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and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of T |
groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical 10-1! . . . .. .
: : : : : WIPP bedded salt, Pc=3.45 MPa 5 1 . [ . 3 The residual gas analysis portion of the test system utilizes mass spectrometry, which measures the mass-

deformation of crustal materials is an important process controlling gas release from rocks 0.03 ' 1E+02 ! Westerly eranite . . . .

_ _ _ . _ > - —— He Release Y8 to-charge ratio abundance of gas-phase ions. The mass spectrometer continually scans for gases during the
and mlnerals, and shoula be. considered in technlque.s which utilize gas., re!ease and/or 0.025 1E+01 ’\Jf Volume Strain _"'_2 deformation. We use two different mass spectrometers: a helium leak detector which measures the flow rate
accumulation. We propose using noble gas release to signal rock deformation in boreholes, 0.02 1£+00 8 4| ¢+ Axial Strain ’ * of mass 4 and a QMS capable of scanning the total abundance of gas over a broad mass range.
microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such | \L/Zﬁi:':;‘:‘;?n it 9 . | I1 only 4He. It works in the mass range of 2, 3, 4 amu, with a minimum detectable leak rate in vacuum mode is
relationships, for example relating gas release per rock unit volume to strain may be used to c ool  He Rate 803 © =3 | Fllue _ || <5x1012 mbar I/s. Time constant of the leak rate signal is <1 s, and the filament is Iridium/Yttria-oxide. The
quantify rock deformation and develop predictive models. . © 0.005 « AE Data £t S 8 & || analytical devices are semi-portable, on a rolling cart so that all triaxial frames in the lab are accessible.
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Axial /1 | Flow 0 0 & 1E-05 g E‘j o | : 'g The QMS is a Pfeiffer HiQuadTM , for analysis of neutral particles with a mass range from 1- 340 amu. The
0008 1606 @ o 2 Loading Begins | @ || scan speed is 0.125 ms- 60 s/amu; typically full scan time for a suite of gases (10 species) is on the order of 1-2
| 1E-07 Q; 5 11 seconds. The analyzer is a QMA 410, with a cross beam ion source and a detection limit at 1 x 10*> mbar. The
001 IE08 detector is SEV 217/Faraday, and the filament is tungsten. The maximum operating pressures are Faraday 104
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reoustic 0.02 1610 < Y =2 based user interface for data acquisition and control.
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