
WAVEFORM OPTIMIZATION FOR RESONANTLY DRIVEN MEMS 

SWITCHES ELECTROSTATICALLY BIASED NEAR PULL-IN 
Aleem M. Siddiqui1, Christopher D. Nordquist1, Alejandro Grine1, Stefan Lepkowsk1, M. David 

Henry , Matt Eichenfield1 and Benjamin A. Griffin1 
1Sandia National Laboratory, Albuquerque, NM, USA 

 

ABSTRACT 
Biasing a MEMS switch close to static-pull in reduces 

the modulation amplitude necessary to achieve resonant 

pull-in, but results in a highly nonlinear system. In this 

work, we present a new methodology that captures the 

essential dynamics and provides a prescription for 

achieving the optimal drive waveform which reduces the 

amplitude requirements of the modulation source. These 

findings are validated both experimentally and through 

numerical modeling.    

 

INTRODUCTION 

Control of closure conditions and nonlinear dynamics 

of RF-MEMS switches is necessary for many applications 

including low-power communication, timing, and wake-up 

signal detection [1-2]. Prior studies have developed 

necessary requirements for pull-in based on static, 

transient, and modulated voltage signals [3-4]. 

Additionally, applying both a static voltage bias and 

modulated bias to a MEMS switch has been shown to 

reduce the amplitude requirements needed for the 

modulated signal [4]. These studies, were developed 

utilizing a fixed period drive waveform often leveraging 

resonant actuation. However, for switches positioned 

exceptionally close to the static pull-in voltage, the 

dynamics of the switch become extremely nonlinear, and 

the natural resonant frequency and limit cycle become 

strongly dependent on the energy stored in the switch. 

These nonlinear dependences can severely compromise the 

rate of energy transfer from the modulation waveform to 

the switch during the course of the switch ring-up. We aim 

to address these nonlinearities from a theoretical and 

experimental point of view. 

To achieve switch closure with reduced signal levels, 

we employ resonant actuation with high-Q switches and 

bias the switch near  static pull-in. In the analysis presented 

in this paper we are interested in how the drive waveform 

transfers a small amount of energy per cycle to the switch 

and how the drive waveform can be optimized to minimize 

the power required of the drive source.For a sufficiently 

large drive amplitude, the switch will close after many 

cycles but will essentially sample all possible limit cycle 

trajectories as a function of energy as it goes from initial 

ring up to eventual closure.. Since the phase portraits close 

to pull-in are highly energy dependent, there is an 

opportunity to optimize the drive waveform to the 

nonlinear switch response.  

We  therefore analyze the phase portrait vs energy for 

the switch and derive approximate expressions for the limit 

cycle period and quality factor vs energy which captures 

the prominent increased dwell time as the switch 

approaches the closure point. We will discuss momentum 

transfer and amplitude growth which will effectively 

capture how a drive waveform connects constant energy 

orbits in phase space. We will also describe how to vary the 

drive waveform period to match the energy-dependent 

period of the switch. The theoretical results will be 

experimentally validated. The hybrid static and dynamic 

pull-in prescription presented in this work can potentially 

be exploited for low power signal processing applications 

dependent on switch closure or “wakeup”.  

 

NONLINEAR SWITCH MODEL  
A simplified cross-section of the cantilever switch used in 

this work is shown in Fig 1. The switch is controlled via 

three electrodes: a bias electrode, a modulation electrode, 

and a ground electrode. The beam itself is connected to the 

voltage output or wake-up pad which is grounded through 

a load resister such that electrostatic forces can be exerted 

between the control electrodes and the switch body. A DC 

voltage, 𝑉𝐷𝐶,is applied to the bias electrode to bring the 

switch close to pull-in, and a modulated signal, 𝑉𝐴𝐶(𝑡), is 

then applied to the modulation electrode in order to drive 

the switch to closure. 

