
MiniApp For Density Matrix Renormalization
Group Hamiltonian Application Kernel *

Workshop paper: WRAp 2018

Wael Elwasif
Computer Science and
Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

elwasifwr@ornl.gov

Gonzalo Alvarez
Computational Sciences and

Engineering Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA
alvarezcampg@ornl.gov

Ed. D’Azevedo
Computer Science and
Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA
dazevedoef@ornl.gov

Oscar Hernandez
Computer Science and
Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

oscar@ornl.gov

Arghya Chatterjee
Computer Science and
Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA
chatterjeea@ornl.gov

Vivek Sarkar
School of Computer Science

Georgia Institute of Technology
Atlanta, GA, USA
vsarkar@gatech.edu

Abstract—We present two miniapps that implement the core
computational kernel of the DMRG++ application, a generic C++
code that implements the Density Matrix Renormalization Group
(DMRG) algorithm. The DMRG++ core Kronecker multiplica-
tion kernel is formulated using a batched BLAS approach, with
implementation that targets both multi-core CPUs using OpenMP
and GPGPU using the MAGMA library. The kernel evaluates the
matrix-vector multiplication of the target Hamiltonian matrix
used in Lanczos algorithm for computing the lowest eigenvalue
and eigenvector. The Hamiltonian matrix is expressed compactly
as sums of Kronecker products of small dense matrices. We
demonstrate improved performance of the miniapp on synthetic
problem, and show the performance of the DMRG++ application
using a plugin based on the miniapp. We also present an OpenMP
miniapp that explores the use of nested parallel constructs to
implement the Kronecker multiplication kernel, exploring the
use of nested OpenMP worksharing and tasking abstractions to
implement the multi-level parallel multiplication algorithm. The
miniapp has been used as a co-design vehicle for evaluating fea-
tures in the OpenMP-4.5 and upcoming OpenMP-5.0 standards.

Index Terms—OpenMP, Batched BLAS, nested-parallelism,
GPGPU, DMRG.

This work has been supported by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory (ORNL) is managed
by UT-Battelle, LLC for the U. S. Department of Energy under Contract No.
DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle,
LLC, under contract DE-AC05-00OR22725 with the US Department of
Energy (DOE). The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

I. INTRODUCTION

The increasing complexity of high end scientific codes have
raised the barrier for adopting novel programming models and
approaches required to fully utilize the changing landscape of
HPC platforms. The effort to port and optimize an existing
complex application to a new platform may require more than
merely addressing the (possible) incompatibilities in underly-
ing tools and libraries upon which the application depends.
The increasing hardware complexity, parallelism, and hetero-
geneity in emerging HPC nodes suggest that modifications to
the programming model and/or algorithms that constitute the
core foundation of the application may be required [1]. The
use of miniapps to explore the design space for such change
has proved to be an attractive approach to minimize the effort
and risks involved in revamping an entire application using an
algorithm or programming model that may fail to adequately
utilize underlying hardware resources.

Miniapps are also increasingly used as a co-design vehicle
for programming model development [2]. In such a paradigm,
a miniapp that captures the core features of a larger appli-
cation is used to drive the design of emerging programming
models and help evolve such models to meet the application
requirements.

In this paper, we introduce the design and implementation
of miniapps that represent the core computational kernel of the
DMRG++ application [3], [4]. We present two miniapps that
aim at answering different questions related to the DMRG++
application. The first miniapp, based on the use of batched
Basic Linear Algebra Subroutines (BLAS) [5] operations
explores the algorithmic changes required to implement the

underlying algorithm in the most efficient manner to achieve
the highest possible performance on emerging HPC platforms.
Another miniapp, based on the use of OpenMP directives,
explores the implications of directly implementing the under-
lying algorithm using nested parallel OpenMP constructs with
minimal modifications to the natural algorithm formulation.
This latter approach also explores the issues that arise when
hierarchical parallelism in OpenMP is used to exploit the
increasing number of hardware execution threads that are
increasingly common in HPC platforms.

This paper is organized as follows: Section II introduces the
DMRG algorithm and the DMRG++ application. Section III
discusses the details of the Kronecker multiplication kernel
at the core of the DMRG++ application. Section IV presents
the batched BLAS miniapp implementation of the Kronecker
multiplication kernel. Section V outlines the miniapp using
OpenMP to implement the Kronecker multiplication kernel.
We present performance results of the miniapps in section VI.
Conclusions and future work are discussed in section VII.

