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ABSTRACT

Biasing a MEMS switch close to static-pull in reduces
the modulation amplitude necessary to achieve resonant
pull-in, but results in a highly nonlinear system. In this
work, we present a new methodology that captures the
essential dynamics and provides a prescription for
achieving the optimal drive waveform which reduces the
amplitude requirements of the modulation source. These
findings are validated both experimentally and through
numerical modeling.

INTRODUCTION

Control of closure conditions and nonlinear dynamics
of RF-MEMS switches is necessary for many applications
including low-power communication, timing, and wake-up
signal detection [1-2]. Prior studies have developed
necessary requirements for pull-in based on static,
transient, and modulated voltage signals [3-4].
Additionally, applying both a static voltage bias and
modulated bias to a MEMS switch has been shown to
reduce the amplitude requirements needed for the
modulated signal [4]. These studies, were developed
utilizing a fixed period drive waveform often leveraging
resonant actuation. However, for switches positioned
exceptionally close to the static pull-in voltage, the
dynamics of the switch become extremely nonlinear, and
the natural resonant frequency and limit cycle become
strongly dependent on the energy stored in the switch.
These nonlinear dependences can severely compromise the
rate of energy transfer from the modulation waveform to
the switch during the course of the switch ring-up. We aim
to address these nonlinearities from a theoretical and
experimental point of view.

To achieve switch closure with reduced signal levels,
we employ resonant actuation with high-Q switches and
bias the switch near static pull-in. In the analysis presented
in this paper we are interested in how the drive waveform
transfers a small amount of energy per cycle to the switch
and how the drive waveform can be optimized to minimize
the power required of the drive source.For a sufficiently
large drive amplitude, the switch will close after many
cycles but will essentially sample all possible limit cycle
trajectories as a function of energy as it goes from initial
ring up to eventual closure.. Since the phase portraits close
to pull-in are highly energy dependent, there is an
opportunity to optimize the drive waveform to the
nonlinear switch response.

We therefore analyze the phase portrait vs energy for
the switch and derive approximate expressions for the limit
cycle period and quality factor vs energy which captures
the prominent increased dwell time as the switch
approaches the closure point. We will discuss momentum
transfer and amplitude growth which will effectively
capture how a drive waveform connects constant energy

orbits in phase space. We will also describe how to vary the
drive waveform period to match the energy-dependent
period of the switch. The theoretical results will be
experimentally validated. The hybrid static and dynamic
pull-in prescription presented in this work can potentially
be exploited for low power signal processing applications
dependent on switch closure or “wakeup”.

NONLINEAR SWITCH MODEL
A simplified cross-section of the cantilever switch used in
this work is shown in Fig 1. The switch is controlled via
three electrodes: a bias electrode, a modulation electrode,
and a ground electrode. The beam itself is connected to the
voltage output or wake-up pad which is grounded through
a load resister such that electrostatic forces can be exerted
between the control electrodes and the switch body. A DC
voltage, Vpc,is applied to the bias electrode to bring the
switch close to pull-in, and a modulated signal, V,(¢t), is
then applied to the modulation electrode in order to drive
the switch to closure.

To investigate the dynamics of the switch, we employ
a lumped element model as has been similarly done in prior
works [1]. The effects of mass, damping and elastic
deformation are captured with linear terms while the
electrostatic forces are represented by nonlinear terms. The
nonlinear equation for the switch in Fig 1 when driven by
separate DC and AC electrodes is given by:
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where x is the spring displacement, m is the lumped
mass, b is the damping coefficient, K is the stiffness, ¢, is
the permittivity of free space, gis the separation between
the spring body and control electrodes, Ap. is the bias
electrode area, Ay isthe modulation electrode area, Vj,is
the bias voltage, and V,.(t)is the applied time dependent
modulation voltage. In the above equation, nonlinearities
arise from the terms involving V3. and VZ.(t). The
parameters for the switch used in the theoretical and
experimental aspects of this work are shown in Fig 1.