To investigate the dynamics of the switch, we employ 

a lumped element model as has been similarly done in prior 

works [1]. The effects of mass, damping and elastic 

deformation are captured with linear terms while the 

electrostatic forces are represented by nonlinear terms. The 

nonlinear equation for the switch in Fig 1 when driven by 

separate DC and AC electrodes is given by: 

𝑚𝑥̈ + 𝑏𝑥̇ + 𝐾𝑥 −
𝜖0𝐴𝐷𝐶

2(𝑔 − 𝑥)2
×𝑉𝐷𝐶

2 =
𝜖0𝐴𝐴𝐶

2

2(𝑔 − 𝑥)2
×
𝑉𝐴𝐶
2 (𝑡)

2
 (1) 

where 𝑥 is the spring displacement,  𝑚 is the lumped 

mass, 𝑏 is the damping coefficient, 𝐾 is the stiffness, 𝜖0 is 

the permittivity of free space,  𝑔is the separation between 

the spring body and control electrodes, 𝐴𝐷𝐶 is the bias 

electrode area,  𝐴𝐴𝐶  is the modulation electrode area, 𝑉𝐷𝐶,is 

the bias voltage, and  𝑉𝐴𝐶(𝑡)is the applied time dependent 

modulation voltage. In the above equation, nonlinearities 

arise from the terms involving V𝐷𝐶
2  and  V𝐴𝐶

2 (𝑡). The 

parameters for the switch used in the theoretical and 

experimental aspects of this work are shown in Fig 1. 

In the absence of dissipation and modulation voltage 

(i.e., 𝑏 = 0 and 𝑉𝐴𝐶(𝑡) = 0 ), the resulting homogeneous 

equation is governed by a potential function, 𝑈(𝑥), which 

can be computed by integrating the elastic and electrostatic 

force terms on the right hand side of Eq 1. 

𝑈(𝑥) =
1

2
𝐾𝑥2 −

𝜖𝐴1

𝑑0 − 𝑥
×𝑉𝐷𝐶

2 − 𝑈0 (2) 

Where 𝑈0 is an arbitrary reference level. 𝑈(𝑥) has both a 

stable position, 𝑥𝑆, and a meta-stable position, 𝑥𝑀𝑆, as 

illustrated in Fig 2. At the stable point the switch position 

is returned to the stable point for small perturbations. At 

the meta-stable point, the switch position is driven away 

from the meta-stable point for small perturbations. Switch 

closure or pull-in will result if the switch energy, 𝐸𝑆𝑤𝑖𝑡𝑐ℎ, 
exceeds 𝐸𝐶𝑙𝑜𝑠𝑒 = 𝑈(𝑥𝑀𝑆) − 𝑈(𝑥𝑆),  the potential energy 
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difference between the stable and metastable points [1,2]. 

Furthermore as  𝑉𝐷𝐶 is increased the distance between the 

stable point, 𝑥𝑆, and the metastable point, 𝑥𝑀𝑆, is reduced 

and nonlinear behavior resulting from the proximity of the 

switch to the meta-stable point becomes more prominent. 

This facts are illustrated in Fig 2. Additionally, the V𝐴𝐶
2 (𝑡) 

term in Eq. 1 indicates that the drive waveform is also 

subject to a nonlinearity. Thus, to  

 
Fig 1: Simplified cross-section of a resonant MEMS cantilever 

showing the bias, modulation, and ground electrode. The body of 

the switch is connected to the wakeup pad. For this work the 

switch parameters are: 𝑓0 = 25𝑘𝐻𝑧, 𝐾 = 8.14 𝑁/𝑚 ,  𝑄 =

1000,  𝑑0 = 1.55×10
−6𝑚 𝐴𝑅𝐹 = 1×10

−9 𝑚2, and 𝐴𝐷𝐶 =

1.5×10−9 𝑚2. 
 

understand the dynamical closure condition, we are not 

only interested in the limit-cycle solutions to the 

homogeneous part of Eq. 1 but also the nonlinearity of the 

drive term.

 
Fig 2: The switch potential well function for various bias voltages 

near 𝑉𝑝𝑖, the pull-in voltage. 𝑥𝑆is the stable point and 𝑥𝑀𝑆 is the 

metastable point.  

