

ORNL/TM-2006/76R1

OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE
FOR THE DEPARTMENT OF ENERGY

**NMIS WITH IMAGING AND GAMMA RAY
SPECTROMETRY FOR PU, HEU, HE,
CHEMICAL AGENTS, AND DRUGS**

J. A. Mullens
P. A. Hausladen
D. E. Archer
M. C. Wright
J. T. Mihalczo

This document has been reviewed and is determined to be
APPROVED FOR PUBLIC RELEASE.

Name/Title: Leesa Laymance / ORNL TIO

Date: 12/04/2018

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**NMIS WITH IMAGING AND GAMMA RAY SPECTROMETRY FOR PU, HEU,
HE, CHEMICAL AGENTS, AND DRUGS**

J. A. Mullens
P. A. Hausladen
D. E. Archer
M. C. Wright
J. T. Mihalczo

July 2007

Prepared by
OAK RIDGE NATIONAL LABORATORY
P.O. Box 2008
Oak Ridge, Tennessee 37831-6285
managed by
UT-Battelle, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

NMIS WITH IMAGING AND GAMMA RAY SPECTROMETRY FOR PU, HEU, HE, CHEMICAL AGENTS, AND DRUGS

The concept for this system is a Nuclear Materials Identification System (NMIS) time-dependent coincidence system¹ that incorporates transmission tomographic imaging and gamma ray spectrometry and utilizes a small, lightweight (30 lbs), portable DT neutron (14.1 MeV) generator (5×10^7 neutrons/second)², proton recoil scintillation detectors, a gamma ray detector (HPGe) with multichannel analyzer, and a fast (1GHz) time correlation processor. The proton recoil scintillators are 24 small 2.5x2.5x15.2-cm.-thick plastic scintillators for imaging and two 2x2 arrays of 25x25x8-cm.-thick liquid scintillators with online digital pulse shape discrimination to distinguish neutrons from gamma rays. A computer controlled scanner moves the small detectors and the source appropriately for scanning a target object for imaging. The system is based on detection of transmitted 14.1 MeV neutrons, fission neutrons and gamma rays from spontaneous inherent source fission of the target, fission neutrons and gamma rays induced by the external DT source, gamma ray from natural emissions of uranium and Pu, and induced gamma ray emission by the interaction of the 14.1 MeV neutrons from the DT source. This system is uniquely suited for detection of shielded highly enriched uranium (HEU), plutonium, and other special nuclear materials, and detection of high explosives (HE), chemical agents, and in some cases, drugs³. It will be adapted to utilize a trusted processor that incorporates information barrier and authentication techniques using open software and then be useful in some international applications for materials whose characteristics may be classified. The proposed information barrier version of the NMIS system would consist of detectors and cables, the red (classified side) system which processes the data, and the black (unclassified side) computer which handles the computer interface. The system could use the "IB wrapper" concept proposed by LANL and the software integrity (digital signatures) system proposed by Sandia. Since it is based entirely on commercially available components, the entire system, including the NMIS data acquisition boards, can be built with commercial off the shelf components. This system will incorporate the Portable Isotopic Neutron Spectrometer technology of A. J. Caffrey of the Idaho National Engineering and Environmental Laboratory for HE⁴, chemical agents⁴, and drug detection.

The system hardware and software can be configured to obtain the following: Pu presence, Pu mass, Pu 240/239 ratio, Pu geometry, Pu metal vs. non-metallic compound (absence of metal), time (age) since processing for Pu (or last purification), U presence, U mass, U enrichment, U geometry, U metal vs. non-metallic compound (absence of metal), high explosives, chemical weapons, and, in some cases, drugs. A matrix of the quantities determined, the method of determination, whether active (external neutron source) or passive, and the measurement equipment involved is given in the following table. Some of these attributes can be obtained by multiple data analysis methods. The gamma-ray spectrometry methods for Pu, HE, and drugs have been developed by other laboratories, are well-known and will be incorporated. In addition, the imaging capability allows warhead authentication and traceability of weapons parts and weapons components through dismantlement and can be used to verify the destruction or change in form of special nuclear material, HE, and other essential non-fissile components. The imaging data will provide geometric configurations for GADRAS-like codes⁵. Imaging and GADRAS complement each other for material determinations since both gamma-ray spectrometry interpretations and neutron transmission depend upon materials and configuration. In addition, the data imaging measurements and MCNP-PoliMi calculations of the NMIS time correlation signatures can be used to obtain fissile shape and mass without calibration. Very good initial estimates of the configuration of materials from imaging can be provided to both these codes for further refined analyses. The system will be modularly constructed with the RF shielded modules connected to the processor by appropriate control and signal cables in metal conduit. The system hardware and software modules may also be configured to estimate a selected subset of these attributes. In addition, signatures for fissile material can be used for template matching such as

has been implemented for confirmation of inventories and receipts for weapons components at the Y-12 National Security Complex in Oak Ridge since 1996. Y-12 personnel were trained and have been operating three NMIS systems at the Y-12 complex.

This system has the advantage of combining multiple technologies into a single system for a variety of applications and thus is cost effective.

¹A variant of this system was described in the following reference which is included as Appendix A: J. A. Mullens, J. E. Breeding, R. B. Perez, J. T. Mihalczo, T. E. Valentine, and J. A. McEvers, "A Multipurpose Processor for Arms Control and Nonproliferation and NMC&A," Institute of Nuclear Materials Management Annual Conference, July 1999, J. T. Mihalczo, J. K. Mattingly, J. A. Mullens, J. A. McEvers, J. S. Neal, R. B. Oberer, J. D. White, "Oak Ridge Multiple Attribute System (ORMAS) For Pu, HEU, HE, Chemical Agents, and Drugs," ORNL/TM-2001/175 (2001).