In the absence of dissipation and modulation voltage
(i.e., b =0 and V,.(t) = 0), the resulting homogeneous
equation is governed by a potential function, U(x), which
can be computed by integrating the elastic and electrostatic
force terms on the right hand side of Eq 1.
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Where U, is an arbitrary reference level. U(x) has both a
stable position, xg, and a meta-stable position, x,;, as
illustrated in Fig 2. At the stable point the switch position
is returned to the stable point for small perturbations. At
the meta-stable point, the switch position is driven away
from the meta-stable point for small perturbations. Switch
closure or pull-in will result if the switch energy, Es.itch
exceeds Egpse = U(xys) — U(xs), the potential energy



difference between the stable and metastable points [1,2].
Furthermore as V. is increased the distance between the
stable point, xg, and the metastable point, x,s, is reduced
and nonlinear behavior resulting from the proximity of the
switch to the meta-stable point becomes more prominent.
This facts are illustrated in Fig 2. Additionally, the VZ.(t)
term in Eqg. 1 indicates that the drive waveform is also
subject to a nonlinearity. Thus to
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Fig 1: Simplified cross-section of a resonant MEMS cantilever
showing the bias, modulation, and ground electrode. The body of
the switch is connected to the wakeup pad. For this work the
switch parameters are: f, = 25kHz, K =8.14N/m , Q =
1000, dy = 1.55X10"%m Agp = 1x1077m?2, and Ap; =
1.5x107% m2.
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understand the dynamical closure condition, we are not
only interested in the limit-cycle solutions to the
homogeneous part of Eq. 1 but also the nonlinearity of the
drive term.
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Fig 2: The switch potential well function for various bias voltages
near Vp,;, the pull-in voltage. xis the stable point and x,s is the
metastable point.
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Fig 3: Orbital solutions of constant energy in phase space. The
displacement is relative to xs. And the normalization is done
relative to peak speed and maximum displacement when x < xs.
The switch energiesfor (a) through (d) are E/E jpse=-1, .4,.6,.95,
respectively. As the energy approaches pull in, the orbital
becomes highly asymmetric. The blue curves are numerically
integrated orbitals. The red curves are predicted by the analytical
formulas discussed in the text.

The phase portrait (x vs dx/dt ) as a function of

energy captures the essential features of the limit-cycle
behavior of the switch as a function of energy. As is
typically the case, to construct the phase portrait we neglect
the dissipative forceand neglect the driving term. The
speed as a function of energy can be solved analytically
from conservation of energy. Fig. 3 shows phase portraits
corresponding to the various values of switch energy
relative to closure energy (Eswitcn/Eciose) AS shown in the
figure, for low energies, the orbits in phase space are
circular indicating that the limit-cycle is essentially
harmonic. For large energies, however, the orbit shape
becomes highly distorted (Fig 3b) when the switch is in the
vicinity of the metastable point. This occurs as the elastic
force is partially canceled by the electrostatic force and
results in an increased excursion toward the control
electrodes as well as an increased dwell time. For x < xg
the phase portrait follows a circular contour even with large
switch energy. This suggests that the limit cycle can be
viewed as having a harmonic orbit when x < x; and a
nonlinear orbit when x > x. This is confirmed in Fig 4,
which shows that the switch speed is approximately
sinusoidal when the switch is in the vicinity of the x < xg
extrema point.

Although the limit cycle behavior is complex, the
essential dynamical parameters, namely the period and
quality factor, can be extracted from phase space by the
following well known relations:[]
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where E is the switch energy, T is the limit cycle
period, v(E) = dx/dt is the energy-dependent switch
speed for which an exact formula can be derived from
U(x), Qu, is the nonlinear quality factor associated with
the limit-cycle when the dissipation term is included, and
A, is the area under the curve of the limit cycle in phase
space. The expressions in Eg. 2 depend on integrating
v(E)'and v(E)? for which we do not have closed from
integrals. However, for small energies or x < xg, the limit
cycle is nearly harmonic (i.e circular orbitals) and is only
distorted for large energies and x > xg. In order to have
analytical results, we propose to use the following relation
for speed to capture this distortion from harmonic motion
due to the electrostatic force,
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where v,,,4, is the maximum speed switch speed for a given
switch energy, and as noted in Fig 2 and Fig 3d, Ax;y is
the maximum switch displacement for x < xg when the
switch is quasi-linear, while Ax,; is the maximum switch
displacement for x > xs. S is a fitting parameter to best
match the orbital trajectory in the nonlinear half. The
advantage of using Eq.3 is that it leads to expression for
v(E)~tand v(E)? which can be integrated analytically.
We outline as follows a prescription to find g for a
given switch energy, Egyitch:
1. We find v,,,, by using the approximation: Eg,itcn =
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2. We solve for the stable point, x,, by choosing the
appropriate root of the cubic expression: dU(x,)/
dx = 0.