II. THE DMRG++ APPLICATION

The density matrix renormalization group (DMRG) is the
preferred method to study low-dimensional strongly correlated
electrons. Strongly correlated materials are a wide class of
materials that show unusual – often technologically useful
– electronic and magnetic properties, such as metal-insulator
transitions or half-metalicity. The term “correlated” refers to
the way electrons behave in these materials, which precludes
relying on simple one-electron approximations. The DMRG
is able to truncate the underlying Hilbert space to a constant
size, with bounded errors and in a general and efficient way.
Introduced in 1992 by White [6], [7], the DMRG algorithm
is a numerical variational technique to study quantum many
body Hamiltonians that can be classified as a diagonaliza-
tion method. The DMRG has been successfully applied [8]–
[10] to obtain zero temperature properties of spin chains,
fermionic and bosonic systems, Kondo models, and quantum
dots connected to leads. The DMRG has also been successful
in the field of Quantum Chemistry to study strongly correlated
systems. The truncation error made by the DMRG algorithm
can be estimated very well, and for non-critical 1D systems
this error decays exponentially with M , the parameter that
controls the accuracy of the method. A full discussion of the
DMRG is beyond the scope of this paper. Further details can
be found in the many published reviews [11]–[13], and the
original papers [6], [7].

DMRG++ is a free and open source implementation of the
DMRG algorithm. DMRG++ emphasizes generic program-
ming using C++ templates, and is designed to facilitate the
development of new models and geometries by building the
application around a core generic DMRG engine that can be
applied to different models.

III. KRONECKER MULTIPLY MINIAPP DESIGN

A. Kronecker Product Formulation

One of the core computational kernels in DMRG++ is the
evaluation of matrix-vector multiply by the Hamiltonian ma-
trix in the iterative Lanczos algorithm for computing the lowest
eigenvalue and eigenvector. The full Hamiltonian matrix can
be written as Kronecker product of operators on left and right
as

Hfull = HL ⊗ IR + IL ⊗HR +

K∑
k=0

Ck
L ⊗ Ck

R (1)

where HL (HR), IL (IR), CL (CR) are the Hamiltonian,
identity, and interaction operators on the left (right).

Because the full Hamiltonian matrix is a very large N4×N4

matrix, the DMRG approximates the lowest eigenvector in a
limited subspace of vectors.

The DMRG algorithm is a systematic process to find an
effective subspace that approximates well the lowest eigen-
vector. The DMRG algorithm partitions the sites on a 1D
lattice into the left part (called system) and the right part
(called environment). The algorithm proceeds in phases, called
sweeps. During a sweep, if the left part is growing, there are
4∗M states on left and the right part has M states. Similarly,
when the right part is growing, there are M states on the left
and 4 ∗M states on the right. Hfull is effectively reduced to
a (4 ∗M) ∗M by (4 ∗M) ∗M matrix. Most Hamiltonians H
have “symmetries” which are operators that commute with H ,
and such that the states can efficiently be kept as eigenstates
of each symmetry operator, at all times during the calculation.
The full Hamiltonian matrix is therefore block diagonal, where
each diagonal block is associated with a particular quantum
number.

For many condensed matter Hamiltonians, the quantum
number can be expressed as a 2-tuple (n↑, n↓) that specifies
there are n↑ particles with spin “up” and n↓ particles with spin
“down”. The DMRG simulation often targets a specific diag-
onal block associated with quantum number (n↑target, n

↓
target)

for finding the lowest eigenvalue and eigenvector of the partic-
ular diagonal block. For example, the target quantum number
is chosen at half-filling n↑target = N/2, n↓target = N/2 for a
problem with N lattice sites.

