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• Layer of performance-portable kernels
• Provide kernels usable within different 

levels of parallelism (wherever 
applicable): Device level, Team level, 
Thread level, Serial

• No dependencies other than Kokkos
• Node-level Kernels (No MPI)
• Can utilize multiple memory-spaces 

(wherever applicable)

Capabilities
Concept Example

Sparse Linear Algebra Sparse Matrix-Vector Multiply, Sparse Matrix-Matrix Multiply, Gauss-Seidel

Dense Linear Algebra BLAS1 and BLAS2 kernels, Batched BLAS operations for LU factorizations (LU), dense 
matrix-matrix multiply (GEMM) and dense triangular solver (TRSM)

Graph Algorithms Distance-1 Graph Coloring

Data Structures Hashmap  - Allows thread scalable accumulations based on keys
Uniform Memory Pool – Thread scalable way to request and use memory from a 
persistent memory space

Upcoming Distance-2 Graph Coloring, Contraction Kernels, Other batched operations

Hybrid Sparse Triangular Solver (ShyLU/HTS)

• Sparse Triangular Solve is the key
kernel in several preconditioners
(BDDC, GDSW)

• Hybrid Sparse Triangular Solver – Uses
combination of level-sets and recursive
blocking

• P2P synchronization between threads
utilized for better performance

• OpenMP based implementation:
Speedups ranging from 15x-80x Intel
KNC, and 7x-17x on Ivybridge

• Needs ~8 parallel triangular solves to
amortize the cost of reloading the data

Graph Coloring and Multi-threaded Gauss-Seidel
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KokkosKernels cuSPARSE
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KokkosKernels
cuSPARSE

• Goal: Identify independent data that can be 
processed in parallel.

• Performance: Better quality (4x on average) and 
run time (1.5x speedup ) w.r.t cuSPARSE.

• Enables parallelization of preconditioners: Gauss 
Seidel: 82x speedup on KNC, 136x on K20 GPUs

AxP RX(AP) AxP RX(AP) AxP RX(AP)

Laplace Brick Empire

cuSPARSE 0.100 0.229 0.291 0.542 0.646 0.715

KokkosKernels 1.489 1.458 2.234 2.118 2.381 1.678
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MKL

Sparse Matrix-Matrix Multiplication (SpGEMM)
• SpGEMM is the most expensive part

of the multigrid setup.
• New portable write-avoiding

algorithm in KokkosKernels is ~14x
faster than NVIDIA’s CUSPARSE on
K80 GPUs.

• ~2.8x faster than Intel’s MKL on
Intel’s Knights Landing (KNL).

• Memory scalable: Solving larger
problems that cannot be solved by
codes like NVIDIA’s CUSP and Intel’s
MKL when using large number of
threads.

Batched Dense Linear Algebra (LU, GEMM, TRSM)
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Block A of T0 and T1 is packed and 
elements are aligned to its vector lane
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Algor ithm 2: Batched impl. TriLU

1 for a pair T(0,1) in
{ { T0,T1} , { T2,T3} , ··· , { Tm�n− 2,Tm�n− 1} } do in parallel

2 for r 0 to k− 2 do

3 Âr(0,1) := LU (Âr(0,1));

4 B̂r(0,1) := L− 1B̂r(0,1) ;

5 Ĉr(0,1) := Ĉr(0,1)U− 1;

6 Âr+ 1(0,1) := Ĉr+ 1(0,1) − Ĉr(0,1)B̂r(0,1) ;

7 end

8 Âk− 1(0,1) := { L ·U} ;

9 end

DGEMM
GFLOP/s 5 9 15 20

Speedup
w.r.t. MKL

1 2.26 2.92 2.67 6.10 5.8

2 4.15 5.50 5.07 11.3 5.0

4 6.87 13.4 10.8 21.0 4.1

8 10.6 28.5 28.4 46.4 3.3

16 14.4 44.1 62.8 154 2.4

34 16.0 64.1 112 338 1.5

68 14.6 69.1 170 447 0.7
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Trsm
GFLOP/s 5 9 15 20

Speedup
w.r.t. MKL

1 1.13 2.42 1.95 3.79 45.0

2 1.92 4.56 3.72 7.17 37.9

4 3.08 8.39 9.82 14.2 30.9

8 4.11 13.4 22.6 43.9 23.9

16 4.38 18.2 39.2 81.9 16.9

34 3.55 18.2 51.7 109 9.8

68 2.64 14.4 56.0 123 2.8
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LU
GFLOP/s 5 9 15 20

Speedup
w.r.t. MKL

1 0.76 1.79 2.17 3.39 28.9

2 1.26 3.22 4.19 6.57 24.5

4 2.02 5.89 9.62 16.9 20.0

8 2.61 9.11 17.4 38.2 15.6

16 2.92 12.4 28.7 64.7 11.2

34 2.23 12.0 37.7 80.2 6.8

68 1.65 9.43 34.4 87.6 2.4
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• Batched dense linear algebra kernels need to
be sensitive to the hierarchical parallelism

• Threaded Block Tridiagonal factorization
motivated by line preconditioners for
multiphysics applications. Small physics blocks
motivate vector level batched BLAS

• Packed, vectorized, batched BLAS calls for
GEMM, TRSM, LU results in speed up of up to
5.8x, 45x, 28.9x, respectively. KNL comparisons w/ batched DGEMM, unbatched LU &

TRSM. GFOLP/s (numbers) and speedup w.r.t MKL (colors)
shown for 512 worksets

Kokkos Programming Model for Performance Portability

ShyLU Kokkos based solvers for direct/fine-grained factorizations and triangular solves on the node

Sibling projects

Overview
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