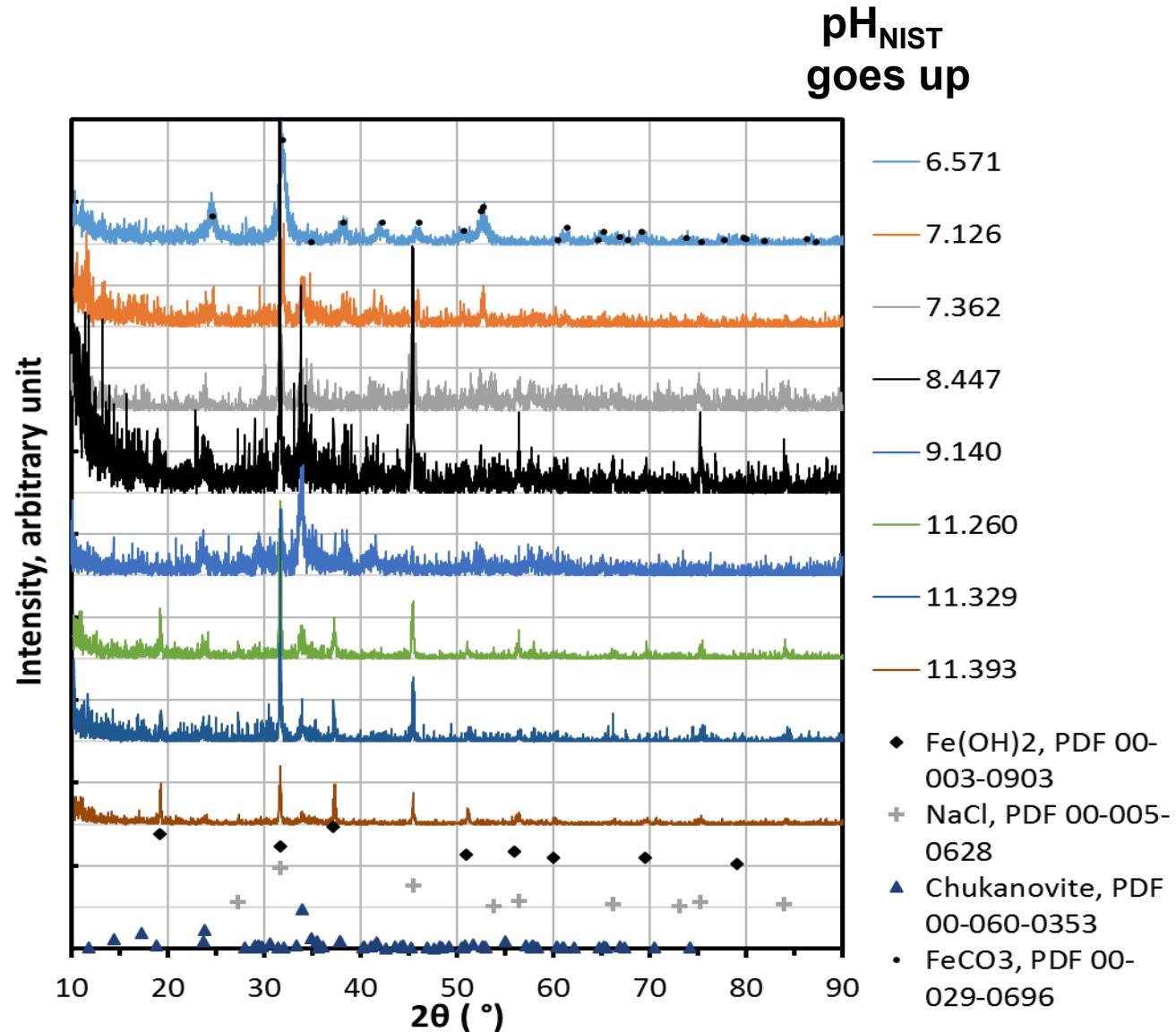
Synthesis

- 2 solubility experiments; Kim et al. (2017)
 - initiated with the addition of siderite in 0.5 and 2.0 m Na_2CO_3 solutions spiked with $\text{NaCl} = 1.5$ m.
 - equilibrated for more than 4 years
- 8 synthesis experiments
 - $\text{Fe}^{+2}:\text{HCO}_3^-$ fixed ($\sim 0.6:\sim 0.5$ mole:mole) with incremental NaOH (0 to ~ 0.9 mole)
 - equilibrated for more than 10 months

