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Cradle-to-Grave Model of PMDI Foam

A computational model for foaming, vitrification, cure, aging to help us
design molds and determine how inhomogeneities effect the structural response of the
final part, including long term shape stability
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Foam Filling is Complex
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Foam front moving past camera, with bubble sizes at
transparent wall determined with image processing.

3 views of foam filling a mock AFS with several plates
spaced unevenly. Vent location is critical to keep from

trapping air.

 PMDI is used as an encapsulant for electronic components and lightweight structural
parts, to mitigate against shock and vibration.

*  We would like to develop a computational model to help us understand foam
expansion for manufacturing applications and how inhomogeneities effect the
structural response of the final part, including long term shape stability.

* (Gas generation drives the foam expansion, changing the material from a viscous liquid
to a multiphase material.

* Continuous phase is time- and temperature-dependent and eventually vitrifies to a solid.



PMDI Foam Filling Simulation of Complex Part

Two key reactions: Isocyanate reaction with polyols and water

O
I|-| & Urathana farmation,
Ri—N=C=0 + HO—R;—» R;—N-U-0-Ry creaslinking

||-l E Foamning reaction ylalds
Ri—N=C=0 + H20 — R;—N-C-OH — C0O; * R{—NH; COyandamine

Varigus follow up reactions: Isocyanate reaction with amine, urea and urethane

* Isocyanate reacts with water to create gas
and foam expansion, changing the material
from a viscous liquid to a multiphase
material.

* Isocyanate reacts with polyol to polymerizes
and vitrify to a solid.

Time = 5.0
Coupled Finite Element Method/Level Set to Nl

Solve Foam Dynamics |

* Gas and liquid are homogenized to a
continuum

* Density evolves based on kinetics of gas
expansion

* Viscosity evolves with cure and gas fraction

|

I

Rao et al., “Polyurethane kinetics for foaming and
polymerization, AICHE Journal, 2017

]
Rao et al, “A Level Set Method to Study Foam Processing ,” —
IJINMF, 2012




Density Study for Structural Foam PMDI-10
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~ Bubble Expansion in a Polymerizing Fluid

* Bubble grows as CO, enters the bubble (VLE model) ' J ©J0s

. ve o'l ™

* Growth is halted abruptly once the polymer reaches the gel lAS ol &
point and the viscosity diverges + 3o

* Post-gelation, bubble pressurization is observed

* ALE mesh is robust over shape change

* Data shows the correct trends when compared to

experiment
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Equations of Motion Include Evolving
Material Models

Momentum equation and continuity have variable density, shear viscosity, and bulk viscosity

p%z—WOVV—VerVO(,uf(VV+VVt))—Vo/1(V0V)I + pg
Doy

+p;Vev=0
Dt Ps

Energy equation has variable heat capacity and thermal conductivity including a
source term for heat of reaction for foaming and curing reactions

PC 68—-[+pCpr0VT =V e (kVT)+ pp,AH %

rxn at NMR imaging shows coarse
microstructure (Altobelli,
Extent of reaction equation for polymerization: condensation chemistry with T, evolution 2006)

9¢ [ 1 _E n\[_ £ -c(r-1,) Tyol=&)+ AT,
ot ((1+Wa)ﬂj(koexp( RTB(MZ fi-9 e A e (Y

New molar concentration equations for water and carbon dioxide on the next page:
kinetics stay the same

kHZO = A, o exp(-E, ¢ /RT)



Influence Volume Approach (IVA)

Interchange between bubbles and liquid phase occurs at interface

oC 3 (P1/3 1/3
S, —3 D —~ R =
R pR ™" i [47zn a [47zn]

IVA approach assumes a linear profile of CO, in the fluid (blue):
oC Ceo, —C(R)

R r= 2Ar , C(R) =Ky, Pyas Paas = PgasRT / Mo,
Q CCO2 o KH pgas Al = (S:v — R:v) - Rav(S:v - R:v)
Sy =3 R D, v SR

Advection of Number Density Equation:

* We can either solve an advection equation (more accurate and expensive) or
on _
— =Ve(Vn)
ot

