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Abstract—We propose a novel global solution algorithm
for the network-constrained unit commitment problem that
incorporates a nonlinear alternating current (AC) model of
the transmission network, which is a nonconvex mixed-
integer nonlinear programming (MINLP) problem. Our
algorithm is based on the multi-tree global optimization
methodology, which iterates between a mixed-integer lower-
bounding problem and a nonlinear upper-bounding prob-
lem. We exploit the mathematical structure of the unit com-
mitment problem with AC power flow constraints (UC-AC)
and leverage second-order cone relaxations, piecewise outer
approximations, and optimization-based bounds tightening
to guarantee a globally optimal solution at convergence.
Numerical results on four benchmark problems illustrate
the effectiveness of our algorithm, both in terms of conver-
gence rate and solution quality.

A. Notation

Sets

B Set of all buses {1, ..., B}

By Set of all buses that are connected to bus b

(& Set of all cycles in a cycle basis for the network
g Set of all generators {1, ..., G}

Gy Set of all generators at bus b

L Set of all branches (transmission lines)

L. Set of branches in cycle ¢

L™ Set of all inbound branches to bus b

Ly Set of all outbound branches from bus b

Sy Set of startup segments of generator g {1,...,5,}
SC  Set of all synchronous condensers {1, ..., SC}
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SC,  Set of all synchronous condensers at bus b
T Set of time periods {1,...,T}

Parameters

Agn Coefficients (n = 0, 1, 2) of quadratic

production cost function of generator g

B;" Shunt susceptance at bus b

B Imag. part of branch [ admittance matrix

Gk Shunt conductance at bus b

G Real part of branch [ admittance matrix

Hor Startup cost of generator g

K jd Shutdown cost of generator g

Pbl?t Real power demand at bus b, time ¢

PR System reserve requirement at time ¢

PgG min  Min. real power output of generator g

PgG Mar Max. real power output of generator g

th Reactive power demand at bus b, time ¢

QQG’"”" Min. reactive power output of generator g

Q?’m‘” Max. reactive power output of generator g
SCmin Min. output of synchronous condenser sc
SCmaz  Max. output of synchronous condenser sc

RD, Ramp-down limit of generator g

RU, Ramp-up limit of generator g

Ses Apparent power limit on branch [

SD, Shutdown capability of generator g

SU, Startup capability of generator g

% Startup cost function time segment for

generator ¢

I Min. uptime of generator g

T; Min. downtime of generator g

Ve Min. voltage magnitude at bus b

Ve Max. voltage magnitude at bus b

Variables

04+t Startup cost segment indicator

014 Voltage phase angle difference between ends

(bus b and bus k) of branch [ at time ¢, 0p 1 ¢



cpkt Second-order cone variable
c];?t Production cost for generator ¢ at time ¢
fP Total production cost
f*¢  Total shutdown cost
f°*  Total startup cost
pit Real power output of generator g at time ¢
p{ 5 Real power flow from branch [, at time ¢
pi;  Real power flow 7o branch [, at time ¢
qgt Reactive power output of generator g at time ¢
G4 Reactive power flow from branch [, at time ¢
qit Reactive power flow fo branch [, at time ¢
qfft Reactive power output of synchronous
condenser sc at time ¢
rg+  Real power reserve provided by generator g
at time ¢
Sp.k,t Second-order cone variable
ug¢  Startup status, equal to 1 if generator
g starts up at time ¢, O otherwise
Ut Voltage magnitude at bus b at time ¢,
2 _ 2 J\2
_ Uyt = (Ug,t) + (Ub,t)
v),  Imag. part of voltage phasor at bus b, time ¢
vy,  Real part of voltage phasor at bus b, time ¢
wg,+  Shutdown status, equal to 1 if generator

g shuts down at time ¢, 0 otherwise
Unit on/off status, equal to 1 if generator
g is on-line at time ¢, O otherwise

yg,t

I. INTRODUCTION

ECENTLY the Federal Energy Regulatory Com-
mission (FERC) reported that uplift — out-of-
market payments that result when out-of-merit gener-
ation costs are incurred to relieve a constraint — can
arise due to the inability of independent system op-
erators (ISOs) to fully model the steady-state physics
on an alternating current (AC) network [1]. According
to a recent National Academies report [2], solving this
problem “could significantly improve the modeling and
efficient dispatch of resources during the commitment,
dispatching, and pricing processes.” Recent work on the
day-ahead unit commitment problem, which was led by
MISO technical staff in [3], attests to the importance
and non-trivial complexity of incorporating AC network
constraints due to the performance challenges introduced
by denser matrices and additional nonlinearities.
Because of these modeling difficulties, current practice
is to perform unit commitment using DC approximations
(or copper plate) to represent the transmission network.
These approximations do not allow rigorous treatment of
AC power flow constraints. As a result, certain resources
are consistently committed outside of the market to

address unforeseen reliability issues; this results in con-
centrated uplift payments [1]. Such resources are often
required for reactive power compensation in order to pro-
vide system voltage control that enables more efficient
delivery and utilization of real power [4]. Because such
reliability requirements are largely unmodeled in day-
ahead unit commitment, more cost effective resources
are displaced for these out-of-merit commitments. Al-
ternatively, in the real-time market, operators may have
to manually commit and dispatch reliability units while
also manually re-dispatching or de-committing other
resources, e.g., exceptional dispatches in CAISO [5],
out-of-merit generation in NYISO [6], and balancing
operating reserves in PIM [7].

