

Applications of Compact Batched Kernels

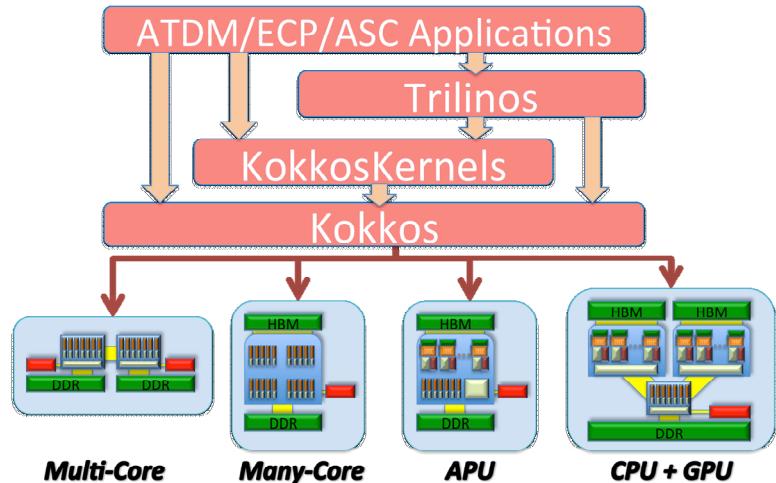
Siva Rajamanickam, Andrew Bradley, Mehmet Deveci,
Kyungjoo Kim, Christian Trott

Supercomputing 2017

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND NO. 2011-XXXXP

KokkosKernels

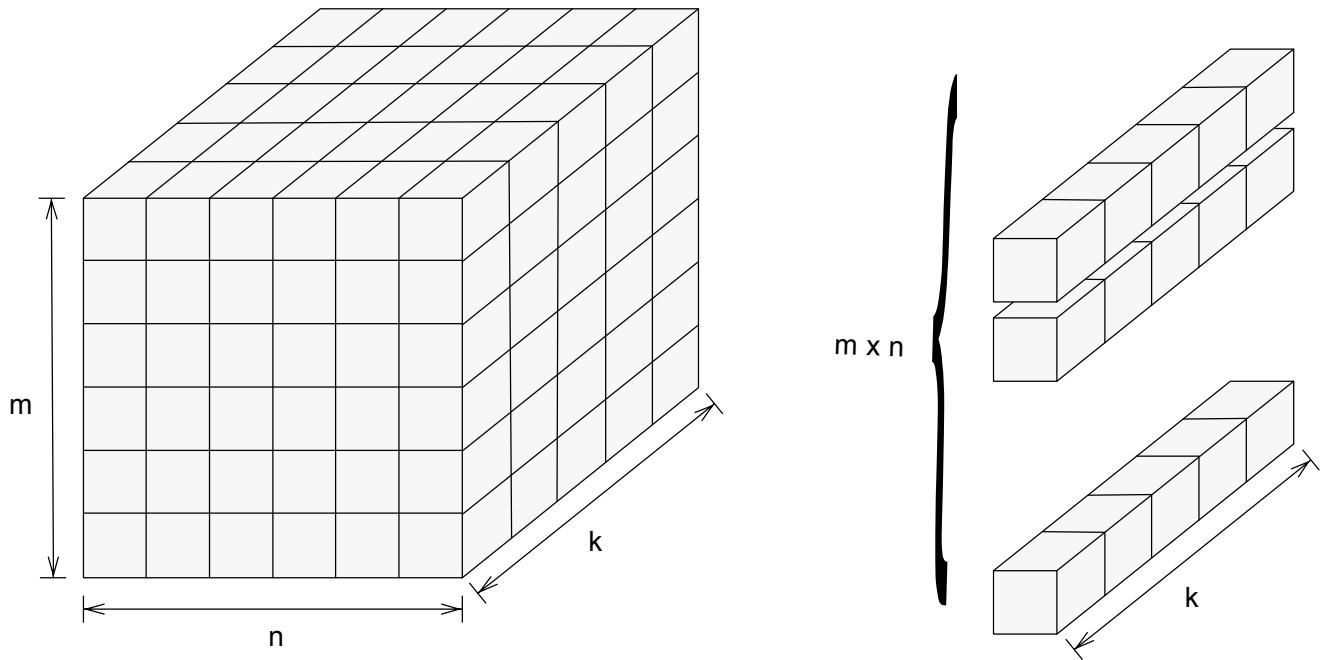
- Kokkos:
 - Layered collection of template C++ libraries
 - Threaded parallel programming model that manages data access patterns (intra-node)
 - Execution spaces, Memory spaces
- Kokkos provides tools for portability
 - Performance portability does not come for free.
 - Not trivial for sparse matrix, and graph algorithms



- KokkosKernels:
 - Layer of performance-portable kernels
- We study design decisions for achieving portability for sparse/dense matrix and algorithms