3. Wesolve for Ax;;y, Axyy, by choosing the appropriate
roots for zeros of the cubic function involving the
switch potential energy: U(x) = Espitch-

4. Finally, we solve for the point (x,,;4, Vmiq) ShOwn in
Fig 3(d) where the switch has half the maximum
kinetic energy by choosing the appropriate root of the
cubic relation: U(x,,;4) = E/4, nd solving for v,,,;4
via conservation of energy. .
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Fig 4: Switch speed vs time corresponding to the limit cycle
orbitals in Fig. 2. High energy orbitals experience an increased
dwell time close to the metastable point. The red box in (d)
indicates harmonic/linear behavior for x < x,

With exact solutions for the above mentioned critical
points, we can use Eq (3) to solve for B so that it produces
the correct values at (X,niq, Vmia):
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Thus,by solving a series of cubic expressions and
integrating Eq. 3, we arrive at the following expressions for
the limit cycle period and quality factor:
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Fig 3 shows a comparison of the orbitals predicted by
the above equations (S-orbitals) to the exact orbitals, and
Fig 4 show a comparison of the above expressions to
numerically integrated values. The figures confirm that the
above expressions capture the essential features of the limit
cycle trajectories as a function of switch energy; namely,
that the period increases as more energy is stored in the
switch and that the quality factor decreases due to the
increased dwell time in the vicinity of the applied voltage.
In the subsequent sections, we will use these expressions to
understand the dynamics of a driven switch.

TRANSIENT DYNAMICS OF DRIVEN
SWITCH

The switch is initially at rest and the modulation
voltage, V,q(t), will produce a nonlinear driving force
through Eq 1 that can increase the switch’s motional

amplitude and energy. Since the momentum increase and
the energy dissipation in Eq 1 are small over the duration
of a period compared to the stored energy, the switch
motion will be dominated by its limit cycle trajectory on
short time scales. On long time scales the switch energy
will grow due to momentum transfer or shrink due to
dissipation. The goal here is to maximize momentum
transfer such that the steady state energy is in excess of the
closure energy, Eq;ose, and the switch pulls-in. Put another
way, the switch reaches the metastable point shown in Fig
1 and achieve pull-in. Momentum transfer is maximized
when the modulation voltage period matches the
instantaneous period of the switch, T (E). Thus, the optimal
drive waveform for V,.(t) will track the switch period
which evolves as the motional amplitude increases. Since
power will continue to transfer when the switch is moving
in the direction of the metastable point, the optimal drive
waveform can be expressed as:

Vac(t) = Vox{v(E(®)) > 0} @)

In the above equation, V,.(t), is essentially a square wave
with voltage applied only when the velocity is positive. The
waveform thus tracks the period of the switch as opposed

to a square wave with a fixed period.
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Fig 4: (a) Switch period vs switch energy relative to closure. (b)
Switch quality factor vs energy relative to closure. The blue curve
is numerically integrated and the red curve is predicated by the
equations in the text.

To explore the impact of tracking the switch period we
conducted FDTD simulations, the results of which are
shown in Fig 5. The switch parameters were chosen to
match the switch measured in the experimental section
below. Fig 5a shows the transient dynamics of a switch
driven to closure with an optimal waveform using feedback
(close-looped), and confirms that locally in time the switch
motion follows the orbitals predicted in the previous
section. Fig 5b shows as a comparison, the switch driven
with the optimal waveform and with a fix period waveform.
The comparison confirms that more energy is delivered
with the optimal waveform, (Eq. 7) resulting in nearly a 5X
improvement in steady state switch speed.