 
Fig 3:  Orbital solutions of constant energy in phase space. The 

displacement is relative to 𝑥𝑆. And the normalization is done 

relative to peak speed and maximum displacement when 𝑥 < 𝑥𝑆.    

The switch energiesfor (a) through (d) are 𝐸/𝐸𝑐𝑙𝑜𝑠𝑒=.1, .4,.6,.95, 

respectively. As the energy approaches pull in, the orbital 

becomes highly asymmetric. The blue curves are numerically 

integrated orbitals. The red curves are predicted by the analytical 

formulas discussed in the text.  

The phase portrait (𝑥 vs 𝑑𝑥/𝑑𝑡 ) as a function of 

energy captures the essential features of the limit-cycle 

behavior of the switch as a function of energy. As is 

typically the case, to construct the phase portrait we neglect 

the dissipative forceand neglect the driving term.  The 

speed as a function of energy can be solved analytically 

from conservation of energy. Fig. 3 shows phase portraits 

corresponding to the various values of switch energy 

relative to closure energy (𝐸𝑆𝑤𝑖𝑡𝑐ℎ/𝐸𝐶𝑙𝑜𝑠𝑒). As shown in the 

figure, for low energies, the orbits in phase space are 

circular indicating that the limit-cycle is essentially 

harmonic. For large energies, however, the orbit shape 

becomes highly distorted (Fig 3b) when the switch is in the 

vicinity of the metastable point. This occurs as the elastic 

force is partially canceled by the electrostatic force and 

results in an increased excursion toward the control 

electrodes as well as an increased dwell time. For 𝑥 < 𝑥𝑠 
the phase portrait follows a circular contour even with large 

switch energy. This suggests that the limit cycle can be 

viewed as having a harmonic orbit when 𝑥 < 𝑥𝑠 and a 

nonlinear orbit when 𝑥 > 𝑥𝑆. This is confirmed in Fig 4, 

which shows that the switch speed is approximately 

sinusoidal when the switch is in the vicinity of the  𝑥 < 𝑥𝑆 

extrema point. 

Although the limit cycle behavior is complex, the 

essential dynamical parameters, namely the period and 

quality factor, can be extracted from phase space by the 

following well known relations:[] 

𝑇(𝐸) = ∫
𝑑𝑥

𝑣(𝐸)
;     

𝑄(𝐸)

2𝜋
=

𝐸

∫𝑏
𝑑𝑥
𝑑𝑡
×
𝑑𝑥
𝑑𝑡
𝑑𝑡
=

𝐸/𝑏

𝐴𝐿𝐶(𝐸)
 (3) 

where 𝐸 is the switch energy, 𝑇 is the limit cycle 

period, 𝑣(𝐸) = 𝑑𝑥/𝑑𝑡 is the energy-dependent switch 

speed for which an exact formula can be derived from 

𝑈(𝑥), 𝑄𝑁𝐿  is the nonlinear quality factor associated with 

the limit-cycle when the dissipation term is included, and  

𝐴𝐿𝐶 is the area under the curve of the limit cycle in phase 

space. The expressions in Eq. 2 depend on integrating 

𝑣(𝐸)−1and 𝑣(𝐸)2 for which we do not have closed from 

integrals. However, for small energies or 𝑥 < 𝑥𝑆, the limit 

cycle is nearly harmonic (i.e circular orbitals) and is only 

distorted for large energies and 𝑥 > 𝑥𝑆. In order to have 

analytical results, we propose to use the following relation 

for speed to capture this distortion from harmonic motion 

due to the electrostatic force,  

𝑣(𝑥) =

{
  
 

  
 

𝑣𝑚𝑎𝑥 (1 − (
𝑥

∆𝑥𝐿𝐼𝑁
)
2

)

1
2

, 𝑥 < 0

𝑣𝑚𝑎𝑥 (1 − (
𝑥

∆𝑥𝑁𝐿
)
2+𝛽

)