To address these concerns, this paper focuses on
solution of the unit commitment problem with AC power
flow constraints (UC-AC). Solving real-world operations
and market settlement with alternating current optimal
power flow (ACOPF) is not trivial. Due to the scale
of real-world power systems, network-constrained unit
commitment problems can be extremely large and com-
putationally challenging to solve. Coupling this with
nonconvex AC power flow constraints leads to a mixed-
integer nonlinear programming (MINLP) problem that
is NP-hard [8-10]. If the continuous relaxation of the
MINLP is a convex optimization problem, we refer to it
as a convex MINLP. Otherwise, the problem is referred
to as a nonconvex MINLP. With this definition, the UC-
AC is a nonconvex MINLP. Algorithms exist to address
both convex and nonconvex MINLP problems. However,
tailored solution strategies are often required to achieve
desired computational performance. In this paper, we
present the first known global optimization approach that
can successfully solve the UC-AC on a set of small- to
medium-sized test problems.

Deterministic MINLP algorithms can be classified into
single-tree and multi-tree methods. Single-tree deter-
ministic algorithms, i.e., the well-known Branch-and-
Bound (BB) methods [11, 12], seek a global optimum by
searching a single tree using a systematic enumeration
strategy consisting of three primary steps: branching,
bounding, and selection. BB-based global optimiza-
tion strategies have been well-studied and specialized,
yielding strategies such as Branch-and-Reduce [13],
Reduced Space Branch-and-Bound [14], Branch-and-
Contract [15], Branch-and-Cut [16], and Branch-and-
Sandwich [17]. These approaches are suitable for gen-
eral, nonconvex MINLP problems of small or medium
size, but become computationally intractable with in-
creasing numbers of discrete variables, e.g., such as those
arising in UC-AC.

In contrast, multi-tree methods [18] iteratively solve
a sequence of related lower-bounding (master problem)
and upper-bounding (subproblem) problems. For con-



vex MINLP problems, many multi-tree solution strate-
gies — including Generalized Benders Decomposition
(GBD) [19], Outer Approximation (OA) [20, 21], and
Exact Cutting Plane (ECP) methods [22] — are effective,
and have been applied to a broad range of MINLPs in
various application domains. Extensions exist for non-
convex MINLPs. While many are heuristic, e.g., see [23,
24], Li et al. [25] propose a rigorous, nonconvex GBD
(NGBD) method with piecewise convex relaxations that
yields a sequence of nondecreasing lower bounds and
nonincreasing upper bounds where monotonic conver-
gence of the bounds is guaranteed. Bonami, Kiling and
Linderoth noted that recent advancements in respective
mixed-integer linear programming (MILP) and nonlinear
programming (NLP) problem classes have unfortunately
resulted in “far more modest” improvements in general
algorithms for even convex MINLPs [26], illustrating the
need for specialized approaches.

The classic OA approach, a multi-tree technique, was
originally developed to solve convex MINLPs. This
approach solves a sequence of MILP master and convex
NLP subproblems and yields a globally optimal solution
for a convex MINLP in a finite number of iterations
for a given e-tolerance on the optimality gap [20, 21].
The MILP master problem is a relaxation of the original
MINLP that provides a provable lower bound on the
MINLP along with a candidate integer solution. Fixing
the integers in the MINLP yields a convex NLP subprob-
lem that provides a valid upper bound and a candidate
solution (for both continuous and integer variables) to
the overall MINLP. In this classic approach, the master
problem is further refined (i.e., relaxation strengthened)
though the addition of linear outer approximations of
convex constraints in the MINLP. The algorithm iterates
between the master problem and the NLP subproblem,
and terminates when the gap between the lower and
upper bounds is sufficiently small. Constraints can also
be added to the master problem to remove previously
visited integer solutions (using so-called integer cuts).
These methods have been extended to nonconvex prob-
lems where global convergence of the MINLP can be
achieved as long as global solutions of the NLP sub-
problems are ensured [27]. Kesavan et al. [28] develop
decomposition algorithms for nonconvex MINLP that
finds the global solution on finite termination by solving
convex underestimators in the BB search. Similar multi-
tree solution strategies for nonconvex MINLPs have also
been successfully used in various applications [29-31].

Here, we extend our efforts in [32] and propose a
multi-tree method based on OA for the UC-AC problem.
The master problem is a mixed-integer second-order
cone program (MISOCP) constructed using second-order
cone (SOC) relaxations of the nonconvex AC trans-
mission constraints [33]. As the algorithm iterates, the

master problem is further refined with piecewise outer
approximations to strengthen the tightness of the relax-
ation and the lower-bound computation. The algorithm
from [32] is used to find a global solution of the
nonconvex NLP subproblem in the upper-bound compu-
tation. Furthermore, we incorporate optimization-based
bounds tightening (OBBT) techniques that are valid in
both master and subproblem iterations and, because our
proposed approach provides global solution of the NLP
subproblem, we are able to include integer cuts in the
master problem that remove previously visited solutions
from the feasible space as the algorithm iterates. To the
best of our knowledge, this is the first global solution
algorithm successfully applied to the UC-AC problem,
identifying solutions with quality certificates (optimality
gaps) in time-limited environments.

The remainder of this paper is organized as follows.
We begin in Section II by discussing relevant work to
solving the UC-AC problem. In Section III we introduce
the unit commitment formulation with AC transmission
constraints (UC-AC). In Section IV we outline the nec-
essary problem relaxations and the global optimization
algorithm. In Section V we report numerical results
on the range of currently available test systems. We
then conclude in Section VI with a summary of our
contributions and directions for future work.

II. RELATED WORK

There is a growing body of literature on algo-
rithms [34-47] for the solution of the UC-AC problem.
A recent study by Aghaei et al. noted that the UC-AC
problem is presently intractable for commercial MINLP
solvers, including BARON, SBB, and DICOPT [42]. In
this section we review the most relevant works in further
detail.