When driven with the optimal waveform, Eq. 7, the
transient dynamics simplify considerably and are
dominated by the momentum transferred per cycle, py(E),
and the energy dissipated per cycle, 2rXE /Qy. (E). If we
view the switch as storing an integer amount of
momentums, p,, = NXp,, then the switch energy can be
expressed as: E, = (NXp,)?, where N, is the total number
of momentums stored and n refers to the cycle iteration.




At a given switch energy, if we assume that in the next
cycle a fixed amount of momentum is added and energy is
dissipated, a difference equation in terms of energy can be
derived:

2 E,
En+1 - En = pO(En)\/;\/E—n - m (8)

In steady state, the energy injected via momentum transfer

balances the energy dissipated and we have: Egs =
2

i(m Xpo) . Thus, in steady state the switch stores

2m T

Q. /™ momentum quanta, p,. If py and Q,, were constant
Eq 8 would have an analytical solution describing energy
exponentially approaching the steady state energy.

The ideas of momentum transfer are explored in Fig 6
which illustrate the nonlinear nature of the momentum
transfer. In the figure we are comparing three cases: a
switch driven with the optimal wave from, a switch driven
with constant momentum transfer of p,(E = 0), and a
switch driven with constant momentum of p,(E = Esg)
which matches the steady state momentum transfer of the
optimal waveform in steady-state. More specifically, the
red curve plots the peak momentum per cycle for a switch
driven with the optimal waveform. The black curve plots
the peak momentum per cycle of the switch being driven
with an impulsive force that
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Fig 5: (a) Switch speed as the switch is driven to closure with the
optimal waveform. Insets confirm that locally, the switch motion
matches predicted orbitals. The red bar is the maximum speed
predicted from the closure energy. (b) Switch driven with optimal
waveform below closure (blue) vs a fixed period waveform (red).
Nearly x5 improvement in speed is predicted.

delivers the same momentum per cycle as the red curve
when initially does when Eswitch=0. The blue curve shows
the switch being driven impulsively but the momentum
delivered corresponds to the momentum delivered in
steady state for the red curve, a switch being driven with
the optimal waveform. The solid blue line shows predicted
steady state values from Eq 8 using Eq 6., (red line) and
assuming only a spring softened Q (blue line).The results
of Fig 6 show that steady state. Thus more momentum is
transferred per cycle in steady state resulting in more
energy stored in the switch. Nearly 30% more energy is

delivered to the switch beyond what would have been
possible if the initial momentum transfer were maintain.
These results show that nonlinear momentum transfer per
cycle also plays a role in the switch ring up. Energy can be
understood as a balance of momentum transfer and energy
dissipation as predicted by Eq 8. However, in steady state
momentum transfer increases per-cycle due to the
lengthening of the switch period. Eq 6, however, can
accurately be used to predict the steady state energy and
switch closure.
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Fig 6: Peak momentum per cycle for switch driven under
various conditions describe in the text.
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Fig 7: Steady state trajectories for corresponding curves in Fig
6. Switch driven with optimal waveform is shown in (a). Switch
driven with impulsive forces are shown in (b) and (c) where the
momentum transferred per cycle correspond to a linearized
switch and a switch in steady state driven with the optimal
waveform, respectively.

SWITCH DESIGN AND FABRICATION

To physically realize the modulated closure/wakeup
functionality, we designed and fabricated the cantilever
switches shown in Figure 8. The switch body consisted of
5um thick electroplated gold. To reduce stiction and
improve reliability, the electrodes underneath the switch
body were fabricated from 100nm thick sputtered
Ruthinium Dioxide. We used d=120nm dimple to make
contact at the DC bias electrode. The gap between the AC
modulation electrode and the body was chosen to be
g=360nm. This gap was chosen smaller than traditional RF
MEMs switches to reduce the pull-in energy while still
allowing enough spring restoring force for the cantilever to
re-open after closure.