1
2

, 𝑥 ≥ 0

 (4) 

where 𝑣𝑚𝑎𝑥 is the maximum speed switch speed for a given 

switch energy, and as noted in Fig 2 and Fig 3d, ∆𝑥𝐿𝐼𝑁 is 

the maximum switch displacement for 𝑥 < 𝑥𝑆 when the 

switch is quasi-linear, while ∆𝑥𝑁𝐿  is the maximum switch 

displacement for 𝑥 > 𝑥𝑆. 𝛽 is a fitting parameter to best 

match the orbital trajectory in the nonlinear half. The 

advantage of using Eq.3 is that it leads to expression for 

𝑣(𝐸)−1and 𝑣(𝐸)2 which can be integrated analytically. 

We outline as follows a prescription to find 𝛽 for a 

given switch energy, 𝐸𝑠𝑤𝑖𝑡𝑐ℎ: 

1. We find 𝑣𝑚𝑎𝑥  by using the approximation: 𝐸𝑠𝑤𝑖𝑡𝑐ℎ =



𝑚𝑣𝑚𝑎𝑥
2 /2 

2. We solve for the stable point, 𝑥𝑠, by choosing the 

appropriate root of the cubic expression: 𝑑𝑈(𝑥𝑠)/
𝑑𝑥 = 0. 

3. We solve for ∆𝑥𝐿𝐼𝑁, ∆𝑥𝑁𝐿 , by choosing the appropriate 

roots for zeros of the cubic function involving the 

switch potential energy: 𝑈(𝑥) =  𝐸𝑠𝑤𝑖𝑡𝑐ℎ.  

4. Finally, we solve for the point (𝑥𝑚𝑖𝑑 , 𝑣𝑚𝑖𝑑) shown in 

Fig 3(d) where the switch has half the maximum 

kinetic energy by choosing the appropriate root of the 

cubic relation: 𝑈(𝑥𝑚𝑖𝑑) = 𝐸/4, nd solving for 𝑣𝑚𝑖𝑑 

via conservation of energy. .  

 
Fig 4: Switch speed vs time corresponding to the limit cycle 

orbitals in Fig. 2. High energy orbitals experience an increased 

dwell time close to the metastable point. The red box in (d) 

indicates harmonic/linear behavior for 𝑥 < 𝑥𝑠  
 

With exact solutions for the above mentioned critical 

points, we can use Eq (3) to solve for 𝛽 so that it produces 

the correct values at (𝑥𝑚𝑖𝑑 , 𝑣𝑚𝑖𝑑): 

𝛽(𝐸) =
𝑙𝑜𝑔 (1 − (

𝑣𝑚𝑖𝑑
𝑣𝑚𝑎𝑥

)
2

)

𝑙𝑜𝑔 ((
𝑥𝑚𝑖𝑑 − 𝑥0
∆𝑥𝑁𝐿 − 𝑥0

))

− 2 (4) 

Thus,by solving a series of cubic expressions and 

integrating Eq. 3, we arrive at the following expressions for 

the limit cycle period and quality factor: 

𝑇(𝐸) =
𝜋∆𝑥𝐿𝑖𝑛
𝑣𝑚𝑎𝑥

+
∆𝑥𝑁𝐿
𝑣𝑚𝑎𝑥

2√𝜋(1 +
1

2 + 𝛽
)

 (
1
2
+

1
2 + 𝛽

)
 (5) 

𝑄(𝐸)

2𝜋
=

1
2
𝑚𝑣𝑚𝑎𝑥

2/𝑏

∆𝑥𝑁𝐿×𝑣𝑚𝑎𝑥×
√𝜋 (1 +

1
2 + 𝛽

)

2 (
3
2
+

1
2 + 𝛽

)
+
𝜋
2
∆𝑥𝐿𝑖𝑛×𝑣𝑚𝑎𝑥

 
(6) 

Fig 3 shows a comparison of the orbitals predicted by 

the above equations (𝛽-orbitals) to the exact orbitals, and  

Fig 4 show a comparison of the above expressions to 

numerically integrated values. The figures confirm that the 

above expressions capture the essential features of the limit 

cycle trajectories as a function of switch energy; namely, 

that the period increases as more energy is stored in the 

switch and that the quality factor decreases due to the 

increased dwell time in the vicinity of the applied voltage. 