Amjady et al. [46] leverage a Signomial convexifi-
cation technique with second order approximations of
the trignometric functions in the ACOPF constraint set.
Without refinement, branching, or additional cuts, relax-
ations on their own do not provide a guarantee of global
optimality to the original MINLP. Other comparable
convexification approaches include the formulations by
Bai and Wei [39] and Madani et al. [47], where these
studies use semidefinite programming (SDP) to relax the
ACOPF constraint set and the 0/1 variables. For these
studies, when a solution is non-integral in the unit com-
mitment variables, a rounding procedure is applied to
determine a feasible, near-optimal solution. Such round-
ing heuristics are useful but not sufficient to guarantee
a global solution. The other aforementioned methods
solve the ACOPF subproblem — or network and voltage
security subproblems — with local solution methods, and
in some cases apply linearization techniques [44, 45, 48].



Approaches that make use of local solutions of the NLP
subproblem (e.g., recent GBD examples include [42—
45]) are not guaranteed to find global solutions in a
finite number of steps. This is because, as indicated in
[49], when applying GBD to nonconvex problems, global
solution of the NLP subproblem is required to ensure
valid cuts.

On the contrary, Sifuentes et al. [38] argued that
such suboptimal outcomes due to nonconvexities can
be reduced with constraint specifications (e.g., small
angle difference constraints). However, more recent work
by Wu et al. [50] indicates that such assumptions do
not preclude the occurrence of multiple, local optima.
As such, Frank et al. [51] develop a nonconvex GBD
approach to solve AC-DC distribution system design
problems where a global solver is leveraged for the
nonconvex subproblems.

In contrast to GBD methods that have been applied to
the UC-AC problem to-date, our lower-bounding prob-
lem incorporates a relaxation and outer-approximation
of the full ACOPF constraint set. This master problem
can be arbitrarily refined to provide improved integer
solutions (although this was not necessary in our test
cases). Furthermore, we apply our approach from [32]
to determine a global solution of the upper-bounding
problem, ensuring that the global solution is identified
if the gap closes. Moreover, we are guaranteed finite
termination by enumeration in the worst case.

III. UC-AC PROBLEM FORMULATION

We now introduce our UC-AC problem formulation.
We first present the core UC model in Section III-A,
which is based on the compact three-binary (3BIN)
formulation introduced in [52]. We then present the
rectangular power-voltage (RPQV) model [53] in Section
III-B to represent the steady-state operations of the
nonlinear AC transmission network. We integrate these
constraint sets to represent the UC-AC problem, resulting
in a nonconvex MINLP. A tailored solution technique for
this model is proposed in the following section.

A. Unit Commitment Model

We use the term UC skeleton when referring to a unit
commitment model consisting only of a cost function,
operating constraints, and any associated continuous
and binary variables with no network representation.
We summarize several key components of the 3BIN
formulation here; refer to [52] for further details.

1) Cost Function: The total cost in UC is the sum
of three major components — production costs, startup
costs, and shutdown costs — as follows:

S

We assume that the production cost fP is a quadratic
monotonically non-decreasing function of real power
generation; in practice, this is often replaced with a
piecewise approximation. Computation of fP in the
quadratic case is accomplished by imposing the con-
straints

Ag,2(p?,t)2 + Ag,lpgt + Ag,0¥g,t < CIgJ,t Vg, t (1)

U deg ZteT . @

where A9, Ay 1, and A, o are known cost coefficients
in ($/MW?2h), (§/MWh) and ($/h) associated with a
specific generator g.

To formulate the total startup cost, f**, we first
introduce a new binary variable d, -, which indicates
the startup type 7 of generator g at time period t. In
particular, é, .+ takes the value of 1 if the generator g
starts up at time ¢ and has been previously offline within
[Tg%,T;% 1) hours. The logical constraints between
Wgq, ¢, Ug,t, and dg - are given as

_ el
Ogrt < Zt’ =t-Tsu We,t

Ugt = E Og,rt
9 TES, 94y

where S, is the number of startup types for generator
g, and ugs and wgy; indicate startup and shutdown
of generator g in time ¢, respectively. Note that wg
with positive time index t are variables, otherwise wg
are treated as constants to demonstrate previous system
status.

For a thermal unit, the startup cost is assumed to be
a monotonically increasing step function with respect to
the generator’s previous off-line time. The total startup
cost is given by

B deg ZtGT ZTGS Kgr09.m1 )

where K7 is the cost of startup type 7 for generator
g. Given logical constraints (3) and (4), and the mono-
tonically non-decreasing startup cost function, it can be
shown that J, -, will always solve to a binary value.
In other words, instead of explicitly defining 6, ., as a
binary, it can be relaxed as a continuous variable within
range [0, 1].

The shutdown cost of generator g is assumed to be
independent of its previous on-line states, and the total
shutdown cost is:

- deg ZtET K;dww. ©)

2) Operating Constraints: According to operating
restrictions, a thermal unit must stay in one state (either
on-line or off-line) for a certain period of time before
its state can be changed again. Such time periods vary
between different generator types. To enforce this re-

v.gv tv TE [1789) (3)

Vg, t @)



quirement, we have to introduce minimum uptime and

downtime constraints
t

u 7 <
Zt’:t—T;+1 gt = Ygit

L
E Wor <1 —ygu
o d g,t" — 9,
t’_t-Tngl

where ugy; and w,; with positive time index ¢ are un-
known variables, otherwise they are treated as constants
to indicate previous system status. Additional constraints
are required to denote the logical correlation between
Ugt, Wg,¢, and yg ¢ in

Vg, t ()

Vg, t®

Yg,t — Yg,t— Vg, t. 9

Note that these constraints ensure that a generator cannot
start up and shut down within the same time period.
Given the fact that y, ¢ is a binary variable, imposing
constraints (7), (8) and (9) together guarantees that u,
and w,, take binary values only. Consequently, ug,
Wgq.+, and d4 r ¢, though initially defined as binaries, can
be relaxed as continuous within [0, 1], leaving the y, ; as
the only binary variables in our UC skeleton formulation.
The spinning reserve constraint is defined as

