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Abstract—Information security is a top priority in government
and industry because high consequence cyber incidents continue
with regularity. The blue teamers that protect cyber systems
cannot stop or even know about all these incidents, so they
must take measures to tolerate these incursions in addition
to preventing and detecting them. We propose dynamically
compartmentalizing subject networks into collaboration zones
and limiting the communication between these zones. In this
article, we demonstrate this technique’s effect on the attacker
and the defender for various parameter settings using discrete-
time simulation. Based on our results, we conclude that dynamic
cyber zone defense is a viable intrusion tolerance technique and
should be considered for technology transfer.

Index Terms—moving target defense; intrusion tolerance;
security; algorithm; simulation

I. INTRODUCTION

Government agencies and corporate enterprises make
information security a top priority because of cyberspace’s
hostility. The Dyn domain name system (DNS) distributed
denial of service (DDoS), San Francisco Municipal
Transportation Agency ransom, WannaCry pandemic,
Petya attack and Equifax personally identifiable information
(PII) spill demonstrate that cyber events are not decreasing in
frequency or impact.

Cyber security groups cannot stop or even know about all
these events, so they must provide a defense in depth that
includes an intrusion tolerance layer. We propose dynamically
dividing subject networks into zones based on business needs
and limiting the traffic that flows between these zones. We
demonstrate this technique’s effect on the attacker and the
defender for various parameter settings using discrete-time
simulation. This approach can be considered a moving target
defense (MTD).

Our threat model comprises four key points: First, we
assume that we face a sophisticated state or criminally-
sponsored adversary. Next, we assume that an insider threat is
present. Third, we assume that this insider must move laterally
to their final objective. Finally, we assume that they must reach
back to their command and control (C2) node.

Now we visualize the dynamic cyber zone defense use cases
in three figures.
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Fig. 1. Human-triggered rezoning.

Figure 1 shows a human identifying a business need for
hosts a and b to communicate freely. A host can be any
endpoint on the subject network: for example, a workstation,
server, printer or scientific device. This human will submit a
request to the Zone Manager (ZM). The ZM collects these
requests across the enterprise and fulfills them. The ZM can
fulfill these requests on an event-driven basis: for example,
fulfilling every request as it arrives. Alternatively, the ZM can
do this periodically: for example, every night at midnight. To
fulfill each request, the ZM assigns the two hosts to the same
zone. Generally speaking, a zone is a network partition; layer 2
(e.g., passive optical network (PON)) and layer 3 (e.g., Internet
protocol (IP)) are the most obvious places to effect the zone
boundaries. However, this work is not specific to any layer or
protocol.

Figure 2 shows the ZM enforcing one facet of security
policy: limiting the number of zones a host belongs to.
This figure shows host ¢’s zone membership and includes
a timestamp indicating the last time host ¢ used each zone.
The security policy limits each host to two zones, so the ZM
reduces host ¢’s zone count. Specifically, the ZM removes host
¢ from zone 4 because host ¢ used this zone least recently.
Like the previous use case, the ZM can perform this function
asynchronously or periodically.

Figure 3 shows the ZM enforcing a different aspect of
security policy. In this case, it limits the number of hosts
that belong to a zone. Specifically, the ZM reduces zone 6’s
membership to three hosts; it removes host f from zone 6
because host f used this zone least recently. Like the previous
use cases, the ZM can do this asynchronously or periodically.
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Fig. 2. Policy-based host devaluation.
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Fig. 3. Policy-based zone devaluation.

The rest of this paper is organized as follows: First,
Section II surveys the state of the art for this topic. Next,
Section III proposes an algorithm to solve the problem at
hand. Third, Section IV describes the discrete-time simulation
that we instrumented to study this technique. Next, Section
V presents numerical data and figures that quantifies and
visualize the performance of this implementation of dynamic
cyber zone defense. Finally, Section VI concludes the article
by summarizing our contributions in the study and identifying
future lines of investigation.

II. LITERATURE SEARCH

In this section, we survey the contemporary work related to
dynamic cyber zone defense.

Mitchell, et al. wrote three papers which propose
increasingly intricate closed-form mathematical models that
predict how static cyber zone defense affects attackers in [5],
[4], [6]. Our investigation studies dynamic cyber zone defense
and researches the impact to the defender as well as the
attacker.