In the subsequent sections, we will use these expressions to 

understand the dynamics of a driven switch. 

 

TRANSIENT DYNAMICS OF DRIVEN 

SWITCH 
The switch is initially at rest and the modulation 

voltage, 𝑉𝐴𝐶(𝑡), will produce a nonlinear driving force 

through Eq 1 that can increase the switch’s motional 

amplitude and energy. Since the momentum increase and 

the energy dissipation in Eq 1 are small over the duration 

of a period compared to the stored energy, the switch 

motion will be dominated by its limit cycle trajectory on 

short time scales. On long time scales the switch energy 

will grow due to momentum transfer or shrink due to 

dissipation. The goal here is to maximize momentum 

transfer such that the steady state energy is in excess of the 

closure energy, 𝐸𝐶𝑙𝑜𝑠𝑒 , and the switch pulls-in. Put another 

way, the switch reaches the  metastable point shown in Fig 

1 and achieve pull-in. Momentum transfer is maximized 

when the modulation voltage period matches the 

instantaneous period of the switch, 𝑇(𝐸). Thus, the optimal 

drive waveform for 𝑉𝐴𝐶(𝑡) will track the switch period 

which evolves as the motional amplitude increases. Since 

power will continue to transfer when the switch is moving 

in the direction of the metastable point, the optimal drive 

waveform can be expressed as: 

𝑉𝐴𝐶(𝑡) = 𝑉0×{𝑣(𝐸(𝑡)) > 0} (7) 

In the above equation, 𝑉𝐴𝐶(𝑡), is essentially a square wave 

with voltage applied only when the velocity is positive. The 

waveform thus tracks the period of the switch as opposed 

to a square wave with a fixed period. 

 
Fig 4: (a) Switch period vs switch energy relative to closure. (b) 

Switch quality factor vs energy relative to closure. The blue curve 

is numerically integrated and the red curve is predicated by the 

equations in the text.  

 

To explore the impact of tracking the switch period we 

conducted FDTD simulations, the results of which are 

shown in Fig 5. The switch parameters were chosen to 

match the switch measured in the experimental section 

below. Fig 5a shows the transient dynamics of a switch 

driven to closure with an optimal waveform using feedback 

(close-looped), and confirms that locally in time the switch 

motion follows the orbitals predicted in the previous 

section. Fig 5b shows as a comparison, the switch driven 

with the optimal waveform and with a fix period waveform. 

The comparison confirms that more energy is delivered 

with the optimal waveform, (Eq. 7) resulting in nearly a 5X 

improvement in steady state switch speed.  

When driven with the optimal waveform, Eq. 7, the 

transient dynamics simplify considerably and are 

dominated by the momentum transferred per cycle, 𝑝0(𝐸), 
and the energy dissipated per cycle, 2𝜋×𝐸/𝑄𝑁𝐿(𝐸). If we 

view the switch as storing an integer amount of 

momentums, 𝑝𝑛 = 𝑁×𝑝0, then the switch energy can be 

expressed as: 𝐸𝑛 = (𝑁×𝑝0)
2, where  N, is the total number 

of momentums stored and 𝑛  refers to the cycle iteration. 



At a given switch energy, if we assume that in the next 

cycle a fixed amount of momentum is added and energy is 

dissipated, a difference equation in terms of energy can be 

derived: 

𝐸𝑛+1 − 𝐸𝑛 = 𝑝0(𝐸𝑛)√
2

𝑚
√𝐸𝑛 − 

𝐸𝑛
𝑄𝑁𝐿(𝐸𝑛)/2𝜋

 (8) 

In steady state, the energy injected via momentum transfer 

balances the energy dissipated and we have: 𝐸𝑆𝑆 =
1

2𝑚
(
𝑄𝑁𝐿

𝜋
×𝑝0)

2

. Thus, in steady state the switch stores 

𝑄𝑁𝐿/𝜋 momentum quanta, 𝑝0. If 𝑝0 and 𝑄𝑁𝐿  were constant 

Eq 8 would have an analytical solution describing energy 

exponentially approaching the steady state energy. 

