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Outline

Quantum computing — Why do we care? — What is it? 

Qubit technology — Where silicon fits in

 This work — An all-electrical, simple CMOS-compatible qubit 

 Results — Qubit readout, control, mechanisms

 Conclusion — Prospects for integration
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Quantum computing 
— Why do we care?

(Easy answer)

Because they care

(But really...?)

Solve certain hard problems
with large speedups

 Feynman: simulate quantum nature with 
quantum computers 

– Chemistry, biology, materials, ...

 Deutsch, Jozsa, Simon, Shor, Grover, Farhi: 
– Unstructured search, hidden subgroup, factoring, 

circuit satisfiability, ...

– Optimization, linear & FEM equations, machine 
learning, etc...

 Bennet, Brassard: 
– Secure cryptography

– Quantum communications
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Quantum computing 
— What is it?

Quantum bits (qubits)

 Quantum two-level system (e.g. 
spin 1/2)

 Quantized (i.e. discrete) states

Qubits are quantum...

 State superposition (1 qubit)

 Entanglement (2 qubits)
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Qubit technology
— Where silicon fits in

Ion traps Superconductors
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Semiconductors

Credit: Sandia National Labs

Credit: IBM Research

~ 1 cm

Other technologies:
 More mature (~ 5 qubits)
× Large size

Semiconductors:
× Less mature (~ 2 qubits)
 Small size
 Leverage ULSI/SoC

~ 100 mK

~ 100 mKhi. vac.



Previous work
— Integration complexity
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1. Harvey-Collard, P. et al. Coherent coupling between a quantum dot and a donor in silicon. Nature Communications 8, 1029 (2017).



This work
— Simple CMOS-compatible qubit 

Spin-orbit interaction
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~ 100 mK

1. Harvey-Collard, P. et al. All-electrical universal control of a double quantum dot qubit in silicon MOS. In 2017 IEEE IEDM (2017).

2. Jock, R. M. et al. Probing low noise at the MOS interface with a spin-orbit qubit. ArXiv:1707.04357 (2017). 

35 nm

200 nm



Results
— Qubit readout, control, mechanisms

Readout and control
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1. Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. ArXiv:1703.02651 (2017).

2. Harvey-Collard, P. et al. All-electrical universal control of a double quantum dot qubit in silicon MOS. In 2017 IEEE IEDM (2017).

(~ 100 mV)



Conclusion

 All-electrical universal control

 No external component: completely CMOS 
fabrication

 Fast single-shot readout with SiGe HBT

 Future work: engineering of robust & fast 
spin-orbit drive

 Goal: simplify integration of quantum 
hardware
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DC control

Exchange rotations
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Pulse sequence experiment

Pulse sequence (exp.)
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