Earlier, we wrote an article proposing dynamic cyber zone
defense [2]. However, this work did not include any attacker-
facing metrics; all the measurements related to the impact
this technique would have on the defender. Also, this earlier

Algorithm 1 Request fulfillment.
1: function FULFILL_REQUESTS(r, Z)

2: for r € r do

3 if ro = r; then

4 continue

5 else if ) #£ r¢g.Z Nry.Z then

6: continue

7 else if ) # ro.Z || 0 # r1.Z then
8 z + find_smallest_zone(rg, 1)
9: if o € z then

10: .4 nr.ZUz

11: zH <+ zHUnr

12: else

13: r9.4 < 19.4 Uz

14: z.H <+ z.HUnrg

15: end if

16: else

17: z « find_smallest_zone(Z)
18: ro.Z < 19.4 Uz

19: r.4 +—nr.ZUz
20: zH<+— zHUrqgUmr,
21: end if
22: devalue_host(rg)
23: devalue_host(rq)

24: end for

25: end function

approach arbitrarily removed humans and hosts from zones. In
the present work, we provide two attacker-facing metrics and
use business-related criteria for deciding what hosts to remove
from zones.

IIT. ALGORITHM
A. Implementation

In this section, we propose dynamic cyber zone defense
algorithms and analyze their runtime complexities. In terms
of notation, the boldface variables are vectors, and the capital
variables are sets in Algorithms 1 through 4.

As discussed in Section I, the ZM can invoke Algorithm 1,
fulfill_hosts(), periodically or on an event-driven basis. This
algorithm accepts two parameters: r is the list of requests that
the ZM has pending. Each request comprises two components;
ro and 7y are the two hosts for which there is a business need
to be in the same zone. In terms of notation, r,.Z indicates
the set of zones that r, is a member of. The other parameter
is Z which is the set of all zones that the ZM administers.
When invoked, fulfill_requests() begins by iterating over the
list of requests. If the two hosts that comprise the request are
the same or if the two hosts are already members of the same
zone, Algorithm 1 proceeds to the next request. Otherwise,
if at least one of the two hosts is in a zone, fulfill_requests()
finds the smallest zone that either of them belongs to and adds
the other host to this smallest zone. Otherwise, Algorithm 1
finds the smallest zone overall and adds both hosts to this
smallest zone. Finally, this algorithm devalues each host. One



Algorithm 2 Host devaluation.

Algorithm 4 Zone devaluation.

1: function DEVALUE_HOST(h)

2 while |h.Z| > mzph do

3: z  least_recently_used_zone(h)
4: zH <+ 2zH—h

5 hZ < hZ—=z

6 end while

7: end function

1: function DEVALUE_ZONE(2)

2 while |z.H| > mhpz do

3: h < least_recently_used_host(z)
4: zH+ z2H-h

5 hZ < hZ—=z

6 end while

7: end function

Algorithm 3 Zone policy enforcement.
1: function ENFORCE_ZONE_POLICY(ZX)
2: for z € Z do
3: devalue_zone(z)
4 end for
5: end function

optimization is to devalue only the hosts added to a zone, but
we trade conceptual compactness for this optimization.

During its execution, Algorithm 1 invokes Algorithm 2,
devalue_host(). This algorithm accepts one parameter: h is the
host to be devalued. A host that is a member of too many zones
is a high value target, so we refer to the process of removing
it from some zones as devaluing the host. Algorithm 2 repeats
the following steps until h belongs to an acceptable number
of zones: (mzph, the maximum zones per host, defines this
acceptable number.) First, devalue_host() finds the zone z that
h used least recently. In terms of notation, z.H indicates the
set of hosts that belong to z. Next, this algorithm removes h
from z.H. Finally, Algorithm 2 removes z from h.Z.

As discussed in Section I, the ZM can invoke Algorithm 3,
enforce_zonepolicy(), periodically or on an event-driven basis.
This algorithm accepts one parameter: Z is the set of zones
that the ZM administers. Algorithm 3 iterates over all the zones
in Z, and it invokes devalue_zone() for each zone z.

During its execution, Algorithm 3 invokes Algorithm 4,
devalue_zone(). This algorithm accepts one parameter: z is the
zone to be devalued. A zone to which too many hosts belong
is a high value target, so we refer to the process of removing
some hosts from it as devaluing the zone. Algorithm 4 repeats
the following steps until an acceptable number of hosts (mhpz,
the maximum hosts per zone, defines this acceptable number)
belong to z: First, devalue_zone() finds the host A that least
recently used z. Next, this algorithm removes A from z.H.
Finally, Algorithm 4 removes z from h.Z.

B. Analysis

Now we analyze the worst-case runtime complexity of
Algorithms 1 through 4.