PtR = deg

and determines the extra generating capacity available by
generators included in the commitment solution at time
t; typically, the spinning reserve is defined as a fraction
of the current total power demand. The upper- and lower-
bounds of generator output is dependent on its operating
state; the real power productions are constrained by
[p&-min  p&mat] the startup and shutdown capabilities
SD, and SUg, and state indicators ¥4 ¢, ug,¢, and Wt
Where both real power generation p,; and spinning
reserve 7,4 ¢ are accounted for in

1= Ugt — Wyt

Yt (10)

Tg,t

Pyt + s < (PEMaT — pEminyy

— (Pt . G Yt 4 Vg, t (11)
Pt +1gp < (BT — PE™ M)y,

— (P5™® — $Dg)wg 41 Vg, t (12)
when T; =1, and
Py + rgu < (PEMeT — POMinyy, ,  (pGimas

— SUy)uge — (PE™ — SD)wge1 Vg, t (13)

when T7' > 2. The real power production is also
constrained by ramp-up and ramp-down limits, which
are given as

Dyt +Tgt — Pgi—1 < RU, Vg, t (14

— Pyt TPgt—1 < RDy Vg, t. (15)

Then, the reactive power productions are only con-
strained by [Q5™", Q5™ *] and y,; in

Qg,minyg’t < qg . < QG maqu " % g, t. (16)
Synchronous condensers are not modeled with
startup/shutdown costs and their reactive power

output is constrained by [QSCmin QST maz]

QSC min < qSC \V/SC, t. (17)

s*(,t—

QSC max

B. AC Transmission Network Model

In electric power system analysis, the RPQV model is
widely-used to represent an AC transmission network;
this approach explicitly models real and reactive power
flows in terms of complex voltages in the rectangular
form. A transmission line is denoted as [=(b, k), where
b is the index of the bus at the from end and k is the
index of the bus at the fo end of branch (. For integration
into our UC skeleton, the RPQV model is given by

t f Gsh 2
v
ZlGCé" plvt L3 Zlecgut pl,t + b Yot
+Ph - 4, =1
bt degb Dyt

t
Zleﬁ?‘,” Gt Zlecom e

Vb, t (18)
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— Bl (o5 vl , — vl vk, V1, t (20)
qlet — —B{fu§7? — Blflt(vg’tv,z’t + Ug,tvi,t)

— Gl (op vl — vl k) Vi, t (21)
p?,t = Gftv,%.,t + fo(f{;’;,tvz?,t T+ Ui,tvg,t)

- Bltf(vlz,tvg,t - Ui,t”l?,t) Vi, t (22

) o
QI ;= —Bf Uk + — B f_(UZ,tvE,t + U%,tvé,t)

— G} (v 0], — vl vh 1) Vi, t (23)
(Vy™™)? <wpy < (V)? Vb, t (24)
(p] )% + (¢ )? < (Sem)? Vi, t (25)
(P10)° + (af)? < (S*)? Vi, t (26)

where vitz(vg’ty - (vg,t)Q; see [32] for details on
computing GG; and B; branch admittance submatrices.
Note that the RPQV problem is nonconvex due to
bilinear terms and nonconvex quadratics.

C. UC-AC Problem Formulation

The UC-AC is a nonconvex MINLP formulations that
combines the UC skeleton with the nonlinear ACOPF



constraints, giving:

min fp 4+ fsu 4 fsd

S.t.

(1) —(26)

Ygtr Ug.t, Wgt € {0,1} Vg, t
In the next section we exploit the special mathematical
structure of this problem to solve the problem globally.

@7

IV. UC-AC GLOBAL SOLUTION FRAMEWORK

The UC-AC is a nonconvex MINLP, and our proposed
algorithm is a nested multi-tree method where both the
outer and inner algorithm are based on a nonconvex
OA approach that solves a sequence of lower-bounding
master problems and upper-bounding subproblems. In
this section, we first provide a high-level explanation of
the nested multi-tree approach used to solve the UC-
AC MINLP problem, followed by a detailed description
of the master and NLP subproblems and the algorithm
definition. Here, we denote d= [y, u, w] to represent the
discrete decisions (i.e., generator commitment variables),
and x to represent the continuous variables in the UC-AC
problem.

A. Overview

Figure 1 shows the multi-tree approach for the UC-
AC problem. The algorithm iterates between a master
problem and an NLP subproblem, and each pair of such
solves comprise a major iteration g for candidate solution
denoted as [d?, x?]. The high-level description of the

master (M)
Relaxed UC-AC
(MISOCP)

q )
d i
1

1

1

1

!

x4

NLP subproblem (SPG)
Multiperiod ACOPF (NLP)
(global)

Fig. 1: High-level description of the multi-tree approach for
global solution of the UC-AC MINLP problem.

Outer Algorithm is as follows:

The master problem (M) is a relaxation of the UC-
AC problem where the AC power flow constraints are
relaxed using the SOC representation from [33]. The
initial solution of (M) provides a lower bound on the
UC-AC problem and a candidate solution for the binary

variables (the generator commitments) given by d? for
iteration ¢q. Fixing these variables in the UC-AC MINLP
problem yields a nonconvex NLP that represents a multi-
period ACOPF problem given by (SPG). This NLP
subproblem, if feasible, provides an upper bound, zf;,
and a candidate solution to the UC-AC, [d9, 2%]. If the
gap between the upper and lower bound is sufficiently
small, then the solution has been found, i.e., z*:z(qJ for
[d*, x*] = [d?, x1].