EXPERIMENTAL VALIDATION

To investigate the switch dynamics experimentally, we
developed a test setup capable of driving the switch with
either a constant period, or a waveform tracking the
changing period. The speed was monitored by a laser
Doppler vibrometer (LDV)as shown in Fig 9. As
mentioned previously, the optimal power transfer occurs
when a drive signal is applied at velocity>0. Therefore, the
LDV signal feeds a Schmidt-Trigger comparator circuit
and subsequent control electronics to eventually trigger a
waveform generator tied to the AC input of the switch. We



describe the drive sequence as follows:, the control
electronics initially output a fixed-period square wave for
a short duration to initially build up energy in the switch
allowing the LDV signal to be detected by the Schmidt-
Trigger comparator circuit. After the initial buildup, the
comparator output is then used to drive the switch in
feedback. The amplitude of the drive waveform is fixed
over a drive sequence, and the drive sequence is run long
enough in both constant period phase and optimal wave-
form mode so that steady state is achieved for both drive
types. Additionally, the amplitude of the modulation
voltage is stepped up until a switch closure event is
recorded. This arrangement allows us to compare the
efficacy of the two drive configurations experimentally and
match the result to theory.

Fig 8: (a) An optical photo-micrograph of a representative
MEMS cantilever switch. (b) A cross section of the switch
showing the thin sacrificial layer, dimple, and anchor region.

The experimental results are shown in Fig 10, Fig 11,
and Fig 12 for a switch with the parameters summarized in
Fig 1. The highlighted region Fig 10(a) shows the switch
being driven with the initial constant period drive
waveform and achieving steady state. After the initial
sequence, the switch is shown being driven with the
optimal waveform in a closed loop configuration for
increasing modulation voltage amplitude. Panel (iv)
records the switch closure event and confirms the switch is
closed at a reduced signal level and that the closed state is
held. Fig 10(b) shows a zoomed in portion of panel (iii)
along with the relative phase of the constant drive period
and the optimal waveform. This data confirms the ability
of our setup to track the switch period We also demonstrate
nearly a 5x increase in speed as compared to constant
frequency drive confirming the theoretical predictions in
the previous sections.

In Fig 11 we match the experimental data to the
theoretical framework of the previous section. The Switch
period vs switch energy is plotted theoretically as predicted
from numerical simulations along with experimental data
points, indicating excellent agreement between theory and
experimental data. Finally, detailed analysis of the
experimental data is shown in Fig 12, where theoretically
predicted orbital shapes in phase space match up to
experimentally measured data. Additionally the closure
event in Fig 10(a) panel (iv) is plotted in phase space,
demonstrating the robustness of the analytical model

compared to measured data..
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Fig 10: (a) Switch speed measured as the modulation voltage
amplitude is increased. Inset iv show the switch closing and
staying closed. For each amplitude a constant period drive is
used to initially build up energy in the switch. Subsequently a
comparator is utilized to drive the switch when the speed has the
correct sign, i.e. moving toward the ground electrode. (b) Left
corresponds to the left zoomed region in (iii), constant drive, and
right corresponds to the right zoomed region in (iii), optimal
waveform. The constant-period and optimal drive waveforms
are shown in red and the achieved switch speed is shown in blue.
Axis ranges are the same in both insets . This illustrates that the
optimal waveform is more effective at delivering energy to

the switch resulting in 5.5 times more speed.

CONCLUSION

In this work we developed a theoretical framework to
analyze the switch dynamics under static, close to pull-in
conditions where the switch motion will be strongly
influenced by the nonlinear electrostatic forces. We
developedclosed-form equations that account for static and
dynamic nonlinearities and demonstrated there predictive



capabilities in simulation. The developed theory was
additionally validated by an experimental setup and
fabricated switches where we found that period-locked
drive wave forms weremore effective than fixed-period
waveforms at closing the switch. The hybrid static and
dynamic pull-in prescription presented in this work can
potentially be exploited for low power signal processing
applications requiring a wakeup or switch closure.
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Fig 11. Switch period vs steady state switch energy normalized
to closure energy. The blue line corresponds to the switch
simulation, and the black squares correspond to experimental
data.
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