The ideas of momentum transfer are explored in Fig 6 

which illustrate the nonlinear nature of the momentum 

transfer. In the figure we are comparing three cases: a 

switch driven with the optimal wave from, a switch driven 

with constant momentum transfer of 𝑝0(𝐸 = 0), and a 

switch driven with constant momentum of 𝑝0(𝐸 = 𝐸𝑆𝑆) 
which matches the steady state momentum transfer of the 

optimal waveform in steady-state. More specifically, the 

red curve plots the peak momentum per cycle for a switch 

driven with the optimal waveform. The black curve plots 

the peak momentum per cycle of the switch being driven 

with an impulsive force that  

  
Fig 5: (a) Switch speed as the switch is driven to closure with the 

optimal waveform. Insets confirm that locally, the switch motion 

matches predicted orbitals. The red bar is the maximum speed 

predicted from the closure energy. (b) Switch driven with optimal 

waveform below closure (blue) vs a fixed period waveform (red). 

Nearly ×5 improvement in speed is predicted.  

 

delivers the same momentum per cycle as the red curve 

when initially does when Eswitch=0. The blue curve shows 

the switch being driven impulsively but the momentum 

delivered corresponds to the momentum delivered in 

steady state for the red curve, a switch being driven with 

the optimal waveform. The solid blue line shows predicted 

steady state values from Eq 8 using Eq 6., (red line) and 

assuming only a spring softened Q (blue line).The results 

of Fig 6 show that steady state. Thus more momentum is 

transferred per cycle in steady state resulting in more 

energy stored in the switch. Nearly 30% more energy is 

delivered to the switch beyond what would have been 

possible if the initial momentum transfer were maintain. 

These results show that nonlinear momentum transfer per 

cycle also plays a role in the switch ring up. Energy can be 

understood as a balance of momentum transfer and energy 

dissipation as predicted by Eq 8. However, in steady state 

momentum transfer increases per-cycle due to the 

lengthening of the switch period. Eq 6, however, can 

accurately be used to predict the steady state energy and 

switch closure. 

  
Fig 6: Peak momentum per cycle for switch driven under 

various conditions describe in the text.  

 
 Fig 7: Steady state trajectories for corresponding curves in Fig 

6. Switch driven with optimal waveform is shown in (a). Switch 

driven with impulsive forces are shown in (b) and (c) where the 

momentum transferred per cycle correspond to a linearized 

switch and a switch in steady state driven with the optimal 

waveform, respectively. 

 

SWITCH DESIGN AND FABRICATION 

To physically realize the modulated closure/wakeup 

functionality, we designed and fabricated the cantilever 

switches shown in Figure 8. The switch body consisted of 

5µm thick electroplated gold. To reduce stiction and 

improve reliability, the electrodes underneath the switch 

body were fabricated from 100nm thick sputtered 

Ruthinium Dioxide. We used d=120nm dimple to make 

contact at the DC bias electrode. The gap between the AC 

modulation electrode and the body was chosen to be 

g=360nm. This gap was chosen smaller than traditional RF 

MEMs switches to reduce the pull-in energy while still 

allowing enough spring restoring force for the cantilever to 

re-open after closure.   

 

EXPERIMENTAL VALIDATION 

To investigate the switch dynamics experimentally, we 

developed a test setup capable of driving the switch with 

either a constant period, or a waveform  tracking the 

changing period. The speed was monitored by a laser 

Doppler vibrometer (LDV)as shown in Fig 9. As 

mentioned previously, the optimal power transfer occurs 

when a drive signal is applied at velocity>0. Therefore, the 

LDV signal feeds a Schmidt-Trigger comparator circuit 

and subsequent control electronics to eventually trigger a 

waveform generator tied to the AC input of the switch. We 



describe the drive sequence as follows:, the control 

electronics initially output a fixed-period square wave for 

a short duration to initially build up energy in the switch 

allowing the LDV signal to be detected by the Schmidt-

Trigger comparator circuit. After the initial buildup, the 

comparator output is then used to drive the switch in 

feedback. The amplitude of the drive waveform is fixed 

over a drive sequence, and the drive sequence is run long 

enough in both constant period phase and optimal wave-

form mode so that steady state is achieved for both drive 

types. Additionally, the amplitude of the modulation 

voltage is stepped up until a switch closure event is 

recorded. This arrangement allows us to compare the 

efficacy of the two drive configurations experimentally and 

match the result to theory.  