To further accelerate exploration of the generator
commitments, it is also desirable to add cuts to (M) that
remove previously visited solutions d? from the feasible
space. With these integer cuts (see Section IV-D1), the
solution z¢ of (M) is not a true lower bound to the
original MINLP, and to ensure convergence with this
approach, it is required that we find a globally optimal
solution to the NLP subproblem (SPG) for each candi-
date binary solution d?. Note that, in the limit, this will
result in full enumeration, ensuring convergence of the
discrete decision space in a finite number of iterations.
However, for the applications and test cases presented in
this work, only a few outer iterations were required to
close the gap.

master (Mf)
Relaxed Multiperiod
ACOPF (MISOCP)

¢

NLP subproblem (SP)
Multiperiod ACOPF (NLP)
(local)

Fig. 2: High-level description of the multi-tree approach for
global solution of the NLP subproblem (SPG).

For global solution of the multi-period ACOPF in
(SPG) we apply the approach of [32], and for com-
pleteness, Figure 2 shows this algorithm. This strategy
is also a multi-tree approach, and hence we refer to
the overall algorithm as a nested multi-tree approach.
Recall that the candidate generator commitments d9 are
fixed for this problem. Similar to the Outer Algorithm
in Figure 1, this approach iterates between the master
and the NLP subproblem, and each pair of such solves
constitutes a minor iteration 7 on iteration q. The high-
level description of the Inner Algorithm is as follows:

The master problem (Mf) is a MISOCP relaxation
of the problem (SPG) (d? fixed). Therefore, in (Mf)
the only binary variables are those corresponding to



piecewise outer approximations. The master problem
(Mf) is solved to find a lower bound for (SPG), and
the solution 2™? from (Mf) is used to initialize the
NLP subproblem (SP). This NLP subproblem, if feasible
provides an upper bound, z;;?, and a candidate solution
a™%. Note that the NLP subproblem (SP) in Figure 2
is the same formulation as (SPG) in Figure 1, however,
in this case we only seek a local solution of the NLP
subproblem (SP).

Since we do not add integer cuts to the master problem
(Mf), it is a true relaxation of (SPG), and closure of the
gap between the upper and lower bounds is sufficient
to indicate convergence. At each iteration r, the master
problem is progressively refined by the addition and/or
tightening of piecewise outer approximations, as well
as optimization-based bounds tightening (OBBT), as
discussed later in Sections IV-D.

Note that for both Quter and Inner Algorithms, the
respective master problems (M) and (Mf) can be further
refined with any selection of piecewise outer approxima-
tions (see Sections IV-D2 and IV-D3) and with domain
reduction techniques, e.g., OBBT (see Section IV-D4).

B. Problem Formulations

This section provides a description of the problem
formulations (M), (SPG), (SP), and (Mf) used in the
global algorithm. The master problem (M) for the UC-
AC problem is based on the SOC relaxation of the power
flow equations from [33]. We replace the quadratic and
bilinear terms in (27) for all [=(b, k) and ¢ with

o r \2 4 X2
Ch,b,t = (Ub,t) + (Ub,t)

— PP Jo.J
Ch,k,t = Vp 4 Uk ¢ T Vp Vg 4

e 5Pl r o.J
Sb,k,t = Upt Vg — Uk tVpt

and introduce a second-order cone relaxation of the
condition

2 2
Ch kit T Shk,t = CbbtChkt (28)
as

2 2
Chet T Skt S Cbb,tChykte (29)

1) Master Problem (M): With the definitions above,
the problem formulation for (M) is given as follows:

zp = min fP + f** + f*¢ (M.1)
s.t.
(1) = (17),(25),(26) (M.2)

t f sh
. + E + Gi by
Zla;n Put tecout Pl T Fb Cobt

D G
+Py; — degb P =0 Vb t (M.3)

¢ f 1 D

Zzeﬁgn Qe+ Zleﬁgm 4G, — Bylenpt + Quy

degb gt ZSCESCb A5t 0 Vb, t
(M.4)

p{»ﬁ - Glffcb«bvt + G'zftcb,m - Blftsb,k,t Vit
(M.5)

qlf,t = _Blffcb,b,t - Blftcb,k,t — Glftsb,k,t Vi, t

(M.6)

p?,t = Gftck,k,t + fock,b,t — B[,tfsk,b,t v l7 t
(M.7)

qlt,t = —Bffep ps — Bltfck,b,t = foszc,b,t Vit

(M.8)
(VY2 < g s S (V)% Wb, 4 (M.9)
Chk,t = Ck,byt A4 l, t (MIO)
Sb,k,t = —Sk,b,t \ l, t (M.l])
Cg,k,t + Sl2>,k,t <cppiCrrtr VIt (M.12)
Yg,ts g, we,e € {0, 1} Vg, T (M.13)
2) NLP Subproblems (SPG) and (SP): The same

NLP subproblem is used in both the outer and the
inner multi-tree algorithms, however, for (SPG), a global
solution is required. The NLP subproblem is formed
by fixing the binary variables d=[y,u,w] (generator
commitments) in the original MINLP formulations for
the UC-AC. This produces a multi-period ACOPF
formulation. For any iteration j, problem for fixed
d9D=[y@) 4 1] is given as:

2y = min fP + f5* 4 ¢

S.t.

(1) —(26) (SP)

where

Yg,t = y_,(]ft),ug,t = u_((;z,wg,t = wgft) Vg, t

3) Master Problem (Mf): Problem (Mf) is the mas-
ter problem used in the inner multi-tree approach for
obtaining globally optimal solutions to the NLP sub-
problem (SPG) from the outer problem. It is based
on the same SOC relaxation that is used for problem




Algorithm 1 Outer Algorithm for UC-AC

1: Initialization.
Iteration ¢=0,
2], 4+ —00. z{; + +oo. (d*,z*) + .

