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Abstract—Information security is a top priority in government
and industry because high consequence cyber incidents continue
with regularity. The blue teamers that protect cyber systems
cannot stop or even know about all these incidents, so they
must take measures to tolerate these incursions in addition
to preventing and detecting them. We propose dynamically
compartmentalizing subject networks into collaboration zones
and limiting the communication between these zones. In this
article, we demonstrate this technique’s effect on the attacker
and the defender for various parameter settings using discrete-
time simulation. Based on our results, we conclude that dynamic
cyber zone defense is a viable intrusion tolerance technique and
should be considered for technology transfer.

Index Terms—moving target defense; intrusion tolerance;
security; algorithm; simulation

I. INTRODUCTION

Government agencies and corporate enterprises make

information security a top priority because of cyberspace’s

hostility. The Dyn domain name system (DNS) distributed

denial of service (DDoS), San Francisco Municipal

Transportation Agency ransom, WannaCry pandemic,

Petya attack and Equifax personally identifiable information

(PII) spill demonstrate that cyber events are not decreasing in

frequency or impact.

Cyber security groups cannot stop or even know about all

these events, so they must provide a defense in depth that

includes an intrusion tolerance layer. We propose dynamically

dividing subject networks into zones based on business needs

and limiting the traffic that flows between these zones. We

demonstrate this technique’s effect on the attacker and the

defender for various parameter settings using discrete-time

simulation. This approach can be considered a moving target

defense (MTD).

Our threat model comprises four key points: First, we

assume that we face a sophisticated state or criminally-

sponsored adversary. Next, we assume that an insider threat is

present. Third, we assume that this insider must move laterally

to their final objective. Finally, we assume that they must reach

back to their command and control (C2) node.

Now we visualize the dynamic cyber zone defense use cases

in three figures.
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Fig. 1. Human-triggered rezoning.

Figure 1 shows a human identifying a business need for

hosts a and b to communicate freely. A host can be any

endpoint on the subject network: for example, a workstation,

server, printer or scientific device. This human will submit a

request to the Zone Manager (ZM). The ZM collects these

requests across the enterprise and fulfills them. The ZM can

fulfill these requests on an event-driven basis: for example,

fulfilling every request as it arrives. Alternatively, the ZM can

do this periodically: for example, every night at midnight. To

fulfill each request, the ZM assigns the two hosts to the same

zone. Generally speaking, a zone is a network partition; layer 2

(e.g., passive optical network (PON)) and layer 3 (e.g., Internet

protocol (IP)) are the most obvious places to effect the zone

boundaries. However, this work is not specific to any layer or

protocol.

Figure 2 shows the ZM enforcing one facet of security

policy: limiting the number of zones a host belongs to.

This figure shows host c’s zone membership and includes

a timestamp indicating the last time host c used each zone.

The security policy limits each host to two zones, so the ZM

reduces host c’s zone count. Specifically, the ZM removes host

c from zone 4 because host c used this zone least recently.

Like the previous use case, the ZM can perform this function

asynchronously or periodically.

Figure 3 shows the ZM enforcing a different aspect of

security policy. In this case, it limits the number of hosts

that belong to a zone. Specifically, the ZM reduces zone 6’s

membership to three hosts; it removes host f from zone 6

because host f used this zone least recently. Like the previous

use cases, the ZM can do this asynchronously or periodically.
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Fig. 2. Policy-based host devaluation.
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Fig. 3. Policy-based zone devaluation.

The rest of this paper is organized as follows: First,

Section II surveys the state of the art for this topic. Next,

Section III proposes an algorithm to solve the problem at

hand. Third, Section IV describes the discrete-time simulation

that we instrumented to study this technique. Next, Section

V presents numerical data and figures that quantifies and

visualize the performance of this implementation of dynamic

cyber zone defense. Finally, Section VI concludes the article

by summarizing our contributions in the study and identifying

future lines of investigation.

II. LITERATURE SEARCH

In this section, we survey the contemporary work related to

dynamic cyber zone defense.

Mitchell, et al. wrote three papers which propose

increasingly intricate closed-form mathematical models that

predict how static cyber zone defense affects attackers in [5],

[4], [6]. Our investigation studies dynamic cyber zone defense

and researches the impact to the defender as well as the

attacker.

Earlier, we wrote an article proposing dynamic cyber zone

defense [2]. However, this work did not include any attacker-

facing metrics; all the measurements related to the impact

this technique would have on the defender. Also, this earlier

Algorithm 1 Request fulfillment.