Aqueous Data: Draft, Do not cite

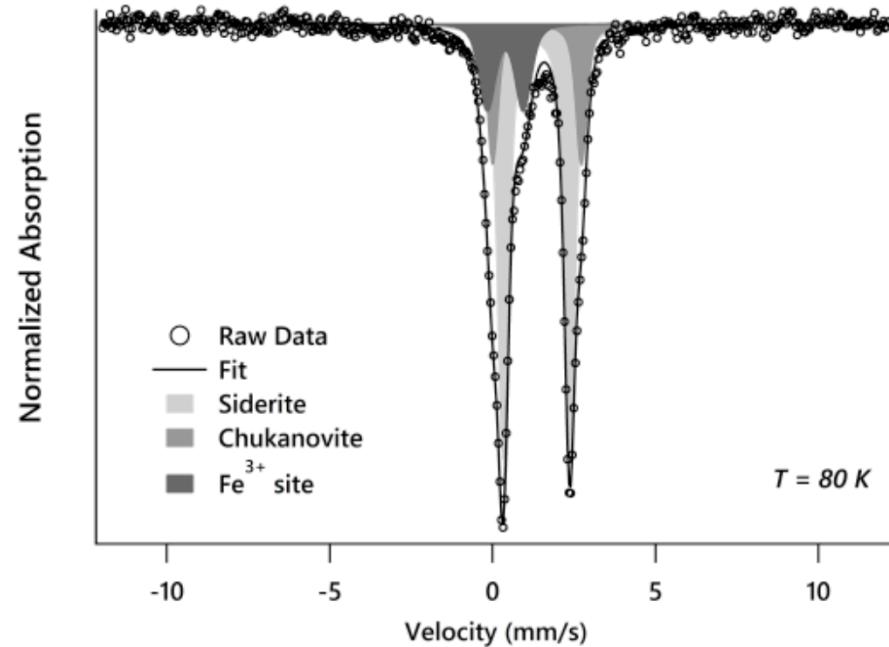
pmH	Density, g/mL	Na ⁺ , m, ICPAES		Cl ⁻ , m, IC		HCO ₃ ⁻ , m, Coulometer		Fe ⁺² , m, ICPAES	
		Average	%2SD	Average	%2SD	Average	%2SD	Average	%2SD
6.55	1.044	0.48	5%	1.28	1%	0.0008	106%	0.435	3%
7.15	1.046	0.75	2%	1.25	6%	0.0012	83%	0.235	2%
8.55	1.035	1.17	6%	1.17	3%	0.0028	80%	NA	NA
11.38	1.030	1.25	2%	1.17	7%	0.0553	8%	NA	NA
7.43	1.032	0.98	8%	1.16	0%	0.0027	98%	0.093	1%
9.24	1.017	1.17	7%	1.18	1%	0.0071	17%	NA	NA
11.45	1.038	1.26	3%	1.12	4%	0.0864	9%	NA	NA
11.52	1.038	1.29	4%	1.08	4%	0.1039	3%	NA	NA