Each configuration on the left has an associated quantum
number (n↑L, n

↓
L) to indicate there are on the left part n↑L

particles with spin “up” and n↓L particles with spin “down”.
Similarly, each configuration on the right is associated with
a quantum number (n↑R, n

↓
R). Since there is a specific target

quantum number of interest (n↑target, n
↓
target) not all states are

considered but only configurations of pairs of states (n↑L, n
↓
L)

of left and states (n↑R, n
↓
R) on right, where n↑L+n↑R = n↑target

and n↓L +n↓R = n↓target are admitted. From the perspective of
linear algebra, the matrix-vector multiplication is performed on
vectors of length (4∗M)∗M but the vector has all zero entries
except in the part corresponding to the targeted diagonal block
in Hfull. By grouping states of the same quantum number

Fig. 1. Vector reshaped as 100×400 matrix to arrange admitted configurations
as patches.

Fig. 2. Figure shows block partitioning of target Hamiltonian matrix and each
submatrix is a sum of Kronecker products.

together and reshaping the admitted vectors as a (4∗M)×M
or M × (4 ∗M) matrix, we see in Figure 1 that the admitted
configurations can be collected as patches.

An important consequence of grouping the states as patches
is the action of operators CL (CR) can be expressed as Kro-
necker products on the patches. The matrix-vector multipli-
cation by the target Hamiltonian matrix may be conceptually
viewed as the matrix as being block partitioned according to
the number of patches. Each block partitioned submatrix is
represented as sum of Kronecker products (see Figures 2 and
3).

One purpose of the miniapp is to reproduce characteris-
tics of realistic workloads, such as severe load imbalance,
that mimics the computational characteristics of the DMRG
application running with much higher number of M saved
states. This enables the developer to estimate the growth in
storage, computational costs, and to evaluate the effectiveness
of different programming approaches. In consultation with
materials scientists, we have used a simplifying but reasonable
assumption that each of the N4 state configurations are equally

Fig. 3. Pseudo code for performing matrix-vector multiplication on target
Hamiltonian matrix where each submatrix is a sum of Kronecker products.

likely. This allows the miniapp to use a combinatorial approach
in partitioning the the total number of states into patches
defined by the quantum number (n↑L, n

↓
L). For each patch

(n↑L, n
↓
L), there are SL(n

↑
L, n

↓
L) = C(nL, n

↑
L) ∗ C(nL, n

↓
L)

possible configurations on left part and similarly, there are
SR(n

↑
R, n

↓
R) = C(nR, n

↑
R) ∗ C(nR, n

↓
R) possible configura-

tions on right part, where n↑R = n↑ − n↑L and n↓R = n↓ − n↓L.
Without loss of generality, we can assume the left part is grow-
ing and contain 4M states while right part has M states. Thus
patch (n↑L, n

↓
L) on left is assigned 4∗M ∗pL(n↑L, n

↓
L) number

of states where pL(n
↑
L, n

↓
L) = SL(n

↑
L, n

↓
L)/TL, and TL =∑

n↑L,n↓L
SL(n

↑
L, n

↓
L). Similarly, patch (n↑R, n

↓
R) on right is as-

signed M ∗pR(n↑R, n
↓
R) number of states where pR(n

↑
R, n

↓
R) =

SR(n
↑
R, n

↓
R)/TR, and TR =

∑
n↑R,n↓R

SR(n
↑
R, n

↓
R). Moreover,

the Hamiltonian is commonly composed of single creation
or destruction operators that change the quantum number by
±1. This implies patch (n↑L, n

↓
L) has possible interactions only

with patches (n↑L ± 1, n↓L ± 1) and itself. We further assume
the interaction will lead to Kronecker products of fully dense
matrices. Based on this simple model, we can immediately
see the storage and work scales linearly with the number of
operators, but storage scales as O(M2) and work scales as
O(M3). Therefore, doubling the number of saved states from
M to 2∗M would require four times more memory and eight
times more work.

IV. MINIAPP USING BATCHED BLAS OPERATIONS

The computation can be viewed as a matrix-vector multipli-
cation Y = C ∗X , where C is a Np by Np block partitioned
matrix, and Np is the number of patches. Each submatrix
C[I, J] in the block partition can be expressed as a sum of
Kronecker products, C[I, J] =

∑
k A

(k)
IJ ⊗ B

(k)
IJ . There is a

corresponding matching partition in vectors X and Y such
that Y [I] =

∑
J C[I, J] ∗X[J] for row partition index I . The

expression C[I, J] ∗ X[J] can be evaluated as matrix-matrix

multiplications (see [14] or Appendix on Kronecker Products
for details)