1: function FULFILL REQUESTS(r, Z)

2: for r ∈ r do

3: if r0 = r1 then

4: continue

5: else if ∅ 6= r0.Z ∩ r1.Z then

6: continue

7: else if ∅ 6= r0.Z || ∅ 6= r1.Z then

8: z ← find smallest zone(r0, r1)
9: if r0 ∈ z then

10: r1.Z ← r1.Z ∪ z

11: z.H ← z.H ∪ r1
12: else

13: r0.Z ← r0.Z ∪ z

14: z.H ← z.H ∪ r0
15: end if

16: else

17: z ← find smallest zone(Z)
18: r0.Z ← r0.Z ∪ z

19: r1.Z ← r1.Z ∪ z

20: z.H ← z.H ∪ r0 ∪ r1
21: end if

22: devalue host(r0)

23: devalue host(r1)

24: end for

25: end function

approach arbitrarily removed humans and hosts from zones. In

the present work, we provide two attacker-facing metrics and

use business-related criteria for deciding what hosts to remove

from zones.

III. ALGORITHM

A. Implementation

In this section, we propose dynamic cyber zone defense

algorithms and analyze their runtime complexities. In terms

of notation, the boldface variables are vectors, and the capital

variables are sets in Algorithms 1 through 4.

As discussed in Section I, the ZM can invoke Algorithm 1,

fulfill hosts(), periodically or on an event-driven basis. This

algorithm accepts two parameters: r is the list of requests that

the ZM has pending. Each request comprises two components;

r0 and r1 are the two hosts for which there is a business need

to be in the same zone. In terms of notation, rx.Z indicates

the set of zones that rx is a member of. The other parameter

is Z which is the set of all zones that the ZM administers.

When invoked, fulfill requests() begins by iterating over the

list of requests. If the two hosts that comprise the request are

the same or if the two hosts are already members of the same

zone, Algorithm 1 proceeds to the next request. Otherwise,

if at least one of the two hosts is in a zone, fulfill requests()

finds the smallest zone that either of them belongs to and adds

the other host to this smallest zone. Otherwise, Algorithm 1

finds the smallest zone overall and adds both hosts to this

smallest zone. Finally, this algorithm devalues each host. One



Algorithm 2 Host devaluation.

1: function DEVALUE HOST(h)

2: while |h.Z| > mzph do

3: z ← least recently used zone(h)
4: z.H ← z.H − h

5: h.Z ← h.Z − z

6: end while

7: end function

Algorithm 3 Zone policy enforcement.

1: function ENFORCE ZONE POLICY(Z)

2: for z ∈ Z do

3: devalue zone(z)

4: end for

5: end function

optimization is to devalue only the hosts added to a zone, but

we trade conceptual compactness for this optimization.

During its execution, Algorithm 1 invokes Algorithm 2,

devalue host(). This algorithm accepts one parameter: h is the

host to be devalued. A host that is a member of too many zones

is a high value target, so we refer to the process of removing

it from some zones as devaluing the host. Algorithm 2 repeats

the following steps until h belongs to an acceptable number

of zones: (mzph, the maximum zones per host, defines this

acceptable number.) First, devalue host() finds the zone z that

h used least recently. In terms of notation, z.H indicates the

set of hosts that belong to z. Next, this algorithm removes h

from z.H . Finally, Algorithm 2 removes z from h.Z.

As discussed in Section I, the ZM can invoke Algorithm 3,

enforce zonepolicy(), periodically or on an event-driven basis.

This algorithm accepts one parameter: Z is the set of zones

that the ZM administers. Algorithm 3 iterates over all the zones

in Z, and it invokes devalue zone() for each zone z.

During its execution, Algorithm 3 invokes Algorithm 4,

devalue zone(). This algorithm accepts one parameter: z is the

zone to be devalued. A zone to which too many hosts belong

is a high value target, so we refer to the process of removing

some hosts from it as devaluing the zone. Algorithm 4 repeats

the following steps until an acceptable number of hosts (mhpz,

the maximum hosts per zone, defines this acceptable number)

belong to z: First, devalue zone() finds the host h that least

recently used z. Next, this algorithm removes h from z.H .

Finally, Algorithm 4 removes z from h.Z.

B. Analysis

Now we analyze the worst-case runtime complexity of

Algorithms 1 through 4.

In the worst-case scenario, each request that

fulfill requests() processes comprises two hosts that are

not a member of a zone. Hosts may not be a member of

a zone if they are rarely-used servers, for example. While

processing each of these worst-case requests, Algorithm 1

iterates over two host zone-sets to calculate their intersection

(line 5), the set of all zones to find the smallest zone (line

Algorithm 4 Zone devaluation.