pmH: negative 10-based logarithm of molality of H⁺

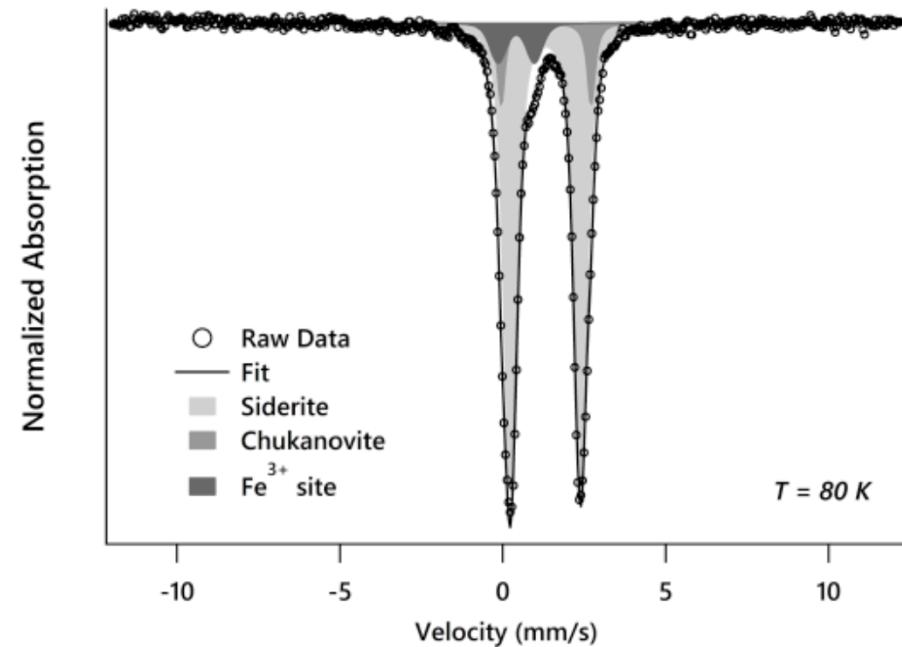

m: molality (mole solute in kg H₂O)

%2SD: Two Standard Deviation of three measurements divided by the average in percent