²While the active source is operational at 5×10^7 n/sec, the radiation dose is ~15 mrem/hr at 3 meters with the source unshielded; the source is turned off when not in use.

³Personnel communication, INEEL, July 2001.

⁴A. J. Caffrey, J. D. Cole, R. J. Gehrke, and R. C. Greenwood, "Chemical Warfare Agent and High Explosive Identification by Spectroscopy of Neutron-Induced Gamma Rays," IEEE Transactions of Nuclear Science, 39, p. 1422-1426 (1992)

⁵Dean J. Mitchell, GADRAS-95 User's Manual, Sandia National Laboratories Systems Research Center 5900 Report (1995)

10 – 15 Minute Time Constraint for Weapons Inspection
Matrix of ORMAS Attribute Measurements

Material	Attribute		Method (Option, Implementation, Basis)	Active or Passive	Measurement Equipment
plutonium	presence	1	time-dependent coincidence detect internal spontaneous fission	active/passive	DT neutron source (if active), scintillation detectors, time-correlator
		2	gamma spectrometry detect Pu spectral lines	passive	high-resolution gamma detector, multi-channel analyzer
	age	1	gamma spectrometry Measure in-growth of ^{241}Am	passive	high-resolution gamma detector, multi-channel analyzer
		1	neutron-initiated gamma spectrometry detect 6129 KeV gamma from 14.1 MeV neutron interactions with O & F	active	DT neutron source, high-resolution gamma detector, multi-channel analyzer
	metal / non-metal	2	time-dependent coincidence measure density from neutron transmission	active	DT neutron source, scintillation detectors, time-correlator
		3	time-dependent coincidence attenuation of gammas emitted and multiplication depending on density	active	DT neutron source scintillation detectors, time-correlator
		1	time-dependent coincidence imaging	active	DT neutron source, scintillation detectors, time-correlator
	relative ^{240}Pu -content	1	time-dependent coincidence compare spontaneous and induced fission rates	active	DT neutron source, scintillation detectors, time-correlator
		2	gamma spectrometry Compare ^{240}Pu and ^{239}Pu spectral lines	passive	high-resolution gamma detector, multi-channel analyzer
	fissile mass	1	time-dependent coincidence measure induced fission rate enhanced by imaging	active	DT neutron source, scintillation detectors, time-correlator
		2	time-dependent coincidence measure spontaneous fission rate	passive	scintillation detectors, time-correlator
	disposition or conversion of	1	time-dependent coincidence transmission imaging tomography	active	DT neutron source scintillation detectors, time-correlator

Material	Attribute		Method (Option, Implementation, Basis)		Active or Passive	Measurement Equipment	
uranium	metal / non-metal	presence	1	time-dependent coincidence	detect induced fission and absence of internal spontaneous fission	active	DT neutron source, scintillation detectors, time-correlator
			1	neutron-initiated gamma spectrometry	detect 6129 KeV gamma from 14.1 MeV neutron interactions with O & F	active	DT neutron source, high-resolution gamma detector, multi-channel analyzer
			2	time-dependent coincidence	measure density from neutron transmission	active	DT neutron source, scintillation detectors, time-correlator
			3	time-dependent coincidence	attenuation of gamma emitted and multiplication depend on density	active	DT neutron source, scintillation detectors, time-correlator
		geometry	1	time-dependent coincidence	imaging	active	DT neutron source, scintillation detectors, time correlation
			1	time-dependent coincidence	Compare induced fission rates and neutron transmission for simple parts	active	DT neutron source, scintillation detectors, time-correlator, HPGe
			2	Gamma spectrometry corrected for imaging using field of view, volume, shielding	HPGe *	active	DT neutron source, scintillation detectors, time-correlator
		fissile mass	1	time-dependent coincidence	measure induced fission rate complemented by imaging	active	DT neutron source, scintillation detectors, time-correlator
		Disposition or conversion of	1	time-dependent coincidence	transmission imaging tomography	active	DT neutron source, scintillation detectors, time-correlator
fissile	spatial distribution	1	time-dependent coincidence	imaging plus DT source pixel correlated multiplicities	active	DT neutron source, scintillation detectors, time-correlator	

Material	Attribute		Method (Option, Implementation , Basis)	Active or Passive	Measurement Equipment	Material
dismantlement	warhead authentication	1	time dependent coincidence	transmission imaging tomography	active	DT neutron source, scintillation detectors, time-correlator
	traceability of weapons/parts	1	time dependent coincidence	transmission imaging tomography	active	DT neutron source, scintillation detectors, time-correlator
	destruction of nuclear warhead casings	1	time dependent coincidence	transmission imaging tomography	active	DT neutron source, scintillation detectors, time-correlator
	destruction of essential non-nuclear parts	1	time dependent coincidence	transmission imaging tomography	active	DT neutron source, scintillation detectors, time-correlator
high explosive	presence	1	gamma spectrometry	N presence and ratios of N/C, H/C, and O/C	active	DT neutron source, HPGe or BGO
	geometry	1	time dependent coincidence	Imaging	active	DT neutron source, scintillation detectors, time-correlator
	separation from fissile	1	time dependent coincidence	transmission imaging tomography	active	DT neutron source, scintillation detectors, time-correlator
	destruction of	1	time dependent coincidence	transmission imaging tomography	active	DT neutron source, scintillation detectors, time-correlator
chemical weapon	presence	1	gamma spectrometry	ratios of N/C, H/C, and O/C	active	DT neutron source, HPGe or BGO
drugs	presence	1	gamma spectrometry	ratios of N/C, H/C, and O/C	active	DT neutron source, HPGe or BGO

* Measure 185.7 for gamma, use correction factor for shielding and volume from imaging.