Nomenclature
* n = nucleation sites/total volume (the number, N, is constant but the density changes over time (#/cc)
* m,, = initial mass injected (g)
* K, =Henry’s law coefficient



Newer Foam Expansion: Two-phase Carbon
Dioxide Models

Water balance in the liquid phase (mol H,0/volume total):

Cy o

+V.\7CH20 = DH20V2CH20 _(1_¢)kH20CIr-]|20

Carbon dioxide balance in the liquid phase(mol CO,/volume total):

OCco,

+ V'\#/Cco2 = Dcozvzcco2 +(1- ¢)kHzoC|:20 -3

Bubble conservation equation: it advects

at Pg

Carbon dioxide balance in the gas phase (mol CO,/volume total):

3 1 2
oCce S, =R~ (P = Pig) )
at 2 +V‘\7Cgo — Spg 77po|ymer av
’ 1 20
S, = RT /M., —P,) ——
v 477p0|ymer ((pgas Co, pllq) Rav)
Carbon dioxide balance in the gas phase (mass CO,/volume bubbles):

8,0 gas
ot

This term couples to the subscale. It is
— the added volume from the bubble size
increase during a time step. S, has unit of

continuity. S, is the added mass from
reactions.

+ V-Vpgas = 104as S, +M co, SIog




Newer Foam Expansion: Two-phase Carbon
Dioxide models

Continuity equation is foam density balance (g total/volume foam):

op; - -
F‘FV'VP]: +,0fV’V:O

Gas Volume Fraction (volume foam/volume total):

¢(t) _ pfoang _ I\/IC02 Cgoz
pgas IOgas
Foam Density relationship is the same as before:

Pt = (Pgas — Pig) () + oy



Model Foam Viscosity as f(¢, q;)

Start with continuous phase viscosity only
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Including Bubble-Scale Effects

Existing equation with minor mods

5CH20 - 2 n
+V.VCHZO = D|_|20V CHZO _(1_¢)kHZOCH20

Existing equation with mods including source

@CCO2 ~ _ 2 n
ot +VeVCeo, = Deo,V Coo, +1=9)Ky oChio =S

g
oC New equation similar to liquid

o2 v ol
p +VeVC., =35,

8,187335 +\7 vpgas _ _pgassv + M . Spg New equation for bubble gas density
% _ VO(VH) New equation for bubble number density
Y M,CS 1
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Density Study for Bubble-Scale Model
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Density Study for Bubble-Scale Model

PMDI-4 free rise (bottom camera)
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Lower Density Gradients from New Model

* Over many repeats, temperature, pressure, and flow profile are remarkably repeatable
* Imperfectly symmetric fill common
* Pressure rises as foam expands, relaxes at lower corner and stays positive at P2.
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Computational Modeling of Foam Expansion Can Help
Design a Mold Filling Process
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Evol

Bubble Depressurization
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Micromechanics Validation of the
Analytic Model

Foam microstructures for (a) 12.2% porosity, | | |
(b) 16.3% porosity, (c) 20.4% porosity, (d) 24.5 10 10~ 10-2 10-2

% porosity, (e) 28.6% porosity, and (f) a cut
view of mesh of a 28.6% porosity
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The Analytic Model Reasonable Well Represents

Deformation Due to Depressurization for Isotropic Foams

at Low Porosities.

Current Efforts are Extending it to Higher Porosities.
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Conclusions and Future Work

* Current model is adequate for production calculation

0 Determining metering, initial placement, voids, gate, and
vent location, manufacturing stresses and initial foam
shape

O Current model is “first order.” We are working to make the
model more predictive

Next generation model needs to include

O Equation of state for density approach for gas phase

0 Two-phase CO, generation model: solubilized CO, in the
polymer and CO, gas in the bubbles

0 Foam depressurization and its linkage to shape change

Include local bubble size and bubble-scale interactions

O Predict bubble size with Rayleigh-Plesset equation

O From the bubble size and number density, predict foam
density

O Bubble-scale modeling to include gelation and gas pressure
in density model to make it more predictive for both
foaming and aging

S =

0.60 vol fraction Bubbles

—

Polydisperse bubble
microstructure generated
with LAMMPS and Sierra/Aria
using CDFEM

(Dan Bolintineanu, SNL)




