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Validated reliability and safety is one of four critical
challenges identified in 2013 Grid Energy Storage
Strategic Plan

Single Cell

~0.5-5 Ah
Failure rates as low as 1 in several &

million,

Strings and Targe
format cells

Potentially many cells used in ~10-200 Ah
energy storage.

Moderate likelihood of 1000s cells

10-50 kwh
‘something’ going wrong, &
Stationary storage

system 1000s or more

A single cell failure that propagates individual cells

MWh+
through the pack can have an impact

even with low individual failure rates.

www.nissan.com
www.internationalbattery.com
www.samsung.com
www.saft.com

How do we decrease the risk?




Approaches to designing in safety

The current approach is to test our way into safety?

= Large system (>1MWh) testing is difficult and
costly.

Consider supplementing testing with predictions of
challenging scenarios and optimization of mitigation.

= Develop multi-physics models to predict failure
mechanisms and identify mitigation. -
Build capabilities with A e
small/medium scale

measurements.

Still requires some testing and
validation.

. . . _ Time; 46.683046
1‘Power Grid Energy Storage Testing Part 1. Blume, P.; Lindenmuth, K.; Murray, J. EE — Evaluation Engineering. Nov. 2012.




A range of risks to energy storage systems

= |nternal short circuit
= Soft short—gradual discharge.
" Hard short—sudden discharge.
= Mechanical damage,
= External heating or internal overheating.
= Qvercharge.

Time: 46.683046




Models for thermal runaway processes

3) Define convection
and radiation boundary
conditions
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1) Simplify &
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Geometry

2) Define initial
composition, thermal
properties, reactions

(species & energy
source terms)
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Models Need Parameters

= Preliminary chemistry model from literature
Based on Dahn group from 2000, 2001
Derived from calorimetry data (ARC and DSC)

Needs to be recalibrated—not expressed in
fundamental cell characteristics.
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Thermal and electrochemical reactants are same

Discharge reaction: @@ Ce + LiCoO,

Charged materials are reattive. f

* Cathode-electroly

* Electrolyte-salt

v Anode-electrolyte

K SEl decomposition \2 éCOZLi—>Li2CO3 + prod \

1
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N

Simulated short circuit
plus thermal runaway
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Short-circuit induced runaway in meshed
18650 W|th nail
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= Effects of inhomogeneity increase as scale increases beyond the lumped-capacitance
regime.




Relative importance of short-circuit e

versus thermal reactions
R =1.4 ohm, h =7 W/m?/K, Meshed 18650 with 50% heat release in nail

Thermal Reaction Cathode Product

Time: 1004.759876 v.cosos

2.000e-02 0.092 0.094 0.096 9.800e-02

Short Circuit Cathode Product

Time: 1004.759876 Y_LiCoO2

1.800e-01 0.183 0.185 0.188 1.900e-01
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Energetics of thermal runaway in high-temperature &
environments and under internal short-circuits

Simulated oven test Simulated short circuit

% analogy with oven temperature
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How Much Cooling to Suppress Runaway with
Internal Short Circuit?
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= Models can be used to estimate cooling requirements
= Simulation shows homogeneous heating of 18650 cells (varying short resistance and cooling)
= |Internal temperature variation will be worse for large format systems and localized shorts




Cascading Propagation Observed in Li-lon Packs
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Experimental propagation in 5 stacked pouch
cells at Sandia

Investigating effects of
= State of charge
= Intermediate layers

= System geometry
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High-Fidelity Models Required for Cascading Failure

Literature Chemistry Model

Celll =---Cell1-2 = =Cell 2-3 = - Cell 3-4 — Cell 4-5 — Cell 5

—Modl —Mod1-2 —Mod2-3 —Mod3-4 —Mod4-5 —Mod5

Literature models have only
addressed initial runaway.
Poor model for propagation.
Accurate measurements of highest
temperature kinetics needed.

Still work in progress.
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High-Fidelity Models Required for Cascading Failure

Literature Chemistry Model

Celll =---Cell1-2 = =Cell 2-3 = - Cell 3-4 — Cell 4-5 — Cell 5

—Modl —Mod1-2 —Mod2-3 —Mod3-4 —Mod4-5 —Mod5

* Propagation rate

o heat-release rate is Arrhenius,

sensitive to heat losses.
a is thermal diffusivity
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New model based on measureable quantities and
thermodynamic material properties
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Applying the new anode model to cascading failure

Dahn Model (Hatchard et al. 2001)
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Applying the new anode model to cascading failure

Dahn + New Anode Model,
Alternate Anode Parameters
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Extend modeling to Large Scales — Pulsating propagation
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2013 Storage Battery Fire, The Landing
Mall, Port Angeles, (reignited one week
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= Slow periods are best opportunity for cooling,
but need to consider slow hidden reactions. e e
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The mechanism of pulsating propagation

Heat released is conducted upstream of reaction front, increasing the total
enthalpy (sum of sensible and chemical enthalpy) H =cpT+YrAHr

ToT

Front propagates rapidly through preheated region with larger H;;.
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Parameter studies of propagation at large scales

are possible with models
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Prediction and
mitigation of cell-to-
cell propagation is ke
to addressing risk.
Single-step heat-
release predictions
with a range of heat
release and boundary
temps.

Propagation across a
large pack (80 cells
here) exhibits
pulsating instabilities.




External risks to energy storage systems

Temp

/ 2e+03
f f Heat losses

= External fires:
21600

= Relatively low -
heat flux. \ \ S~ 11200

. 500
= |nstallation Time: 9002 s

integrated I. . .

suppression.

Time: 0.000000




Looking forward L

Thermal management can be an effective approach to

managing thermal runaway risks. />
' inhibit ieniti f fHeat losses

Heat capacity can inhibit ignition
and propagation.

Moderate cooling can quench \ \

propagation, and sometimes Fime: 9002 s
ignition.

Simulations allow exploration of trade space if the physics are
known.

= But physics still must be observed and measured.

- Ultimate goal: Predict criteria for cascading
failure to act as a design tool in developing
mitigation strategi




In closing i

Thermal runaway is a risk and potential barrier to development
and acceptance.

Heat release rates are moderate relative to potential dissipation.

Multi-physics thermal models can potentially identify critical
ignition and propagation trends.

Quality measurements are key to parameter identification.
Recent progress

= Development of thermal source terms.
= |dentification of thermal ignition criterion.

= Cell-to-cell propagation along homogenized pack structures.
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High-Fidelity Models Required for Cascading Failure

Decrease high-temperature reaction rate by 2x again
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= Propagation predictions will improve with fidelity of high-temperature chemistry