2: Solve the Master Problem (M).
Solve problem (M) to compute its objective value
2} and binary solution d?.
(a) If (M) is infeasible, then (d*,z*) is the optimal
solution (unless (d*,2*) = ), then the UC-AC
problem is infeasible). Terminate.
() If 2z} > 2], then 2} « 2}.

3: Solve for the Upper-Bound.
Solve the NLP subproblem (SPG) (with fixed d?)
to global optimality using Algorithm 2. Let 2/, and
(d?,27) be the optimal objective value and solution.
(a) If feasible and z;; < z[qj, then update the candi-
date solution: zj; «— z{; and (d*,z*) « (d9,z7).

4: Convergence Check
(a) If gap (z{; — 21)/2}. < €o, the optimal solution
(d*,z*) has been identified. Terminate.
(b) Otherwise add integer cut (I1C) for d? to (M).
Further refinements possible as in 4(b) of Alg. 2.

5: Iterate ¢ < ¢+ 1. Go to Step 2.

(M), however, the generator commitments d=[y, u, w]
are fixed. Problem (Mf) for any iteration j with fixed
ANy, o, 5] 16 given by:

ZLfivea = min fP + f5% + de
s.t.

(M.2) — (M.12) (Mf)

where

(3 —
Ygit =Ygt Ug,t = Ug,

C. Global Solution Algorithm

In this section, we formally present the nested multi-
tree algorithm. Algorithm 1 presents the OQuter Algorithm
for the solution of the UC-AC problem, and Algorithm
2 presents the Inner Algorithm for global solution of
the NLP subproblem from the Outer Algorithm. For im-
plementation details on the integer cuts (1C), piecewise
outer relaxations (UE), (OE), and (CC), and OBBT
referred to in the presented algorithms, please see the
following section.

D. Algorithm Details

Algorithm 2 Inner Algorithm for (SPG)

1: Initialization.
For outer iteration ¢ and fixed binary d?:
Inner iteration r = 0.
2] pipeq & —00- 2f7 < +00. 97 < @.

2: Solve for the Lower-Bound.
Solve problem (Mf) (with fixed d?) to find lower
bound zj . solution z%".
(a) If (Mf) is infeasible then the subproblem (SPG)
is infeasible. Return to Step 3 in Algorithm 1.
byIf 2y >z, thenzp 2y

3: Solve for the Upper-Bound.
Solve problem (SP) (initialized from z%") to com-
pute its objective value 27, . and solution 2%/, .

Ifq,fg] < 200 then 2y p 2 pipeq @0 T
Ifiwed'

4: Convergence Check.
@ If (2 — 27,,,.,)/%11..a < €1 (optimality
tolerance), then z? is optimal. Return z[qj and z7
to Step 3 in Algorithm 1.
(b) Else perform OBBT on selected variables and
add or refine partitions for piecewise outer relax-
ations (UE), (OE), and (CC).

5: Iterate r < r + 1. Go to Step 2.

1) Integer Cuts: At each iteration q of the Outer
Algorithm we add integer cuts that remove previously
visited solutions d?. These cuts are given by,

Z Yg,t — Z Yot < |B(q)| -1

(9,t)eB@ (g:)eN (@

1...Q — 1 where B@ = {g,t|y§?2 =1}
and N9 = {g,t|yfﬁt) = 0} This enhancement ensures
that distinct solutions are obtained during each major
iteration g of our global solution algorithm. As a result,
since the solutions to problem (M) are enumerated with
these integer cuts, the below refinements (in Sections
IV-D2 and IV-D3) can be ignored in Step 4(b) of the
Outer Algorithm.

(o)

for ¢ =

2) “Reverse Cone”: For any solution of (M) or (Mf),
we may have that equation (28) is violated, i.e.,

2 2
Cb,b,tCh,kt — (Co gt T Shpt) > €

for any [ and ¢ due to the second-order cone relaxation
of (28). Therefore, we introduce piecewise relaxations
of

(33)

as necessary in each iteration of the Inner Algorithm. To
describe these relaxations, we define new variables

2 2
Ch ket + Shkt = Cb,btChkts

2 2
CSb,k,t = Ch ot T Skt



CCh,k,t = Cb,b,tCk k.t
where we construct piecewise over-estimators for ¢ , ,+
si s+ and piecewise under-estimators for cpp,tCh k¢ tO
obtain an adjustable approximation of (33).

Specifically, as first introduced in [32], we extend
the bivariate partitioning scheme in [54]. We denote
our partitioning variables as csb’Jkt and ccb k.t Where
[cbk,,cbkt] refers to the i-th interval for Cokt €
[ k.45 Co,k,t] and [sb ko) sb 1) refers to the j-th interval

for bkt € [Sp,k,6 k1)
The piecewise over-estimators for csp j; are

i,j i —i i, J =J %]
Syt < (it T Coke,t) et T (Spree + Sbpt)Spiket

_(Qg,k,taz,k,t)cz’i,t +§g,k,t§£,k,t)‘7;’,i:,t V(5,5), L ¢
CSp ket = Z(i,j)eﬂgfk kat Vi, t
Qé,k,taé’,i,t = C;Jkt < Eé,k,tgzi,t v (i,9), L t
Chk,t = z(i)j)eﬂm cngt Vi, t
81105t < Skt < Sh Ok ¥ (05), 1t (OF)
Sbok,t = Z(i’j)eﬂm SZJ,” Vi, t
Z(i,_i)eﬁgfk oph,=1 Vit
ot €401} V¥ (i,4), 1
where (i,7) € Q5% , = [Qz,k,wéz,k,z] X [§g‘k’t7§g’k’t]_