1: function DEVALUE ZONE(z)

2: while |z.H| > mhpz do

3: h← least recently used host(z)
4: z.H ← z.H − h

5: h.Z ← h.Z − z

6: end while

7: end function

17), two host zone-sets to calculate unions (lines 18 and 19)

and one zone host-set to calculate a union (line 20). This

algorithm will also incur the runtime of devalue host() twice

per request in the worst case.

In the worst case, for every zone that the host is a member

of (line 2), Algorithm 2 iterates over the host zone-set once

to find the least recently used zone (line 3), the zone host-set

once to remove the host (line 4) and the host zone-set a second

time to remove the zone (line 5).

Therefore, the worst-case runtime complexity of

devalue host() is:

O(|Z|(|Z|+ |H|+ |Z|))

= O(2|Z|2 + |Z||H|)

= O(|Z|2 + |Z||H|)

This means the worst-case runtime complexity of

fulfill requests() is:

O(r(2|Z|+ |Z|+ 2|Z|+ |H|+ 2(|Z|2 + |Z||H|)))

= O(r(5|Z|+ |H|+ 2|Z|2 + 2|Z||H|))

= O(r(|Z|+ |H|+ |Z|2 + |Z||H|))

Therefore, Algorithm 1 runs in quadratic time with respect to

the number of zones and in linear time with respect to the

number of requests and hosts.

For each zone, enforce zone policy() invokes

devalue zone(). In the worst case, for every host that is

a member of the zone (line 2), Algorithm 4 iterates over the

zone host-set once to find the host that least recently used the

zone (line 3), iterates over the zone host-set a second time to

remove the host (line 4) and iterates over the host zone-set

once to remove the zone (line 5). Therefore, the worst-case

runtime complexity of devalue zone() is:

O(|H|(|H|+ |H|+ |Z|))

= O(2|H|2 + |H||Z|)

= O(|H|2 + |H||Z|)

This means the worst-case runtime complexity of

enforce zone policy() is:

O(|Z|(|H|2 + |H||Z|))

= O(|H|2|Z|+ |Z|2|H|)

Therefore, Algorithm 3 runs in quadratic time with respect to

the number of zones and with respect to the number of hosts.



TABLE I
SIMULATION PARAMETERS.

Parameter Description Source Range

Name

pc probability of compromise Simulation 0.0 - 1.0

pr probability of reachback Simulation 0.0 - 1.0

d disruptions Simulation 0 - 40,000

pe probability an exploit exists Defender 0.1 - 0.9

z maximum zone size Defender 25 - 500

n network size Defender 2048

x number of Internet gateways Defender 8 - 64

Φ interzone porosity Defender 0.1 - 0.9

λ mean request interval Defender 1 - 30 d

IV. SIMULATION

We began with the simple framework we used for [3],

[6]. Next, we integrated our extensions to [2]. Finally, we

added the enhancements we propose in this paper. The

instrumentation is a SimPy [1] artifact with three classes: a

Network singleton, an active ZM singleton and an active Host

class that is instantiated many times. The Network singleton

is passive; it serves as a container for the simulation’s objects,

attributes and utility methods. The ZM singleton is active; it

contains implementations for the request fulfillment and policy

enforcement algorithms described in Section III and invokes

them once every 24 hours of simulation time. The many Host

objects are active; they bill charge numbers, create zoning

requests and, if they are infected, attempt to compromise other

hosts. This timecard information is the criteria by which the

algorithms determine the least recently used zone. Once every

24 hours of simulation time, the Host objects choose the

number of charge numbers to bill and the charge numbers

themselves based on a uniform distribution. The Host objects

create a zoning request for the ZM based on an exponential

distribution, but choose the requested host based on a uniform

distribution. Infected Host objects choose a host to attempt

to spread to based on a uniform distribution, and nature

determines if these attempts are successful based on a uniform

distribution. We make three assumptions in the simulation:

there is a one-to-one correspondence between cyber zones and

charge numbers, we cannot create new zones and there is a

one-to-one correspondence between humans and hosts.

Table I lists the parameters that constrain our discrete-time

simulation. pc is the probability that an arbitrary host in the

subject network is compromised. pr is the probability that an

arbitrary host in the subject network can reach back to its C2

node. To reach back, the host must be compromised and have

visibility to a compromised externally-facing host. d is the

number of disruptions hosts experience during the simulation.