In the worst-case scenario, each request that
fulfill_requests() processes comprises two hosts that are
not a member of a zone. Hosts may not be a member of
a zone if they are rarely-used servers, for example. While
processing each of these worst-case requests, Algorithm 1
iterates over two host zone-sets to calculate their intersection
(line 5), the set of all zones to find the smallest zone (line

17), two host zone-sets to calculate unions (lines 18 and 19)
and one zone host-set to calculate a union (line 20). This
algorithm will also incur the runtime of devalue_host() twice
per request in the worst case.

In the worst case, for every zone that the host is a member
of (line 2), Algorithm 2 iterates over the host zone-set once
to find the least recently used zone (line 3), the zone host-set
once to remove the host (line 4) and the host zone-set a second
time to remove the zone (line 5).

Therefore, the worst-case
devalue_host() is:

runtime complexity of
o(zl(1z] + |H[ +12]))

— 0(2/2P + ||| H])
=0(|2Z” + |Z||H])

This means the worst-case runtime

fulfill_requests() is:

complexity of

O(r(2|Z] + 12| + 22| + |H| + 2(1Z|* + | Z||H])))
= O(r(5|1Z| + [H| + 22| + 2| Z||H]))
=O(r(|Z| +|H| +|Z” + | Z||H]))

Therefore, Algorithm 1 runs in quadratic time with respect to
the number of zones and in linear time with respect to the
number of requests and hosts.

For each zZone, enforce_zone_policy() invokes
devalue_zone(). In the worst case, for every host that is
a member of the zone (line 2), Algorithm 4 iterates over the
zone host-set once to find the host that least recently used the
zone (line 3), iterates over the zone host-set a second time to
remove the host (line 4) and iterates over the host zone-set
once to remove the zone (line 5). Therefore, the worst-case
runtime complexity of devalue_zone() is:

O(H|(|H]| + |H| +|2]))
— O@[H[* + |H]|Z))
— O(HP + |H]|2))

This means the worst-case runtime

enforce_zone_policy() is:

complexity of

O(|Z|(1H]* + |H1|Z]))
= O(|HP|Z| + |Z]?|H])

Therefore, Algorithm 3 runs in quadratic time with respect to
the number of zones and with respect to the number of hosts.



TABLE I
SIMULATION PARAMETERS.
Parameter Description Source Range
Name

Pe probability of compromise Simulation | 0.0 - 1.0
Pr probability of reachback Simulation | 0.0 - 1.0
d disruptions Simulation | 0 - 40,000
Pe probability an exploit exists Defender 0.1 -0.9
z maximum zone size Defender 25 - 500
n network size Defender 2048
T number of Internet gateways | Defender 8-64

interzone porosity Defender 0.1 -0.9
A mean request interval Defender 1-30d

IV. SIMULATION

We began with the simple framework we used for [3],
[6]. Next, we integrated our extensions to [2]. Finally, we
added the enhancements we propose in this paper. The
instrumentation is a SimPy [1] artifact with three classes: a
Network singleton, an active ZM singleton and an active Host
class that is instantiated many times. The Network singleton
is passive; it serves as a container for the simulation’s objects,
attributes and utility methods. The ZM singleton is active; it
contains implementations for the request fulfillment and policy
enforcement algorithms described in Section III and invokes
them once every 24 hours of simulation time. The many Host
objects are active; they bill charge numbers, create zoning
requests and, if they are infected, attempt to compromise other
hosts. This timecard information is the criteria by which the
algorithms determine the least recently used zone. Once every
24 hours of simulation time, the Host objects choose the
number of charge numbers to bill and the charge numbers
themselves based on a uniform distribution. The Host objects
create a zoning request for the ZM based on an exponential
distribution, but choose the requested host based on a uniform
distribution. Infected Host objects choose a host to attempt
to spread to based on a uniform distribution, and nature
determines if these attempts are successful based on a uniform
distribution. We make three assumptions in the simulation:
there is a one-to-one correspondence between cyber zones and
charge numbers, we cannot create new zones and there is a
one-to-one correspondence between humans and hosts.

Table I lists the parameters that constrain our discrete-time
simulation. p. is the probability that an arbitrary host in the
subject network is compromised. p,. is the probability that an
arbitrary host in the subject network can reach back to its C2
node. To reach back, the host must be compromised and have
visibility to a compromised externally-facing host. d is the
number of disruptions hosts experience during the simulation.
A disruption occurs when the ZM removes a host from a zone
in the process of devaluation (cf. Algorithms 2 and 4. p. is
the probability that an arbitrary host in the subject network is
exploitable. Mitchell and Sery provide a technique to estimate

Pe in [4]. z is the maximum zone size. This will be lower for
a highly compartmentalized network and higher for a flatter
network. n is size of the entire subject network. x the number
of externally-facing hosts on the subject network. This will
be lower for a cyber-physical system (CPS) that is mostly
populated with sensors, actuators and control units. x will
be higher for an enterprise network that is mostly populated
with attended commodity devices. ® is the porosity of the
zone boundaries. [4] also provides a technique to estimate
®. )\ is the mean request interval. This will be lower for
highly dynamic workplaces with new collaborations forming
frequently and higher for more static workplaces and industrial
control systems (ICSs).

