

Molecular Simulations of Hydration Behavior of Zwitterion Brush Array and Its Antifouling Property in Aqueous Environment

Yuan Xiang, Rong-Guang Xu, and Yongsheng Leng

Langmuir, Just Accepted Manuscript • DOI: 10.1021/acs.langmuir.7b03386 • Publication Date (Web): 23 Jan 2018

Downloaded from <http://pubs.acs.org> on January 24, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

Langmuir is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1
2
3 *Submitted to Langmuir on September 27, 2017; revised version submitted on November*
4
5 *28, 2017*
6
7
8

9 **Molecular Simulations of Hydration Behavior of Zwitterion Brush**
10
11 **Array and Its Antifouling Property in Aqueous Environment**
12
13

14
15 **Yuan Xiang, Rong-Guang Xu, and Yongsheng Leng***
16

17 *Department of Mechanical & Aerospace Engineering, The George Washington University,*
18 *Washington, D.C. 20052, United States*
19
20

21 **Abstract:** We carried out umbrella sampling and molecular dynamics (MD) simulations
22 to investigate molecular interactions between sulfobetaine zwitterions or between
23 sulfobetaine brushes in different media. Simulation results show that it is more
24 energetically favorable for the two sulfobetaine zwitterions or brushes being fully
25 hydrated in aqueous solutions than in vacuum where strong ion pairs are formed.
26 Structural properties of hydrated sulfobetaine brush array and its antifouling behavior
27 against a foulant gel are subsequently studied through steered MD simulations. We find
28 that sulfobetaine brush arrays with different grafting densities have different structures
29 and antifouling mechanisms. At a comparably higher grafting density, the sulfobetaine
30 brush array exhibits a more organized structure which can hold a tightly bound hydration
31 water layer at the interface. Compression of this hydration layer results in a strong
32 repulsive force. However, at a comparably lower grafting density, the brush array
33 exhibits a randomly oriented structure in which the antifouling of the brush array is
34 through the deformation of the sulfobetaine branches.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55 * Corresponding author, Tel.: 202-994-5964; e-mail: leng@gwu.edu.
56
57
58
59
60

1 2 3 4 5 6 1. INTRODUCTION

7
8 Membrane separation is a widely used technology in water purification.¹⁻⁶
9 However, the major deficiency of this technique is fouling problem⁷⁻⁹ induced by the
10 accumulation of foreign substances on the membrane surface. Membrane fouling can
11 significantly reduce the membrane performances, such as water flux and effluent quality.
12 One of the promising techniques to resolve the fouling problem is to modify the surface
13 chemistry of membrane, which can also improve other properties of membrane, such as
14 salt rejection, chlorine tolerance, and thermal stability.¹⁰ Among many antifouling
15 monomers, polyethylene glycol (PEG) and polyzwitterion (PZ) coatings grafted onto
16 membrane surfaces¹¹⁻¹⁶ are promising candidates of antifouling materials. Although PEG
17 has a good antifouling property due to its ability to bind water molecules (hydration
18 property), it also suffers from oxidization susceptibility and thus may not be a good
19 choice for long-term applications.¹⁷ Compared with PEG coatings, PZ coatings, such as
20 poly(carboxybetaine) (pCB) and poly(sulfobetaine) (pSB), are more chemically stable
21 and could bind water molecules even stronger than PEG via localized charges,¹⁸ making
22 them excellent antifouling materials. A PZ molecule contains both positively and
23 negatively charged functional groups within the same side chain, keeping its total charge
24 neutrality. In recent years, many methods have been proposed to create PZ coatings on
25 polyamide membrane surface, including chemical vapor deposition,¹⁹ click chemistry²⁰
26 and concentration-polarization-enhanced radical graft polymerization.²¹ PZ coatings
27 exhibit more stable chemical properties than PEG in the presence of oxygen and
28 transition metal ions, and therefore have received growing interests not only in membrane
29 technology, but also in marine, biomedical, and other antifouling applications.¹⁸⁻³¹
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Currently, most investigations of PZ coatings focus on grafting methodology or designs
4 of PZ interfaces.^{32, 33} However, the detailed structural properties of zwitterionic coating at
5 the interface and its fundamental antifouling mechanism from molecular perspective are
6 still not fully understood.³⁴⁻³⁶ For example, what are the hydration structures of
7 zwitterionic brush arrays at the interface and how does a foulant molecule interact with
8 the zwitterionic coating when they are in close proximity? Moreover, how does the
9 grafting density of zwitterionic brushes influence this foulant-coating interaction? These
10 are the fundamental questions that are critical to the molecular design of antifouling
11 materials in membrane technology.
12
13
14
15
16
17
18
19
20
21
22
23
24