A disruption occurs when the ZM removes a host from a zone

in the process of devaluation (cf. Algorithms 2 and 4. pe is

the probability that an arbitrary host in the subject network is

exploitable. Mitchell and Sery provide a technique to estimate

pe in [4]. z is the maximum zone size. This will be lower for

a highly compartmentalized network and higher for a flatter

network. n is size of the entire subject network. x the number

of externally-facing hosts on the subject network. This will

be lower for a cyber-physical system (CPS) that is mostly

populated with sensors, actuators and control units. x will

be higher for an enterprise network that is mostly populated

with attended commodity devices. Φ is the porosity of the

zone boundaries. [4] also provides a technique to estimate

Φ. λ is the mean request interval. This will be lower for

highly dynamic workplaces with new collaborations forming

frequently and higher for more static workplaces and industrial

control systems (ICSs).

V. RESULTS

This section visualizes the numerical results the discrete-

time simulation produced in Figures 4 through 11. We also

interpret the trends these figures show.
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Figure 4 shows the impact of the maximum zone size

and the probability that an arbitrary host is exploitable on

the probability that an arbitrary host is compromised. This

figure shows that both z and pe are directly related to pc,

which is how we want the algorithm to behave because this

means that smaller zones comprising less exploitable hosts are

more secure. Also, pe amplifies the effect of z on pc: When

pe = 0.1, pc’s range is only 0.019; on the other hand, the

range is 0.141 when pe = 0.9, which is almost an order of

magnitude increase.

Figure 5 shows the impact of the maximum zone size and

the probability that an arbitrary host is exploitable on the

probability that an arbitrary host can reach back to its C2

node. This figure shows that both z and pe are directly related

to pr, which is how we want the algorithm to behave because

this means that smaller zones comprising less exploitable hosts

are more secure. Figure 5 shows that pe amplifies pr in the

same fashion it does to pc.

Figure 6 shows the impact of the maximum zone size and

the interzone porosity on the probability that an arbitrary host
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Fig. 6. Probability of compromise versus zone size and interzone porosity.

is compromised. This figure shows that both z and Φ are

directly related to pc, which is how we want the algorithm to

behave because this means that smaller zones with less porous

boundaries are more secure. In contrast to pe, Φ attenuates the

effect of z on pc. When Φ = 0.1, pc’s range is 0.148; on the

other hand, the range is only 0.052 when Φ = 0.9.

Figure 7 shows the impact of the maximum zone size and

the interzone porosity on the probability that an arbitrary host

can reach back to its C2 node. This figure shows that both

z and Φ are directly related to pr, which is how we want

the algorithm to behave because this means that smaller zones

with less porous boundaries are more secure. Figure 7 shows

that Φ attenuates pr in the same fashion it does to pc.

Figure 8 shows the impact of the maximum zone size and

the mean request interval on the probability that an arbitrary

host is compromised. This figure shows that while z is directly

related to pc, λ appears unrelated. This is how we want the

algorithm to behave: Smaller zones are more secure, but the

rate of new collaborations should not impact security.

Figure 9 shows the impact of the maximum zone size and
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the mean request interval on the probability that an arbitrary

host can reach back to its C2 node. This figure shows that

while z is directly related to pr, λ appears unrelated. This is



how we want the algorithm to behave: Smaller zones are more

secure, but the rate of new collaborations should not impact

security.
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Figure 10 shows the impact of the maximum zone size

and the externally-facing host count on the probability that

an arbitrary host can reach back to its C2 node. This figure

shows that both z and x are directly related to pr, which is

how we want the algorithm to behave because this means that

smaller zones with fewer Internet gateways are more secure.

Also, Figure 10 shows that while pr is sensitive to x, its effect

diminishes as x grows. While the gap between the curves for

x = 8 and x = 16 is clear, the gap between the curves for

x = 32 and x = 32 is less distinct.
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Figure 11 shows the impact of the maximum zone size

and the mean request interval on the number of disruptions.

This figure shows that both z and λ are inversely related to

distraction count, which is how we want the algorithm to

behave because this means that larger zones with less frequent

new collaborations are less disruptive for the defender. Also,

λ attenuates the effect of z on d. When λ = 1 d, d’s range

is 20932; on the other hand, the range is only 1175 when

λ = 30 d.

VI. CONCLUSIONS

In this paper, we make three basic contributions. First,

we propose an MTD intrusion tolerance technique based on

dynamically assigning hosts in a network to cyber zones

and restricting the traffic flow between these zones. We also

provide a reference implementation for this technique. Finally,

we study how dynamic cyber zone defense impacts the attacker

and defender using a discrete-time simulation.

There is a substantial list of enhancements we look forward

to making to this work. First, we will consider a ZM that

batches requests and finds zone assignments that are minimally

disruptive. We will also collect real data regarding patterns

of human and host collaboration to replay in our simulation.

Third, we will relax assumptions that we make in the discrete-

time simulation: we will allow the ZM to create new zones,

we will allow many-to-many relationships between zones and

charge numbers and we will allow many-to-many relationships

between humans and hosts.
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