 
Fig 8: (a) An optical photo-micrograph of a representative 

MEMS cantilever switch. (b) A cross section of the switch 

showing  the thin sacrificial layer, dimple, and anchor region.  

The experimental results are shown in Fig 10, Fig 11, 

and Fig 12 for a switch with the parameters summarized in 

Fig 1. The highlighted region Fig 10(a) shows the switch 

being driven with the initial constant period drive 

waveform and achieving steady state. After the initial 

sequence, the switch is shown being driven with the 

optimal waveform in a closed loop configuration for 

increasing modulation voltage amplitude. Panel (iv) 

records the switch closure event and confirms the switch is 

closed at a reduced signal level and that the closed state is 

held. Fig 10(b) shows a zoomed in portion of panel (iii) 

along with the relative phase of the constant drive period 

and the optimal waveform. This data confirms the ability 

of our setup to track the switch period We also demonstrate 

nearly a 5× increase in speed as compared to constant 

frequency drive confirming the theoretical predictions in 

the previous sections.  

In Fig 11 we match the experimental data to the 

theoretical framework of the previous section. The Switch 

period vs switch energy is plotted theoretically as predicted 

from numerical simulations along with experimental data 

points, indicating excellent agreement between theory and 

experimental data. Finally, detailed analysis of the 

experimental data is shown in Fig 12, where theoretically 

predicted orbital shapes in phase space match up to 

experimentally measured data. Additionally the closure 

event in Fig 10(a) panel (iv) is plotted in phase space, 

demonstrating the robustness of the analytical model 

compared to measured data..  

 
Fig 9: Schematic of experimental setup 

 
Fig 10: (a) Switch speed measured as the modulation voltage 

amplitude is increased. Inset iv show the switch closing and 

staying closed. For each amplitude a constant period drive is 

used to initially build up energy in the switch. Subsequently a 

comparator is utilized to drive the switch when the speed has the 

correct sign, i.e. moving toward the ground electrode. (b) Left 

corresponds to the left zoomed region in (iii), constant drive, and 

right corresponds to the right zoomed region in (iii), optimal 

waveform. The constant-period and optimal drive waveforms 

are shown in red and the achieved switch speed is shown in blue. 

Axis ranges are the same in both insets . This illustrates that the 

optimal waveform is more effective at delivering energy to 

the switch resulting in 5.5 times more speed. 
 

CONCLUSION 

In this work we developed a theoretical framework to 

analyze the switch dynamics under static, close to pull-in 

conditions where the switch motion will be strongly 

influenced by the nonlinear electrostatic forces. We 

developedclosed-form equations that account for static and 

dynamic nonlinearities and demonstrated there predictive 



capabilities in simulation. The developed theory was 

additionally validated by an experimental setup and 

fabricated switches where we found that period-locked 

drive wave forms weremore effective than fixed-period 

waveforms at closing the switch. The hybrid static and 

dynamic pull-in prescription presented in this work can 

potentially be exploited for low power signal processing 

applications requiring a wakeup or switch closure.  

 
Fig 11. Switch period vs steady state switch energy normalized 

to closure energy.  The blue line corresponds to the switch 

simulation, and the black squares correspond to experimental 

data. 

 
Fig 12. Phase space representation of the steady state orbitals 

achieved with the optimal drive waveform as the modulated 

voltage amplitude is increased until closure. The red curve is 

experimental while the blue curve corresponds to predicted 

orbitals. The extended trace at right corresponds to the switch 

closure event. 
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