25 Many theoretical studies through molecular dynamics (MD) simulations have
26 been carried out recently to understand the structural properties of polyamide membranes
27³⁷⁻⁴³ and zwitterionic materials.⁴⁴⁻⁵¹ These simulations provide molecular details that are
28 not directly available from experiments. In particular, hydration behaviors of zwitterions
29 and their association with metal ions were reported by Shao *et al.*^{45, 46} in which they
30 found that carboxybetaine associated more strongly with Li^+ and Na^+ (smaller ions),
31 while sulfobetaine associated more strongly with K^+ and Cs^+ (larger ions). High ion
32 rejection of zwitterion functionalized carbon nanotubes (CNTs) was reported by Chan *et*
33 *al.*⁴⁹ They also calculated the upper bound of membrane performance (water flux) based
34 on this zwitterion functionalized nanotube. Du *et al.* investigated hydration properties of
35 carboxybetaine zwitterion brushes with varying separation distances between the
36 quaternary ammonium cation and carboxylic anion.⁴⁴ They found that many factors
37 influenced the hydration behaviors of the carboxybetaine brushes, including the values of
38 both positive and negative charges, their separation distances and chain interactions. The
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

competition between the strong hydration of the charged groups and the dehydration of the hydrocarbon chains determines hydrophilic/hydrophobic tendency of the brushes. Various studies on interactions between zwitterions and organic matters have also been reported. For example, Shao et al. performed molecular simulations to study the interaction between carboxybetaine and chymotrypsin inhibitor 2 (a protein model)⁴⁷ and showed that the carboxybetaine doesn't preferentially accumulate near the protein surface. Using MD simulation, Nagumo et al. reported the free energy profiles of some amino acids approaching a zwitterionic monomer (a carboxybetaine derivative).⁴⁸ They found that these free energy profiles have almost no energetically remarkable minima, regardless of the type of amino-acid residues, indicating that this carboxybetaine derivative has an excellent antifouling property.

In our recent molecular simulation studies, we have investigated the antifouling property of PEG-grafted polyamide membrane.⁵² We found that PEG coating can hold a tightly bound hydration water layer. When the alginate gel is dragged to approach the PEG coating surface, a strong repulsive hydration force is observed due to the compression of this hydration layer. We have also studied the effect of the PEG coverage on the membrane–foulant interactions and found that the alginate gel has a strong tendency to drift to the uncovered polyamide membrane surface.

Following this simulation study, we present our recent work on the hydration behavior of a sulfobetaine coating and its antifouling properties. This is an extensively studied antifouling material in many membrane fouling experiments.¹⁹⁻²¹ Initially, we will study the ion-pairing behaviors of sulfobetaine zwitterions by an umbrella sampling technique^{53, 54}. We will then investigate the different hydration structural properties of

1
2
3 sulfobetaine brush array at different grafting densities. This is followed by the simulation
4 studies of foulant-sulfobetaine coating interactions and the effect of grafting density on
5 its antifouling mechanism.
6
7
8
9
10
11
12
13

14 **2. MOLECULAR MODELS AND SIMULATION METHODS** 15

17 **2.1. Molecular Models** 18

19 **2.1.1. Sulfobetaine Brush.** Several methods have been developed for grafting
20 zwitterionic molecules on a polyamide membrane surface, leading to different
21 zwitterionic brush structures. In this work the sulfobetaine brush model is based on the
22 click chemistry used by Yu et al.²⁰ An alkyne-PZ was first synthesized using reversible
23 additional-fragmentation, chain-transfer radical polymerization. Polyamide membrane
24 was then functionalized with azide functional groups through bromination of amide
25 groups, and subsequently S_N2 nucleophilic substitution of Br with azide functional
26 groups. Finally, the alkyne-PZ was grafted onto azide-polyamide surface by an azide–
27 alkyne cycloaddition click reaction. This process is illustrated in Figure 1a.
28
29
30
31
32
33
34
35
36
37
38
39

