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Outline

» Quantum computing — Why do we care? — What is it?

= Qubit technology — Where silicon fits in

» This work — An all-electrical, simple CMOS-compatible qubit
= Results — Qubit readout, control, mechanisms

» Conclusion — Prospects for integration



Quantum computing
— Why do we care?

(Easy answer)
Because they care

Google

Microsoft

(But really...?)

Solve certain hard problems
with large speedups

» Feynman: simulate quantum nature with
quantum computers
- Chemistry, biology, materials, ...

= Deutsch, Jozsa, Simon, Shor, Grover, Farhi:

- Unstructured search, hidden subgroup, factoring,
circuit satisfiability, ...

- Optimization, linear & FEM equations, machine
learning, etc...

= Bennet, Brassard:

- Secure cryptography
- Quantum communications



Quantum computing
— What is it?

Quantum bits (qubits) Qubits are quantum...
= Quantum two-level system (e.g. = State superposition (1 qubit)
spin 1/2)
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= Quantized (i.e. discrete) states
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» Entanglement (2 qubits)




Qubit technology
— Where silicon fits Iin

Ion traps Superconductors Semiconductors
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Semiconductors:
Other technologies: x Less mature (~ 2 qubits)
v' More mature (-~ 5 qubits) v" Small size

x Large size v Leverage ULSI/SoC



Previous work
— Integratlon compIeX|ty
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1. Harvey-Collard, P. et al. Coherent coupling between a quantum dot and a donor in silicon. Nature Communications 8, 1029 (2017).



This work
— Simple CMOS-compatible qubit

Spin-orbit interaction Pure CMOS design
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1. Harvey-Collard, P. et al. All-electrical universal control of a double quantum dot qubit in silicon MOS. In 2017 IEEE IEDM (2017).
2. Jock, R. M. et al. Probing low noise at the MOS interface with a spin-orbit qubit. ArXiv:1707.04357 (2017). 7



Results
— Qubit readout, control, mechanisms

AC controlled rotations

Readout and control Access any 1 qubit state
a ¢ Pauli spin blockade (PSB) a
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1. Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. ArXiv:1703.02651 (2017).
2. Harvey-Collard, P. et al. All-electrical universal control of a double quantum dot qubit in silicon MOS. In 2017 IEEE IEDM (2017).



Conclusion

= All-electrical universal control a__ —»B,,
tr
* No external component: completely CMOS E,=g1gBoy "7 Ez=0oligBex
fabrication — Lr
r

= Fast single-shot readout with SiGe HBT

= Future work: engineering of robust & fast
spin-orbit drive

= Goal: simplify integration of quantum
hardware
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Supplementary slides



DC control

Exchange rotations Zeeman rotations
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Pulse sequence experiment

Pulse sequence (exp.)
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