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Abstract 
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source 
for the future.  Responsible utilization of MHK devices, however, requires that the 
effects of acoustic noise produced by these devices on marine life and marine-related 
human activities be well understood.  Paracousti is a 3-D full waveform acoustic 
modeling suite that can accurately propagate MHK noise signals in the complex 
bathymetry found in the near-shore to open ocean environment and considers real 
properties of the seabed, water column, and air-surface interface.  However, this is a 
deterministic simulation that assumes the environment and source are exactly known.  
In reality, environmental and source characteristics are often only known in a statistical 
sense.  Thus, to fully characterize the expected noise levels within the marine 
environment, this uncertainty in environmental and source factors should be 
incorporated into the acoustic simulations.  One method is to use Monte Carlo (MC) 
techniques where simulation results from a large number of deterministic solutions are 
aggregated to provide statistical properties of the output signal.  However, MC 
methods can be computationally prohibitive since they can require tens of thousands 
or more simulations to build up an accurate representation of those statistical 
properties.  An alternative method, using the technique of stochastic partial differential 
equations (SPDE), allows computation of the statistical properties of output signals at a 
small fraction of the computational cost of MC.  We are developing a SPDE solver for 
the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators 
and operators assess the statistical properties of environmental noise produced by 
MHK devices.  In this presentation, we present the SPDE method and compare 
statistical distributions of simulated acoustic signals in simple models to MC 
simulations to show the accuracy and efficiency of the SPDE method.
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Method 
We start with the linear, coupled, first-order set of partial differential equations for 
velocity and pressure in an acoustic media and expand both the dependent and 
independent variables in terms of chaos polynomial bases, which are functions of 
random variables only, e.g.


for pressure.  We similarly expand the 3 components of velocity, the source terms, bulk 
modulus, and buoyancy giving coefficients


Plugging these expansions into the partial differential system and projecting onto the 
kth basis function yields 


where


is the Galerkin multiplication tensor.


This system of equations is N times larger than the original system, where N is the 
maximum polynomial order for the chaos expansion.  Additionally, several sums 
appear that are not present in the original system.  However, many of the Galerkin 
tensor terms are trivially zero, and with a proper choice of basis functions, the extra 
terms can be minimized.


Choice of Basis Functions 

The table lists some of the chaos polynomials and their respective weight functions.  
For example, when one has a Gaussian process, the optimal chaos polynomials are 
Hermite polynomials of the random variables.  When one uses the optimal polynomial, 
a minimum number of terms are needed to expand a given term.  For example, if one 
has a Gaussian process with a given mean and variance, only two terms (maximum 
first order Hermite polynomials) are needed to exactly express that term.  Even with 
perfectly Gaussian independent input, the dependent variables may not be perfectly 
Gaussian, so more expansion terms are typically needed for dependent variables than 
independent variables.
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Implementation 
The stochastic PDE system is discretized using a 4th order spatial and 
second order temporal finite-difference scheme on a standard staggered 
grid.

Medium Parameters


Pressure


Vertical Velocity


Horizontal Velocity

t0 t1/2 t1 t3/2

Figure 1:  Unit cell (top) and time axis (bottom) for the 
staggered finite-difference scheme.

Zeroth Order Validation 
The stochastic PDE system should reduce to the deterministic solution 
using Paracousti when all independent variables only have a zeroth order 
expansion (deterministic).  I verify this using an homogeneous whole 
space.

Figure 2: Comparison of pressure traces from deterministic 
Paracousti (black) and Paracousti-UQ (red dashed) with all 
maximum chaos polynomial orders set to zero.

Figure 3:  Distribution of bulk modulus used in 
Monte Carlo simulations.

Figure 4:  Estimated maximum of standard deviation 
in pressure at the nearest receiver as a function of 
cumulative number of Monte Carlo simulations for 
bulk modulus and buoyancy distributions.

Figure 5:  Comparison of mean pressure traces 
between MC and Paracousti-UQ for bulk modulus 
distribution.

Figure 16:  Convergence of Paracousti-UQ based 
on maximum polynomial order for standard 
deviation of pressure at the nearest receiver.

Figure 6:  Comparison of standard deviation 
pressure traces between MC and Paracousti-UQ 
for bulk modulus distribution.

Figure 7:  Comparison of mean pressure traces 
between MC and Paracousti-UQ for buoyancy 
distribution.

Figure 9: Mean (red dash) and one standard 
deviation (black) as a function of time for pressure 
traces for buoyancy distribution.

Figure 8:  Comparison of standard deviation 
pressure traces between MC and Paracousti-UQ 
for buoyancy distribution.

Figure 13:  Comparison of the mean pressure 
traces between the analytic solution and 
Paracousti-UQ for the explosive source time 
function distribution.

Figure 14:  Comparison of the standard deviation 
pressure traces between the analytic solution and 
Paracousti-UQ for the explosive source time 
function distribution.

Figure 10:  Comparison of the mean pressure 
traces between Monte Carlo and Paracousti-UQ 
simulations for a buoyancy distribution with a force 
source.

Figure 12:  Mean (red dash) and one standard 
deviation region (black) for pressure traces from a 
force source.

Figure 11: Comparison of the standard deviation of 
pressure traces between Monte Carlo and 
Paracousti-UQ simulations for a buoyancy 
distribution with a force source.

Figure 15:  Mean (red dash) and one standard 
deviation region (black) from pressure traces from a 
force source distribution.

Monte Carlo Comparisons 
Up to 800,000 Monte Carlo simulations were completed for each 
validation test of the algorithm.  The two figures below show the 
distribution for bulk modulus from the Monte Carlo simulations and the 
convergence of the maximum of the peak in time of the standard 
deviation versus number of Monte Carlo simulations.

Validation Tests 
Multiple validation tests were performed by varying 
which independent parameters were deterministic and 
uncertain: bulk modulus, buoyancy, or source 
amplitude.  Gamma distributions with mean and 
standard deviation of 1.25e10±2e9 Pa; 5e-4±8e-5 m3/
kg; and 1±0.1 J (N) for bulk modulus, buoyancy and 
explosive (force) source amplitude distributions, 
respectively.  The models were spatially 
homogeneous, approximately equivalent to a medium 
with acoustic wave speed 2500±200 m/s and density 
of 2000 kg/m3.  Figures 5-6 show mean and standard 
deviation for bulk modulus distribution; Figures 7-9: 
buoyancy distribution for explosive source; Figures 
10-12: buoyancy distribution for force source; Figure 
13-14: explosion source amplitude distribution; Figure 
15: Force source amplitude distribution. 

Discussion/Conclusions 
• We validated the stochastic acoustic solver Paracousti-UQ against Monte Carlo simulations

• No more than 21 equivalent deterministic simulations were needed to obtain the stochastic PDE solution 

that matched the Monte Carlo simulations with <0.5% error.

• At a minimum, in these simple models, the stochastic solution is over 1,000 times faster than Monte Carlo 

to obtain equivalent accuracy for the standard deviation

• Next steps are to investigate more complex uncertain media
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