Then, the piecewise under-estimators for ccy 1+ are

chkt <cckktccbbt+ccbbtcckkt

—ﬁi’iﬁf??}c,t%’i,t V(4,5), 1, t
CCZI;,JI;-,t < EZJ“CCZJM + @Zjbfcc}c‘lkf

—c0y} 0Ok Prke V() L ¢
CChk,t = Z(LJ)GQZ;‘SM CCZ‘,i,t Vi t

—i ,J
Ch, t(pb kit < Cb bt < CobtPok,t

%]
C = C
bt = D gyeags,, b

v(i,j), l,t  (UE)

Vi, t

] —i ] :
Ch k t‘Pb kit SCt S CrpePrre V(6J) Lt

]
Ck,k,tZE:.. . Gk VL
()R,

i _
Z(i»j)eﬂgfk_t Pokt = 1 VIt

So?:ic,t € {07 1} v (27])7 lv t

where (i,j) € Q5% , = [Cth’E;),b,t] X [Q;c,k,tvz';c,k,t]'
Note that unique cb]bt and ck k¢ variables must be
introduced for every line { where the under-estimators
are constructed.

3) Cycle Constraints: In the second order cone relax-
ations used in (M) and (Mf), Kirchhoff’s voltage law
(KVL) is no longer guaranteed to be satisfied, but can
be enforced through the cycle constraints,

> omes, okt =0 (36)
for all ¢t and
Ob,k,+ = — arctan(sp k¢ /Co k,t) 37

for all [ and t. As the Inner Algorithm iterates, these
constraints are gradually enforced as needed in sub-
problem (Mf) by addition and refinement of piece-
wise outer approximations. We construct the respective
piecewise under- and over-estimators for each 65 =
— arctan(sp k,¢/Cb,k,¢) term, where

gll)ﬂct > (1’]8 7kt_*_BUE Z’k:t+’YnE an (Za.j)v l, t

gz:it,t S an’jsl;kt—i_BOE kt+’70E Vn (Z,j), l, t
i)
Z(i,j)e()gfk byk,t

Z(b,k)eﬁc Opht =0

where n € {1,2} and the parameters «, 3, and v are
based on the planes constructed in [55]; please see [32]
for implementation details.

Ov. it = (CO

4) Optimization-Based Bounds Tightening: The
optimization-based bounds tightening (OBBT) is only
computed for the second-order cone variables cp ¢
and sp ¢+ to perform domain reduction on the initial
lower-bounding subproblem (Mf). This approach results
in two optimization routines per variable, i.e.,

Cp k¢ < MAX (gb’k’t, min{cp k¢ |c(Mf), zU < z5
Cp k.t < min (Eb,k,h nlax{cb,k,t|c(Mf), 2y < 23
Sp et € MaX (éb,k,umin{sb,k,t|C(Mf)»Z

Sp,k,t < min (gb,k.t, max{sp k. ¢|c(Mf), Zg <zp )

for all [ and t where ¢(Mf) denotes the constraint set of
(Mf). This procedure is computed selectively for cp ¢
and sy corresponding to large violations in second-
order cone constraints (28).



V. NUMERICAL RESULTS

We now test our global UC-AC solution algorithm on
four benchmark problems: a 6-bus test system (6-bus)
with 3 generators [37], two 24-bus test systems —
RTS-79 [56] and RTS-96 — each with 33 genera-
tors [57], and a modified IEEE 118-bus test system
(IEEE-118mod) with 54 generators [37]. The schedul-
ing horizon solution for all test cases is 24 hours at
hourly time resolution, but we solve for 48 hours (by
stacking the same 24-hour demand profile) to address
end of time horizon impacts. Our global solution algo-
rithm is implemented in Pyomo, a Python-based open-
source optimization modeling language [58]. All com-
putational experiments are conducted on a 64-bit server
with 24 CPUs (Intel(R) Xeon(R) CPU E5-2697 v2 @
2.70GHz) and 256 GB of RAM. All SOCP and MISOCP
subproblems are solved using Gurobi 6.5.2 [59] limited
to 24 threads. All NLP subproblems are solved with
Ipopt 3.12.6 [60] using HSL’s MA27 linear solver [61].

While having a tight and compact formulation is
one path toward obtaining improved performance in
global solution frameworks, convergence speed is also
a function of other characteristics of the underlying
numerical problem that impact computational difficulty,
including formulation size and degeneracy / symmetry in
the solution space. Typically, there is a large subset of
solutions that are within an e-tolerance of an optimal-
cost schedule. To balance computational burden and
solution quality, we initially set the Gurobi MILP gap
to 0.1%. Then, if the optimality gap of our global
solution algorithm does not show improvement within
N iterations, we tighten the MILP gap by a factor of
10.

In all of our computational experiments, we set N=5
with a total wall clock time limit of 14400s and a
major iteration limit g=30. The optimality tolerance for
both our global solution algorithm and its nested multi-
tree algorithm are set to 0.1%. Note that in contrast to
research on global solution of MILP models, in which
accepted optimality tolerances are typically 1 - 1074,
standards for global solution of MINLP models are
typically within 1% — due to the relative increase in
computational difficulty.

A. Computational Performance

Computational results for our global UC-AC solution
algorithm on the 4 benchmark problems are reported in
Table I. The second column reports the best obtained
upper bound, which corresponds to the best known solu-
tion to the UC-AC problem. The third column reports
the best obtained lower bound, which corresponds to
the solution of the problem defined in (M). The relative
optimality gap is shown in the fourth column, followed
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by the total wall clock time and the number of major
iterations. All problems are solved to within a 0.5%
global optimality gap under the wall clock time limit. For
IEEE-118mod, we obtained a 0.34% optimality gap
after the first iteration (in approximately 8400s), which
remains unchanged before the time limit is reached in
major iteration k=2 with a 0.11% MIP gap for the lower-
bounding problem.