C[I, J] ∗X[J] =

(
K∑
k

A
(k)
IJ ⊗B

(k)
IJ

)
∗X[J] (2)

=

K∑
k

(B
(k)
IJ ∗X[J] ∗ (A(k)

IJ)
t) (3)

=

K∑
k

(W
(k)
IJ ∗ (A

(k)
IJ)

t) (4)

where W
(k)
IJ = B

(k)
IJ ∗X[J] and the segment X[I] is reshaped

as a matrix of appropriate shape. Note that depending on the
specific problem and number of operators, some of the A

(k)
IJ or

B
(k)
IJ matrices may be zero, i.e., there may be different number

(perhaps even zero) of Kronecker matrices in C[I, J] block.
In C[I, J] there may be multiple independent matrix-matrix
multiplication operations in computing W

(k)
IJ = B

(k)
IJ ∗ X[J]

over index k. By carefully storing and aligning the B
(k)
IJ and

resulting W
(k)
IJ matrices together, the evaluation of multiple

W
(k)
IJ matrices can be performed as a single combined opera-

tion by horizontally stacking or coalescing the B
(k)
IJ matrices

together as[
W 1

IJ |W 2
IJ | . . . |WK

IJ

]
=
[
B1

IJ |B2
IJ | . . . |BK

IJ

]
∗X[J] (5)

WIJ = BIJ ∗X[J] . (6)

There are many independent coalesced computation of WIJ

matrices over all subblocks C[I, J] that can be evaluated using
a call to batched GEMM. After theWIJ matrices are computed,
the contribution of Z[I, J] = C[I, J] ∗ X[J] to Y [I] can be
evaluated as using the same approach as

Z[I, J] = C[I, J] ∗X[J] (7)

=
[
W 1

IJ |W 2
IJ | . . . |WK

IJ

]
∗
[
A1

IJ |A2
IJ | . . . |AK

IJ

]t
(8)

=WIJ ∗ (AIJ)
t (9)

and Y [I] =
∑

J Z[I, J]. Carrying this idea of coalescing mul-
tiple matrix-matrix multiplications as a larger single operation,
we can perform horizontal stacking ofWIJ and AIJ matrices
in the “J” block index as well. The final evaluation of Y [I]
can be similarly performed as a single combined matrix-matrix
multiplication operation

Y [I] =
∑
J

Z[I, J] (10)

=
∑
J

(WIJ ∗ At
IJ) (11)

=
[
WI1| . . . |WI,Np

]
∗
[
AI1| . . . |AI,Np

]t
(12)

There are still Np independent block row computations of
Y [I], and these can be evaluated as another call to batched
GEMM.

Batched GEMM can be implemented by performing inde-
pendent calls to BLAS GEMM within OpenMP threads with
schedule(dynamic) to account for potential imbalances

in work load. Intel Math Kernel Library has a batched GEMM
for many independent groups of matrices. NVIDIA CUBLAS
Library has a batched GEMM for GPU but all matrices must
be of the same shape. The MAGMA library [15], [16] has a
batched GEMM for GPU where the matrices can have different
shapes.

The DMRG++ miniapp achieves high performance on GPU
by using CUDA unified managed memory to store the Kro-
necker matrices A

(k)
IJ and B

(k)
IJ and calls batched GEMM in

MAGMA library. Thus the first evaluation incurs the over-
head of data movement from CPU to GPU but subsequent
evaluations can perform at higher computational rates.

V. MINIAPP USING OPENMP

In addition to the miniapp described in Section IV we also
developed a miniapp using OpenMP that aims to explore the
implications of expressing the different levels of parallelism
outlined in Figure 3 directly in a parallel programming model.
Hierarchical and/or nested parallelism is a challenging area in
parallel programming models [17]–[19] that is being heavily
explored as the number of on-node hardware threads grows
beyond the ability of many codes to exploit using a single con-
struct. In this miniapp, we explore the use of different OpenMP
nested worksharing and tasking constructs to implement the
Kronecker multiplication kernel. In developing this version,
we focus on minimizing changes to the core algorithm, and
research the different techniques this algorithm can be mapped
onto OpenMP parallel abstractions.

