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Understanding Battery Safety
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Materials R&D
• Non-flammable electrolytes
• Electrolyte salts
• Coated active materials
• Thermally stable materials

Testing
• Electrical, thermal, mechanical abuse testing
• Large scale thermal and fire testing (TTC)
• Failure propagation testing on batteries/systems
• Diagnostic techniques for battery state of stability 
• Development for DOE Vehicle Technologies and USABC

Simulations and Modeling
• Multi-scale models for understanding thermal runaway
• Validating vehicle crash and failure propagation models
• Fire Simulations to predict the size, scope, and 

consequences of  battery fires

Procedures, Policy, and Regulation
• USABC Abuse Testing Manual (SAND 2005-3123)
• SAE J2464/UL 1642 procedures and standards
• R&D programs with NHTSA/DOT to inform best 

practices, policies, and requirements



Motivation for propagation testing
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• Results of single cell nail penetration and 1S10P propagation test
• 26650 LFP cell
• Single cell has relatively minor failure
• Significant increase in intensity with a 10 cell pack



Failure Propagation: No Thermal Management
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Failures initiated by mechanical insult to edge cell of COTS LiCoO2 packs (3Ah cells) 

• Observed complete propagation when cell are close packed with no thermal management

• Successful initiation at Cell #1
• Propagation to adjacent cells 
• Cascading failure to entire battery over 60 s
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Mitigation through de-rating cells

• 50% SOC no cell to cell propagation observed
• Thermal runaway of initial cell failure also fairly minimal

• Limited propagation at 75%
• Cell 2 went into thermal runaway following the failure of cell 1
• Some other cell damage was observed but no high rate thermal runaway events seen 

inn cells 3-5
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Limits to cell de-rating
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• Full failure of pack observed starting at 80% SOC
• Compared to unmitigated baseline, peak temperatures observed were only marginally 

lower (550 °C vs 620 °C)
• Total pack propagation observed after ~4 minutes vs ~80 seconds at 100% SOC



Failure Propagation Testing: 
Inclusion of Thermal Management

Methodology:

 Experimentally determine a reproducible 
thermal runaway initiator for each cell type

 Use this initiator to trigger a single cell thermal 
runaway failure in a battery 

 Evaluate the propagation of that failure event

Experiment

 COTS LiCoO2 3Ah pouch cells 

 5 cells closely packed

 Failure initiated by a mechanical nail penetration 
along longitudinal axis of edge cell (cell 1)

 The current effort is focused on understanding 
extent of propagation with inclusion of passive 
thermal management in the form of heat sinks 
between pouch cells (aluminum and copper)
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5 cell pack with aluminum or 
copper spacers between cells

Cell 1 
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Failure Propagation: Aluminum spacer
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Failures initiated by mechanical insult to edge cell of COTS LiCoO2 packs

LiCoO2 – 1/16” thick spacers

• Addition of aluminum spacers cut to the size of 3 Ah COTS cells was achieved
• Failure of cell 1 in both cases were consistent and peak temperatures reached ~400 °C
• Limited propagation (from cell 1 to 2) occurred with the thinner material (1/16”)
• No propagation was realized when space thickness was increased to 1/8”

before

after
No propagationlimited propagation

LiCoO2 – 1/8” thick spacers



Failure Propagation: Copper spacer
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Failures initiated by mechanical insult to edge cell of COTS LiCoO2 packs

LiCoO2 – 1/16” thick spacers

• Addition of copper spacers cut to the size of 3 Ah COTS cells was achieved for comparisons of 
spacer size and material (Al vs Cu)

• Failure of cell 1 in all cases were consistent and peak temperatures reached ~400 °C
• Limited propagation (from cell 1 to 2) occurred with the thinner material (1/16”)
• No propagation was realized when space thickness was increased to 1/8”
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Failure propagation – Aluminum spacer
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LiCoO2 – 1/32” thick spacers

• Aluminum spacers 1/32” thick
• Failure of Cell 1 observed initially
• Pulsing propagating failure behavior observed over the 

next several minutes
• Entire pack consumed ~4 minutes after initial cell failure
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Is early detection an option?
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• Temperature changes often lag severe damage to the cell
• Can EIS and other diagnostic techniques be used to detect the failure of a single cell?
• Single cell data (left) shows changes in internal resistance of a single cell vs changes in external 

temperature
• 3S1P data (right) shows data as single cell within a 3 cell series pack is overcharged
• Rather than controlling propagation perhaps the solution is to detect single cell failure and 

halt operation before catastrophic failure
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Understanding materials consequence of diagnostic 
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Overcharge - Active Load
• Overcharge is applied to 10 AH NMC cells
• Fast impedance hardware allows for collection of 

EIS data while cell is under active load
• Cycling performed after overcharge test to 

observe differential capacity behavior
• Anode and Cathode materials harvested post test 

for materials analysis (Harvested at 0% SOC, 
cathode results shown)

• Coupling electrochemical measurement and 
materials analysis to create a predictive 
measurement technique



Discussion

 A cell may exhibit dramatically different failure response 
when in a string, module or pack than during single cell abuse 
testing

 Limiting the SOC can have a meaningful impact in propagating 
failure, however this comes at a significant cost to total 
energy storage

 Propagation can be mitigated through system engineering, 
however the results can be unpredictable. Further, electrical 
design will play a role in susceptibility to failure testing.

 Failure testing of large, complex systems is fairly resource 
intensive. Model based design presents a potential remedy to 
this, allowing us to infer a large amount of information from a 
relatively small number of tests.
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