Table II additionally reports IEEE-118mod results
for our global UC-AC algorithm compared to results ob-
tained with version 16.12.7 of the commercially available
general MINLP solver BARON [62, 63], and heuristic
UC-AC methods as reported in [48] and in [36]. BARON
was unable to solve any of the UC-AC problems within
a time limit of 10 hours using the default solver pa-
rameters, CLP/CBC for the LP/MILP subproblems, and
IPOPT and FILTERSD for the NLP subproblems. It is
possible that better performance could be obtained with
BARON by leveraging commercial subproblem solvers
and additional tuning.

Our global UC-AC upper bound solution is 0.92% less
costly than the heuristic OA [48] solution and 1.84% less
costly than the heuristic GBD [36] solution. We expect
for the improvement attained by solving the UC-AC
problem globally to increase with the size of the network
and generator set. Even a percentage improvement in
operating efficiency leads to a monetary savings of
billions annually [53].

B. Globally Optimal Unit Commitment Schedules

In addition to the differences in optimal objective
value, we also want to compare the commitment sched-
ules obtained with global and local algorithms. The
globally optimal generator commitment schedules for
our test cases are reported in Table III, IV, and V.
Due to symmetry (e.g., co-location of identical gen-
erating units at a given bus), there can be multiple
global solutions with the same objective value (here,
we have not included alternate solutions). Comparing
these commitment schedules with those from the local
results in [48], we observe that they are the same for the
6-Bus case, but differ for RTS-79 (where a slightly
improved solution is found) and IEEE-118mod (where
a significantly improved solution is found).

VI. CONCLUSIONS

Solving the UC-AC problem is fundamental to ob-
taining real-world operations and market settlements
that fully incorporate the impact of alternating current
network physics. We have introduced, to the best of our
knowledge, the first globally optimal approach to solv-
ing this practically critical and computationally difficult
problem



TABLE I: Numerical results for our global UC-AC solution algorithm

Case Upper Bound ($) Lower Bound ($) Optimality Gap (%) Wall Clock Time (s) Iteration (k)
6-bus 101,763 101,740 0.02% 8.5 2
RTS-79 895,040 894,392 0.07% 1394 6
RTS-96 886,362 885,707 0.07% 321.0 1
IEEE-118mod 835,926 833,057 0.34% 14400° 2

T MIP gap of 0.11% for the master problem at the time limit.

TABLE II: Comparative results with alternative UC-AC approaches

Upper Bound ($)
Case Our Global UC-AC BARON UC-AC Castillo et al. UC-AC [48] Fu et al. UC-AC [36]

IEEE-118mod 835,926 n/a 843,591 851,274

TABLE III: Commitments for the 6-Bus System

Bus Gen | Commitment (h) TABLE V: Commitments for the IEEE-118mod System
Bl Gl 1-24
B2 @2 1, 12-21 Gen Commitment (h) | Gen Commitment (h)
B6 G3 10-22 Gl (%) G28 1-24
G2 0 G29 1-24
G3 0] G30 1-24
G4 1-10, 24 G31 0
G5 1-24 G32 )
TABLE IV: Commitments for the 24-Bus Systems G6 (0] G33 %]
G7 11-22 G34 7-24
Bus Gen Commitment (h) GS %) G35 1-24
RTS-79 RTS-96 G9 1) G36 1-24
Bl Gl, G2 0 % GI0 12,1224 | G37 8-23
B1 G3, G4 8-23 8-23 Gl1 1-94 G38 1)
B2 G5, G6 10 0] G12 1%) G39 %)
B2 G7 8-24 8-24 G13 0 G40 1-10, 22-24
B2 G8 8-23 8-23 Gl4 10-22 G41 9]
B7 G9 1-23 1-23 G15 ) G2 o
B7 G10 9-24 10-24 Gl16 9-16 G43 1-24
B7 Gl1 10-18 0] G17 1%) G44 %)
B13 G12 11-22 1-18 G18 1) G45 1-24
B13 Gl13 ) 11-22 G19 1) G46 1)
BI3  Gl4 % % G20 1-24 G47 @
B14 Gl15 1-24 1-24 G21 8-24 G48 %)
BIS Gl6-GI8 | 10-15 0 G2 o G49 o
BI5 GI19,G20 | 10-13 9 G23 o G50 o
BI5  G2I 9-24 9-24 G24 9-23 G51 9-13
B16 G22 1-24 1-24 G25 1) G52 14-23
B18 G23 1-24 1-24 G26 %) G53 7-94
B21 G24 1-24 1-24 G27 1-2, 13-24 G54 9-23
B22  (G25-G30 1-24 1-24
B23 G31-G33 1-24 1-24
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Although our obtained run times are still longer than
those required for operations, our proposed approach
can be used to quantify the (near-) global optimality of
“off-line” solutions, as well as test and validate other
algorithmic approaches including the heuristics and local
solution techniques referenced in Section II.

A considerable fraction of the computational time
associated with our algorithm is in the global solu-
tion of the subproblems. Efficient global solution of
ACOPF subproblems is an ongoing focus in the literature
[64, 65] and furthermore can be leveraged to produce
valid cuts in the master problem. Optimization results
on larger data sets will require further development
that potentially leverages a variety of advancements in
relaxation refinements, MISOCP solvers, cut generation,
and decomposition techniques. For example, other future
directions for research include incorporating symmetry-
breaking methods, and decomposition and parallelization
techniques to improve the efficiency of determining
lower bounds. Improvements to the mixed-integer refine-
ment problem in the nested algorithm include adaptive,
non-uniform partitioning schemes. Security (e.g., N-
1) considerations and parameter uncertainties do not
alter the core UC-AC problem that needs to be solved,
but does increase the dimensionality of the problem;
such dimensionality increase is addressable through the
aforementioned advancements, which are extensions left
for future work.
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