1) Nested OpenMP work-sharing loops (2 levels): While
the code in Figure 3 exhibits a possible four nested levels
of parallelism (in addition to a fifth possible data-parallel
level in the execution of the innermost GEMM operation), we
focus our discussion on algorithms that only deal with the
two outermost levels. The code in Algorithm 1 shows the use
of nested OpenMP work-sharing constructs across the rows
and columns of the patch matrix C. The inner loops and the
calls to the GEMM routine are sequential. It should be noted
that even though many libraries support data-parallel BLAS
operations using OpenMP or pthreads, incorporating such code
inside outer parallel regions while maintaining proper thread
resource management is not typically supported.

2) Nested OpenMP work-sharing with tasking: The second
version of the OpenMP miniapp focuses on using tasking
constructs that are increasingly becoming a major part of the
OpenMP standard. Algorithm 2 shows the use of OpenMP
tasks inside nested OpenMP parallel regions. Ideally, we would
want to use nested tasks or OpenMP 4.5 taskloop construct
to exploit the tasking model, but due to lack of current
support of task-reductions, all reductions are being performed
in the OpenMP parallel regions. Due to this restriction, and
using OpenMP parallel regions with OpenMP tasks, we don’t
observe the complete benefits of using nested tasking. Support
for task-reduction is planned for upcoming OpenMP standards,
and the pattern exhibited by this miniapp could benefit from
such a feature.

Algorithm 1 Pseudo code for nested parallel work-sharing
loops with OpenMP

1: procedure HTARGET(C[][], LPatch[], RPatch[], X[])
2: NPatches← SIZE(C)
3: V Size← PATCHSIZE(LPatch,RPatch,NPatches)
4: #pragma omp parallel num threads(numZero)
5: proc bind(levelZero)
6: #pragma omp for schedule(dynamic,1)
7: for i← 1, C.rows do
8: #pragma omp parallel num threads(numOne)
9: proc bind(levelOne)

10: reduction(YI)
11: #pragma omp for schedule(dynamic,1)
12: for j ← 1, C.cols do
13: for k ← 1, ElemInC do
14: Y IJ [i]← Y IJ [i] + (A

(k)
IJ ⊗B

(k)
IJ ∗X[])

15: end for
16: for l← 1, V Size[i] do
17: Y I[l]← Y I[l] + Y IJ [l]
18: end for
19: end for
20: for m← 1, V Size[i] do
21: Y [m]← Y I[m]
22: end for
23: end for
24: return Y
25: end procedure

Algorithm 2 Pseudo code for tasking within OpenMP parallel
regions

1: procedure HTARGET(C[][], LPatch[], RPatch[], X[])
2: NPatches← SIZE(C)
3: V Size← PATCHSIZE(LPatch,RPatch,NPatches)
4: #pragma omp parallel num threads(numZero)
5: proc bind(levelZero)
6: for i← 1, C.rows do
7: #pragma omp single
8: #pragma omp task
9: Y I ← zeros(V Size[i])

10: #pragma omp parallel num threads(numOne)
11: proc bind(levelOne)
12: reduction(YI)
13: for j ← 1, C.cols do
14: #pragma omp single
15: #pragma omp task
16: for k ← 1, ElemInC do . Data Parallel Loop
17: Y IJ [i]← Y IJ [i] + (A

(k)
IJ ⊗B

(k)
IJ ∗X[])

18: end for
19: end for
20: for l← 1, V Size[i] do
21: Y I[l]← Y I[l] + Y IJ [l]
22: end for
23: // End Parallel Region for j iteration
24: for m← 1, V Size[i] do
25: Y [m]← Y I[m]
26: end for
27: end for
28: return Y
29: end procedure

VI. MINIAPPS EXPERIMENTS AND PERFORMANCE

We performed a set of experiments to evaluate the perfor-
mance and viability of the various versions of the DMRG++
Kronecker multiplication miniapp. The experiments were
conducted on an Intel Xeon E5-4640v4 workstation with
12x4 cores running at 2.1GHz with 512GB of DDR4-2400
ECC memory. The workstation is equipped with an NVIDIA
VOLTA Titan V GPGPU card with 12GB of memory con-
nected via PCIe 3.0 bus.