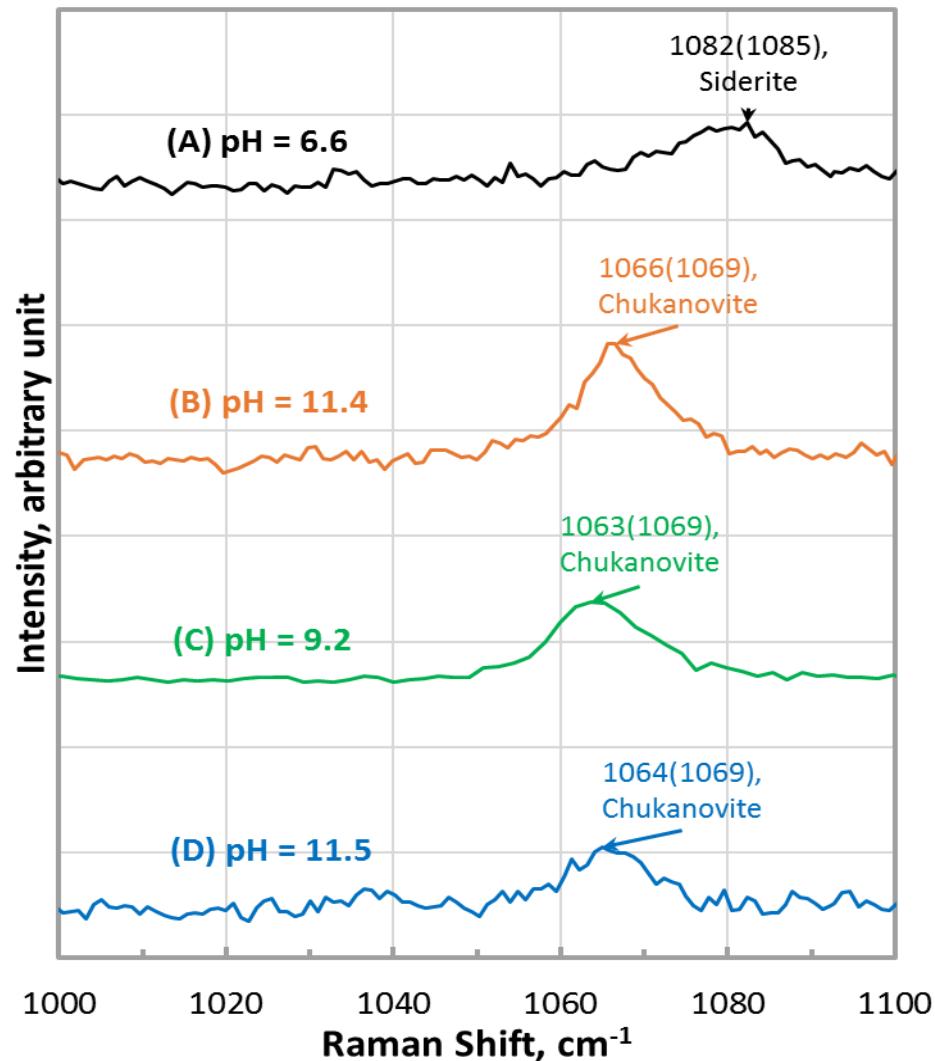
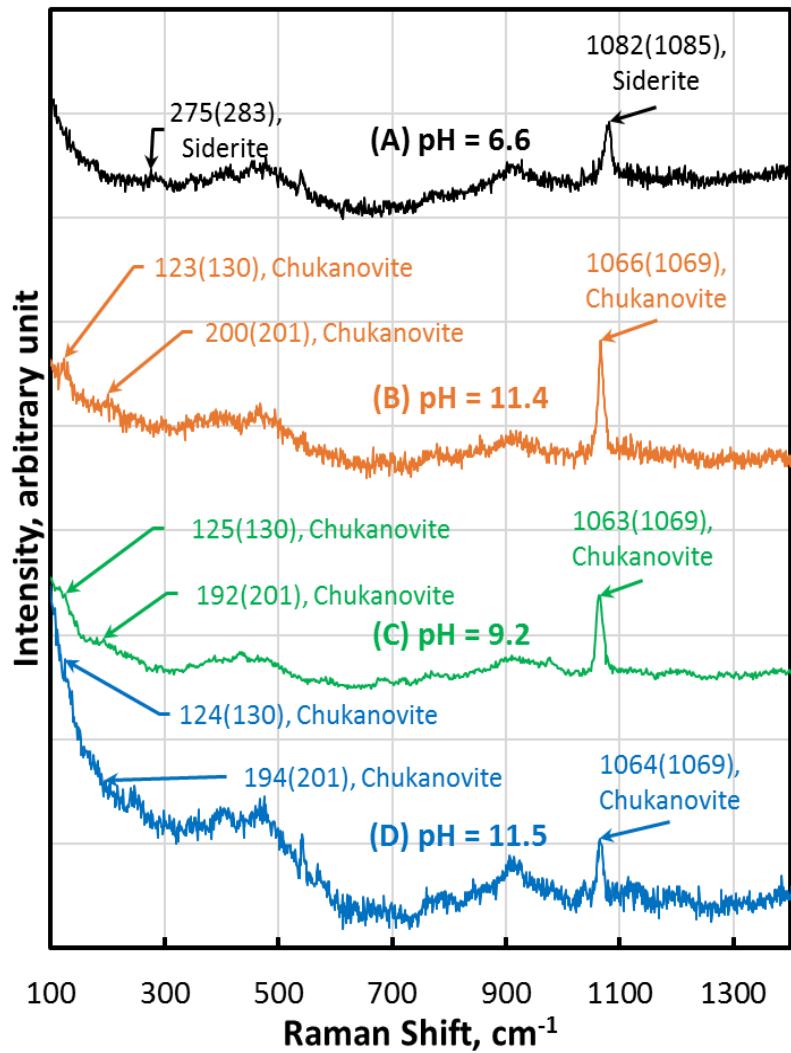
NA: Not Available


Fe ⁺² , m, Chg. Bal.	Fe ⁺² , m, ICP-AES	
	Average	%2SD
0.404	0.435	3%
0.237	0.235	2%
0.001	NA	NA
-0.009	NA	NA
0.090	0.093	1%
-0.014	NA	NA
-0.017	NA	NA
-0.025	NA	NA