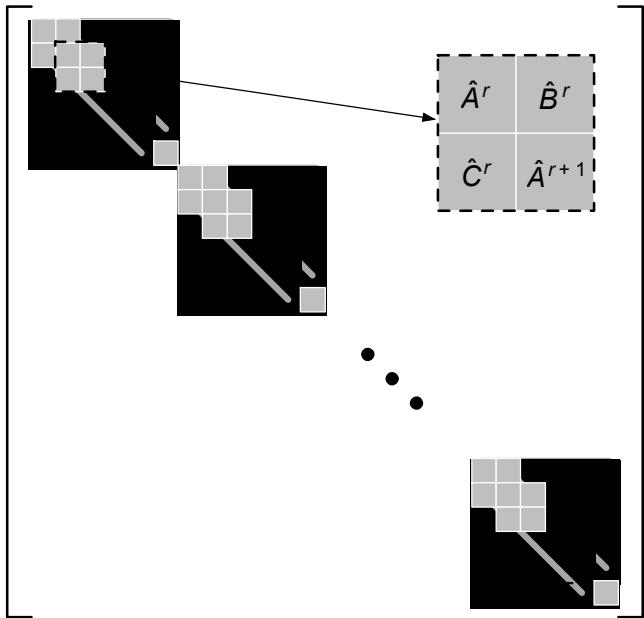
<https://github.com/kokkos/kokkos-kernels>

Line Preconditioner: Motivation for Batched BLAS



- Consider a block sparse system arising from coupled multi-physics problems.
- Line preconditioner is built by approximating the problem domain as a collection of lines of elements.
- A collection of lines of elements results in a set of block tridiagonal matrices. Block tridiagonal matrices are factorized once per solution (or every nonlinear iteration) and applied (triangular solve) multiple times.

Motivation for Batched BLAS

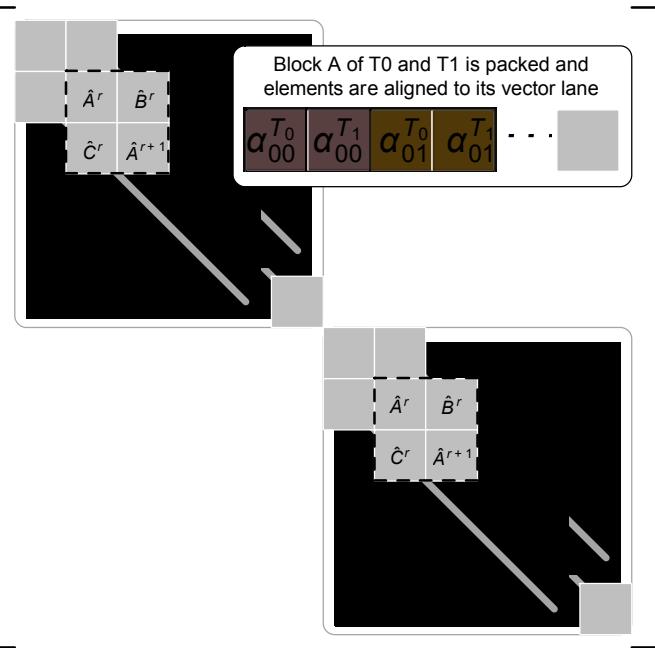


Algorithm 1: Reference impl. TriLU

```
1 for  $T$  in  $\{T_0, T_1, \dots, T_{m \times n - 1}\}$  do in parallel
2   for  $r$  0 to  $k - 2$  do
3      $\hat{A}^r := LU(\hat{A}^r);$ 
4      $\hat{B}^r := L^{-1}\hat{B}^r;$ 
5      $\hat{C}^r := \hat{C}^r U^{-1};$ 
6      $\hat{A}^{r+1} := \hat{C}^{r+1} - \hat{C}^r \hat{B}^r;$ 
7   end
8    $\hat{A}^{k-1} := \{L \cdot U\};$ 
9 end
```

- Typical blocksize b is selected as 3, 5, 9 and 15, which are related to scientific applications e.g., elasticity, ideal gas and multi-physics fluid problems.
- Limit memory usage up to 16 GB i.e., MCDRAM on KNL and GPU device memory. With this constraint, typical local problems $(m \times n \times k)$ are selected as $128 \times 128 \times 128$ for $b = 3, 5$ and $64 \times 64 \times 128$ for $b = 10, 15$.
- Batch parallelism is used running a sequential blocktridiagonal factorization consisting of GETRF, TRSM and GEMM within a parallel_for.