V. RESULTS

This section visualizes the numerical results the discrete-
time simulation produced in Figures 4 through 11. We also
interpret the trends these figures show.
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Fig. 4. Probability of compromise versus zone size and probability of
exploitability.

Figure 4 shows the impact of the maximum zone size
and the probability that an arbitrary host is exploitable on
the probability that an arbitrary host is compromised. This
figure shows that both z and p. are directly related to p,,
which is how we want the algorithm to behave because this
means that smaller zones comprising less exploitable hosts are
more secure. Also, p. amplifies the effect of z on p.: When
pe = 0.1, p.’s range is only 0.019; on the other hand, the
range is 0.141 when p. = 0.9, which is almost an order of
magnitude increase.

Figure 5 shows the impact of the maximum zone size and
the probability that an arbitrary host is exploitable on the
probability that an arbitrary host can reach back to its C2
node. This figure shows that both z and p, are directly related
to p,, which is how we want the algorithm to behave because
this means that smaller zones comprising less exploitable hosts
are more secure. Figure 5 shows that p. amplifies p, in the
same fashion it does to p..

Figure 6 shows the impact of the maximum zone size and
the interzone porosity on the probability that an arbitrary host
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Fig. 6. Probability of compromise versus zone size and interzone porosity.

is compromised. This figure shows that both z and ® are
directly related to p., which is how we want the algorithm to
behave because this means that smaller zones with less porous
boundaries are more secure. In contrast to p., ® attenuates the
effect of z on p.. When ® = 0.1, p.’s range is 0.148; on the
other hand, the range is only 0.052 when ® = 0.9.

Figure 7 shows the impact of the maximum zone size and
the interzone porosity on the probability that an arbitrary host
can reach back to its C2 node. This figure shows that both
z and @ are directly related to p,, which is how we want
the algorithm to behave because this means that smaller zones
with less porous boundaries are more secure. Figure 7 shows
that ¢ attenuates p,. in the same fashion it does to p..

Figure 8 shows the impact of the maximum zone size and
the mean request interval on the probability that an arbitrary
host is compromised. This figure shows that while z is directly
related to p., A appears unrelated. This is how we want the
algorithm to behave: Smaller zones are more secure, but the
rate of new collaborations should not impact security.

Figure 9 shows the impact of the maximum zone size and
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the mean request interval on the probability that an arbitrary
host can reach back to its C2 node. This figure shows that
while z is directly related to p,, A appears unrelated. This is



how we want the algorithm to behave: Smaller zones are more
secure, but the rate of new collaborations should not impact
security.
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Figure 10 shows the impact of the maximum zone size
and the externally-facing host count on the probability that
an arbitrary host can reach back to its C2 node. This figure
shows that both z and x are directly related to p,, which is
how we want the algorithm to behave because this means that
smaller zones with fewer Internet gateways are more secure.
Also, Figure 10 shows that while p, is sensitive to z, its effect
diminishes as x grows. While the gap between the curves for
xz = 8 and x = 16 is clear, the gap between the curves for
z =32 and x = 32 is less distinct.
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Figure 11 shows the impact of the maximum zone size
and the mean request interval on the number of disruptions.
This figure shows that both z and A are inversely related to
distraction count, which is how we want the algorithm to
behave because this means that larger zones with less frequent
new collaborations are less disruptive for the defender. Also,

A attenuates the effect of z on d. When A = 1 d, d’s range
is 20932; on the other hand, the range is only 1175 when
A=30d.

VI. CONCLUSIONS

In this paper, we make three basic contributions. First,
we propose an MTD intrusion tolerance technique based on
dynamically assigning hosts in a network to cyber zones
and restricting the traffic flow between these zones. We also
provide a reference implementation for this technique. Finally,
we study how dynamic cyber zone defense impacts the attacker
and defender using a discrete-time simulation.

There is a substantial list of enhancements we look forward
to making to this work. First, we will consider a ZM that
batches requests and finds zone assignments that are minimally
disruptive. We will also collect real data regarding patterns
of human and host collaboration to replay in our simulation.
Third, we will relax assumptions that we make in the discrete-
time simulation: we will allow the ZM to create new zones,
we will allow many-to-many relationships between zones and
charge numbers and we will allow many-to-many relationships
between humans and hosts.
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