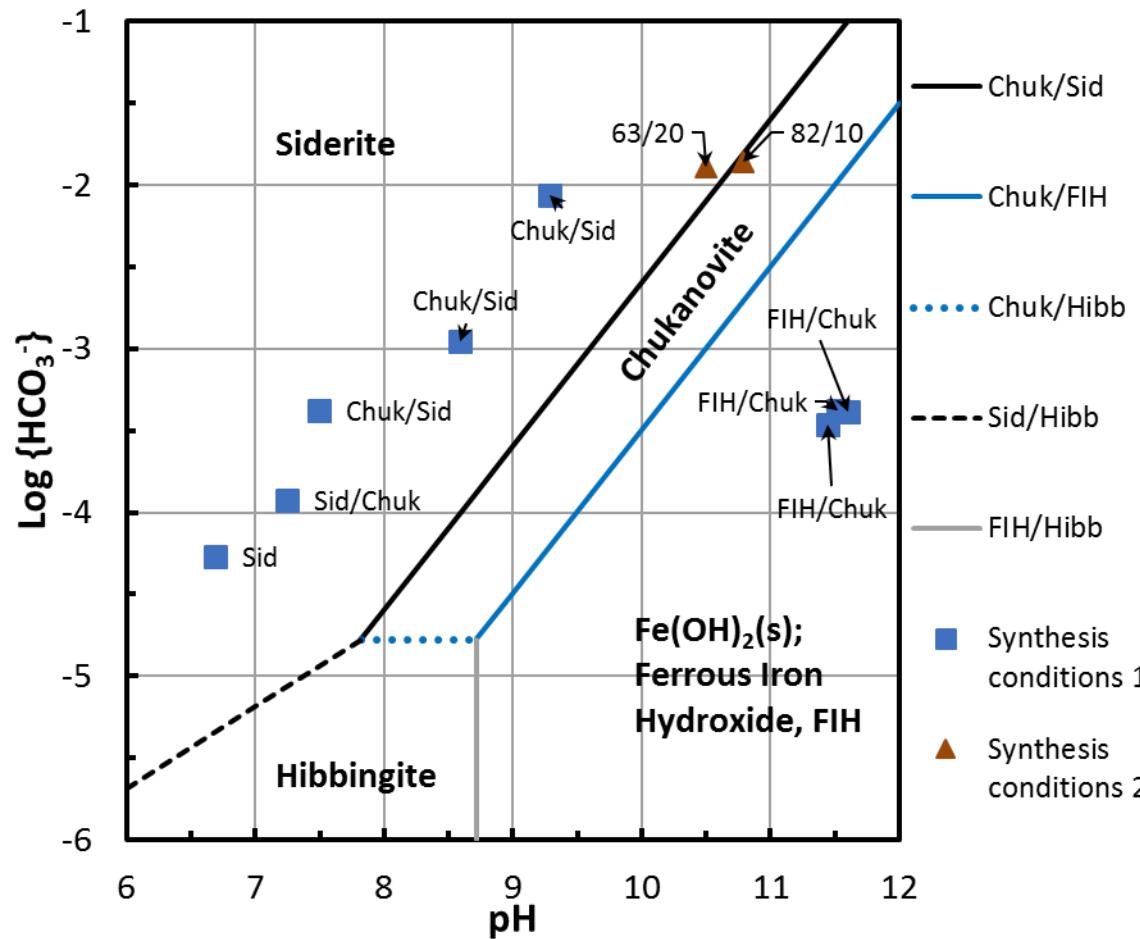
- pH
- Coexistence of at least two minerals


Mössbauer spectroscopy

- FeCO₃ - 0.5CO₃ - 3
 - 80K spectrum
 - Siderite, 63%
 - Chukanovite, 20%
 - Fe³⁺, 17%

Mössbauer spectroscopy


- FeCO₃ - 2.0CO₃ - 3
 - 80K spectrum
 - Siderite, 82%
 - Chukanovite, 10%
 - Fe³⁺, 8%

Raman

Observations projected onto the Theory

Importance for WIPP Geochemistry

- Mössbauer and Raman spectroscopy indicated that siderite and chukanovite are distinguishable from each other
- Fe(s) vs. Siderite: Log fugacity $O_2(g) = ?$
 - $Fe(s) + HCO_3^- + 0.5O_2(g) + H^+ = FeCO_3(s) + H_2O$
- Fe(s) vs. Chukanovite: Log fugacity $O_2(g) = ?$
 - $2Fe(s) + HCO_3^- + O_2(g) + H^+ = Fe_2CO_3(OH)_2(s)$
- In near future, stability of ferric iron (Fe^{+3}) phase(s) will be investigated to evaluate the log fugacity $O_2(g)$
- Uncertainties checked: Dilution and titration

Special thanks to ...

- Justin Dean, Taya Olivas: Sample preparation & maintenance
- Jonathan Icenhower, Shelly Nielsen: Internal reviews
- Christopher Gorski, Prachi Joshi: Mossbauer Analysis
 - Environmental Engineering, Pennsylvania State University
- Questions?