Test problems were generated to replicate the characteristics
of the Hamiltonian matrix used in the DMRG++ application.
One of the defining properties of the Hamiltonian is the load
imbalance across different patches in the C patch matrix.
Figure 4 shows the amount of work (in FLOPS) performed
in each C[I, J] cell for a synthetic problem that uses 144
lattice sites with M = 10, 000 saved states. This snapshot
is taken in the middle of the sweep algorithm (with 72 sites
on the left) which corresponds to the maximum amount of
work. As can be seen in Figure 4, the bulk of work happens
near the center of the C patch matrix. Figure 5 shows the
distribution of work per patch for this problem. We can see
that the majority of patches contribute relatively little work to
the overall algorithm, while few patches contribute the bulk
of the work.

Fig. 4. FLOPS distribution in target Hamiltonian Matrix

Fig. 5. Histogram of Hamiltonian matrix work intensity

A. Batched GEMM performance using the GPU

The batched GEMM miniapp constructs a synthetic patch
matrix C as outlined in section III then performs the core
Kronecker multiplication routine several times in a loop to
emulate the performance of the kernel inside the iterative
Lanczos algorithm. We evaluate the potential of the implemen-
tation to leverage the computational capabilities of the GPGPU
using unified memory by investigating the improvement in
performance between the first iteration (when the kernel
incurs the overhead of data copying to the GPU) and the
second iteration where data already resides on the GPU. The
Kronecker multiplication kernel involves two applications of
the batched GEMM kernel using the MAGMA library. Figure 6
shows the performance of the GPU implementation of the
kernel for the first two iterations for two different systems
as the number of saved states increases. The first system has
144 sites while the second system has 64 sites. In the first
iteration (Iter1-144 and Iter1-64), the miniapp incurs
the cost of copying data to the GPU, while in the second
iteration (Iter2-144 and Iter2-64) data already exists on
the GPU and we achieve higher throughput. We also observe
that for the smaller system with the same number of saved
states we obtain higher throughput as the states are distributed
over a smaller number of patches in the C matrix. We notice
that the times used in this figure include the time to set up the
two GEMM batches, which impacts the overall throughput. This
indicates that the miniapp can use the batched GEMM approach
via a third party library to efficiently utilize available GPGPU
resources.

Fig. 6. Batched GEMM GPU performance

B. Batched GEMM performance using OpenMP

In addition to the aforementioned GPU implementation
using the MAGMA library, the batched GEMM miniapp was
also implemented using a simple OpenMP dynamic schedule
on the CPU and the single threaded OpenBLAS library to
provide the GEMM implementation. This option is available
to support platforms that do not have GPGPU. Figure 7
shows the total runtime for three iterations of the batched
GEMM miniapp using the GPU MAGMA version, and the
CPU OpenMP version using 12 CPU threads for the two
systems described in Section VI-A. The results suggest that

for small enough problems, using OpenMP on the CPU side
may be a viable option (this maybe an attractive option for
DMRG++ deployments on low end workstations without GPU
accelerators, which constitute a considerable portion of current
DMRG++ users). As system size increases, the advantages
of using the GPU to accelerate the Kronecker multiplication
kernel become obvious. We also notice that the runtime for
the GPU version grows at a smaller rate than the OpenMP
version (as long as we can fit all data on the GPU).

Fig. 7. Run time comparison for batched GEMM miniapp

Figure 8 shows the run time and speed up achieved using the
OpenMP batched GEMM miniapp on the two systems described
in section VI-A using sites 11, 000 saved states. For this
problem configuration, the speedup achieved by the miniapp
reaches a maximum of roughly 9X using 12 threads for both
systems, which suggests that the use of dynamic scheduling
within the parallel region can overcome the load imbalance
characteristics of the patch matrix C.

Fig. 8. Speedup of OpenMP batched GEMM miniapp

C. Nested OpenMP miniapp performance

As outlined in section V, the multi-level nested parallelism
of the Kronecker multiplication kernel allows for many im-
plementation choices at different levels using OpenMP con-
structs. An exhaustive study of all these options and impact
of OpenMP runtime parameters on miniapp performance is
beyond the scope of this paper (see [20] for a more detailed
study of this miniapp).