Usage of Kokkoskernels Batched BLAS



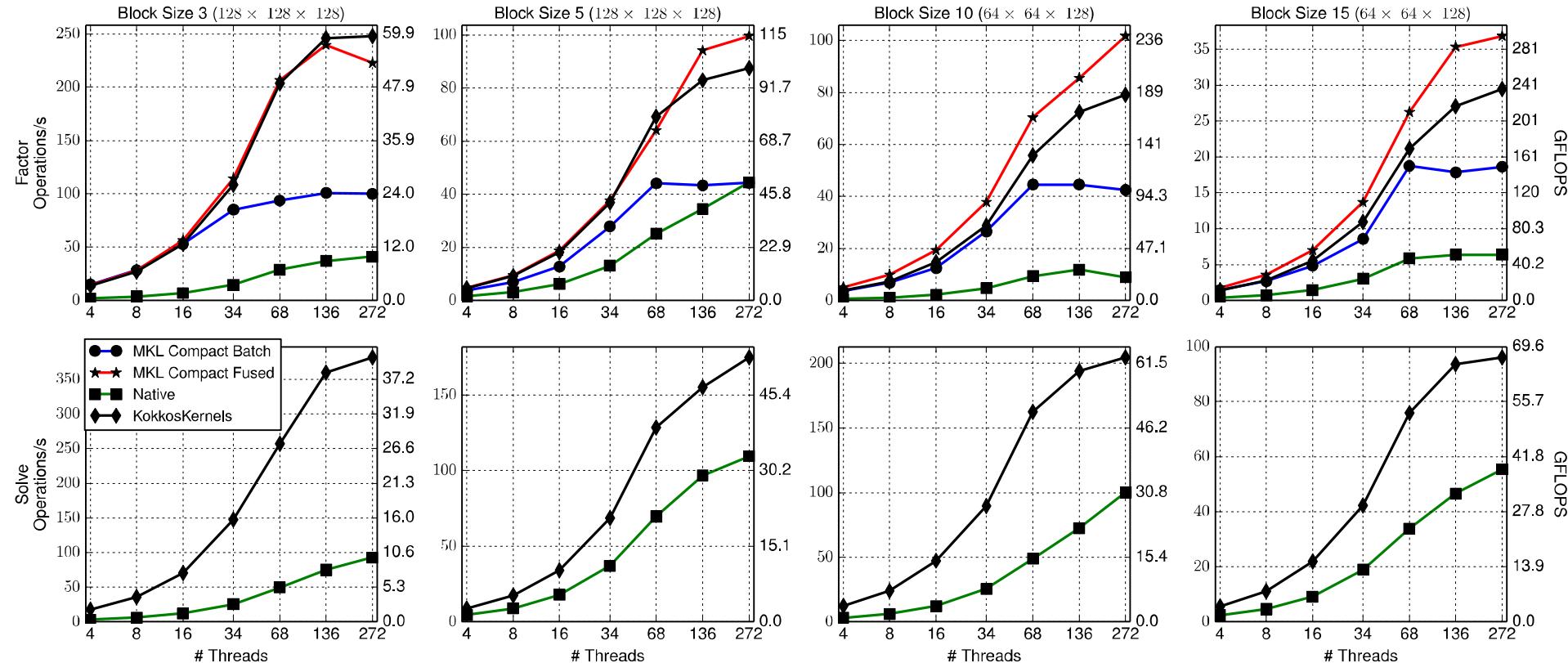
Algorithm 2: Batched impl. TriLU

```
1 for a pair  $T(0, 1)$  in
   $\{\{T_0, T_1\}, \{T_2, T_3\}, \dots, \{T_{m \square n-2}, T_{m \square n-1}\}\}$  do in parallel
  2   for  $r = 0$  to  $k-2$  do
  3      $\hat{A}^{r(0,1)} := LU(\hat{A}^{r(0,1)})$ ;
  4      $\hat{B}^{r(0,1)} := L^{-1}\hat{B}^{r(0,1)}$ ;
  5      $\hat{C}^{r(0,1)} := \hat{C}^{r(0,1)}U^{-1}$ ;
  6      $\hat{A}^{r+1(0,1)} := \hat{C}^{r+1(0,1)} - \hat{C}^{r(0,1)}\hat{B}^{r(0,1)}$ ;
  7   end
  8    $\hat{A}^{k-1(0,1)} := \{L \cdot U\}$ ;
  9 end
```

- On HSW and especially KNL, vectorization is important.
- Traditional BLAS implementations vectorize within a call- bad for small blocks.
- Physics problems typically have small blocks.
- Idea: Vectorize across blocks.
- KokkosKernels provides tools for this, and BLAS implementation using these tools.
- On KNL (HSW), process 8 (4) lines at a time with SIMD : KokkosKernels abstracts these details.

Impact of Compact Batch BLAS

Line Smoother Factor and Solve



- For more, see K. Kim, T.B. Costa, M. Deveci, A.M. Bradley, S.D. Hammond, M.E. Guney, S. Knepper, S. Story, S. Rajamanickam, "Designing Vector-Friendly Compact BLAS and LAPACK Kernels," SC17.
- Thursday Talk: Technical Papers Session - "Fast Multipole Methods and Linear Algebra", 2.30-3.00 pm.