Fig. 9. Nested OpenMP worksharing runtime

Here we present a representative result that shows the
impact of varying the number of threads used in the two
parallel regions in Algorithm 1. In this study, we use the
miniapp to simulate a system with 144 lattice sites and 11000
saved states. The miniapp uses GEMM calls via the OpenBLAS
library. We limit the maximum number of OpenMP threads
to 48 (which is the number of hardware threads on the
test platform) using the OMP_THREAD_LIMIT environment
variable. Figure 9 shows the impact of changing the number of
threads used in the inner j loop (N1) on runtime for different
numbers of threads in the outer i loop (N0).

The figure suggests that nested parallelism has little impact
on the performance of the miniapp. The chart also suggests
that for this particular problem configuration, parallelization
of the outer i loop has more impact on performance than the
inner j loop for the same number of total threads used. For
example, for N0 = 1 and N1 = 12, the total runtime is
6.936S while for N0 = 12 and N1 = 1, the runtime is 5.78S,
an improvement of roughly 20%.

VII. CONCLUSIONS AND FUTURE WORK

We have presented two miniapps that implement one of
the core computational kernels of the DMRG++ application.
The miniapps explored algorithmic and programming model
approaches to speed up the Kronecker multiplication kernel
which constituted the bulk of the application runtime. The
batched GEMM version reformulates the nested Kronecker mul-
tiplication algorithm using two batches of GEMM BLAS calls,
allowing for an implementation that maximizes utilization
of hardware resources on both CPUs and GPGPUs. This

version of the algorithm has been implemented as a plugin
in the production version of the application. Figure 10 shows
the performance (in TFlops/Sec) of all invocations of the
Kronecker multiplication kernel in a DMRG++ case with 100
(10×10) sites with the number of saved states increasing from
M = 200 to M = 4200 as the algorithm proceeds. We can see
that this algorithm, running on the same hardware described in
Section VI can achieve up to 7.2 TFlops/Sec (single precision),
or roughly 48% of the 15 TFlops/Sec theoretical peak of
the NVIDIA Titan V GPGPU card. Future work for this
miniapp focuses on extending it to support multiple GPUs
and leveraging possible symmetry in the C patch matrix to
reduce memory requirements.

Fig. 10. GPU Batched GEMM Performance For DMRG++ application

We have also implemented an OpenMP miniapp to ex-
plore the use of nested parallelism to naturally express the

Kronecker multiplication algorithm. This miniapp exposes
challenges in the OpenMP programming model as it deals with
complex nested parallelism dealing with reductions, and that
involve a mix of task and data parallelism. Future work on this
version of miniapp explores the use of OpenMP4.5 tasking fea-
tures and new additions proposed for the OpenMP5.0 version
of the standard to ameliorate some of the performance issues
that currently impede efficient deployment of this complex
parallel pattern using OpenMP.

REFERENCES

[1] M. Heroux and R. Lethin, “Report of the 2014 programming models
and environments summit,” Tech. Rep., 9 2016. [Online]. Avail-
able: https://science.energy.gov/∼/media/ascr/pdf/programdocuments/
docs/Programming Models Report-Sept 19 2016.pdf

[2] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich, “Improving performance via mini-applications,”
Sandia National Laboratory, Technical Report SAND2009-5574,
2009. [Online]. Available: http://prod.sandia.gov/techlib/access-control.
cgi/2009/095574.pdf

[3] G. Alvarez, “The density matrix renormalization group for strongly cor-
related electron systems: A generic implementation,” Computer Physics
Communications, vol. 180, pp. 1572–1578, 2009.

[4] ——, “Dmrg++,” https://g1257.github.io/dmrgPlusPlus and https://
github.com/g1257/dmrgpp.

[5] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-Lara,
and M. Zounon, “The design and performance of batched blas on modern
high-performance computing systems,” Procedia Computer Science, vol.
108, pp. 495 – 504, 2017, international Conference on Computational
Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland.

[6] S. R. White, “Density matrix formulation for quantum renormalization
groups,” Phys. Rev. Lett., vol. 69, p. 2863, 1992.

[7] ——, “Density-matrix algorithms for quantum renormalization groups,”
Phys. Rev. B, vol. 48, p. 345, 1993.

[8] S. White, Phys. Rev. B, vol. 48, p. 10345, 1993.
[9] S. R. White, I. Affleck, Douglas, and J. Scalapino, Phys. Rev. B, vol. 65,

p. 165122, 2002.
[10] S. R. White and J. Scalapino, Phys. Rev. B, vol. 55, p. 165122, 1997.
[11] U. Schollwöck, “The density-matrix renormalization group,” Rev. Mod.

Phys., vol. 77, p. 259, 2005.
[12] K. Hallberg, Adv. Phys., vol. 55, pp. 477–526, 2006.
[13] J. Rodriguez-Laguna, 2002, http://arxiv.org/abs/cond-mat/0207340, Real

Space Renormalization Group Techniques and Applications.
[14] C. F. van Loan, “The ubiquitous kronecker product,” J. Comput. Appl.

Math., vol. 123, no. 1-2, pp. 85–100, Nov. 2000. [Online]. Available:
http://dx.doi.org/10.1016/S0377-0427(00)00393-9

[15] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The plasma and magma projects,” Journal of
Physics: Conference Series, vol. 180, no. 1, p. 012037, 2009. [Online].
Available: http://stacks.iop.org/1742-6596/180/i=1/a=012037

[16] “Matrix algebra on gpu and multicore architectures.” [Online].
Available: http://icl.cs.utk.edu/magma/

[17] J. Zhao, R. Lublinerman, Z. Budimlić, S. Chaudhuri, and V. Sarkar,
“Isolation for nested task parallelism,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming

Systems Languages and Applications, ser. OOPSLA ’13. New York,
NY, USA: ACM, 2013, pp. 571–588.

[18] R. Blikberg and T. Srevik, “Thread based openmp for nested paral-
lelization,” in Parallel Computing, ser. Advances in Parallel Computing,
G. Joubert, W. Nagel, F. Peters, and W. Walter, Eds. North-Holland,
2004, vol. 13, pp. 787 – 794.

[19] ——, “Load balancing and openmp implementation of nested paral-
lelism,” Parallel Computing, vol. 31, no. 10, pp. 984 – 998, 2005,
openMP.

[20] A. Chatterjee, G. Alvarez, E. DAzevedo, W. Elwasif, O. Hernandez,
and V. Sarkar, “Porting DMRG++ scientific application to openpower,”
International Workshop on OpenPOWER for HPC (IWOPH’18) - in
print, June 2018.

APPENDIX A
APPENDIX ON KRONECKER PRODUCT

Here is a brief overview of the properties of Kronecker
product of matrices.

Let matrices A be m×m and B be n×n. For convenience,
let them be indexed as A(ia, ja) and B(ib, jb). Let C = A⊗B
(or C = kron(A,B) in MATLAB notation), then matrix C
is size (m ∗ n)× (m ∗ n). If matrix A is 3× 3, then

C =

 a11B a12B a13B
a21B a22B a23B
a31B a32B a33B

Matrix C can be interpreted as a four-index array
C([ib, ia], [jb, ja]) = A(ia, ja) ∗ B(ib, jb), where the com-
posite index [ib, ia] = ib + (ia − 1) ∗ n is the index in
Fortran column-wise order. Matrix-vector multiply can be
performed as very efficient matrix-matrix operations using
only O(mn(m+ n)) instead of O((mn)2) work

Y ([ib, ia]) = C([ib, ia], [jb, ja]) ∗X([jb, ja])

= A(ia, ja) ∗ B(ib, jb) ∗X([jb, ja])

= B(ib, jb) ∗X(jb, ja) ∗A(ia, ja)

Y = B ∗X ∗At . (13)

Here we blur the distinction between the matrix X(jb, ja) and
vector vec(X) = X([jb, ja]) with composite index. If m = n
this is a speedup by a factor of O(n/2). Other interesting
properties of Kronecker products are summarized below,

(A⊗B) ∗ (E ⊗ F) = (A ∗ E)⊗ (B ∗ F) (14)
(A+B)⊗ E = A⊗ E +B ⊗ E (15)
(A⊗B)⊗ E = A⊗ (B ⊗ E) (16)
(A⊗B)−1 = (A−1 ⊗B−1) (17)
(A⊗B)t = (At ⊗Bt) (18)

https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/Programming_Models_Report-Sept_19_2016.pdf
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/Programming_Models_Report-Sept_19_2016.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2009/095574.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2009/095574.pdf
http://dx.doi.org/10.1016/S0377-0427(00)00393-9
http://stacks.iop.org/1742-6596/180/i=1/a=012037
http://icl.cs.utk.edu/magma/