40 Our main purpose is to investigate the conformation of the sulfobetaine brush
41 array (coating) and its interaction with foulant molecules in aqueous environment. In
42 order to focus on the major molecular interactions and save computing time, several
43 assumptions and simplifications are made. *First*, we only consider short sulfobetaine
44 brushes with each “tree” containing five sulfobetaine branches (see Figure 1a.). Long
45 sulfobetaine brushes with tens to hundreds of zwitterionic monomers branches certainly
46 adopt different molecular conformation,⁵⁵ which is beyond current study. *Second*, the
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 grafting density in experiments often refers to the total quantity of grafting materials per
4 unit area and has no direct correlation to the number density of brushes. However, in
5 computational simulations, we only consider short sulfobetaine brushes. Therefore, we
6 use the number density to define the low-, intermediate- and high-grafting densities of
7 sulfobetaine brushes on a membrane surface. *Third*, we assume that polyamide
8 membrane underneath the sulfobetaine coating plays a less important role in foulant-
9 sulfobetaine coating interactions, thus polyamide membrane surface is not explicitly
10 modeled in this simulation. We use two saturated benzene rings (see figure 1a and figure
11 2) to represent the root of the brush and the polyamide membrane. Further, in order to
12 compare with previous simulation work,^{45-47, 51} two -CH₂- groups are arranged between
13 the sulfonate and quaternary ammonium groups in a sulfobetaine branch.
14
15

16 The simulation system is prepared by setting the sulfobetaine brushes evenly in a
17 squared grid. Three grafting densities are considered as shown in Table 1.
18 Configurational-bias Monte-Carlo sampling⁵⁶ is performed to sample the initial
19 configurations. This technique allows for all brush conformations generated with the
20 correct Boltzmann weight.⁵⁷ A total of 5100 water molecules are added to the simulation
21 system to hydrate the sulfobetaine brush array, after 2ns MD equilibration run.
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Table 1. Geometric Parameters Related to Different Grafting Densities of
Sulfobetaine Brush Array

	number of sulfobetaine brushes	area per brush	distance between brushes
low density	9	3.24 nm ²	1.8 nm

intermediate density	9	1.44 nm ²	1.2 nm
high density	16	0.64 nm ²	0.8 nm

2.1.2. Foulant. As in our previous simulation study,⁵² we select alginate as the foulant model because this type of molecules are widely found in the environment and believed to be the major contributor to the organic fouling.⁵⁸ Alginate contains β -D-(1 \rightarrow 4)-mannuronic acid (**M**) and α -L-(1 \rightarrow 4)-guluronic acid (**G**) residues. In this work, only **G** residues are considered due to its specific spacing and geometry of the carboxylate functional groups for cation binding.⁵⁹ A detailed molecular structure of alginate is given in Figure 1b. All the carboxyl groups in the G residue are assumed deprotonated under the neutral pH condition,⁶⁰ considering the acid-dissociation-constant (pKa) of alginic acid is between 3.38 - 3.65.⁶¹ A total of 12 sodium ions are added to compensate the 12 $-COO^-$ groups in the 4 alginate chains in the simulation system.

Alginate gel consisting of 4 alginate chains is made by adding 10 calcium ions (Ca^{2+}) and 20 chloride co-ions (Cl^-) through calcium binding in a solution system, containing 3500 water molecules. This subsystem is eventually combined with the previously built sulfobetaine brush array system, yielding a 0.1M $CaCl_2$ solution.

2.2. Simulation Methods

2.2.1. Umbrella Sampling. The umbrella sampling method is used to determine the free energy profile between two sulfobetaine zwitterions or between two sulfobetaine brushes in different media.^{53, 54} A single collective variable, the center of mass (COM) distance, r , between two molecules, is used for calculations. We calculate the free energy

profile $G(r) = -k_B T \ln[P(r)] + \text{constant}$, where k_B is the Boltzmann's constant, T is the temperature, and $P(r)$ is the probability distribution of distance r obtained in the simulation. During the umbrella sampling, the trajectory is divided into N independent simulation segments with a constrained potential applied (the so-called the umbrella potential). A biased distribution of segment i , $P(r_i)$, is first obtained, followed by reconstruction of the unbiased distribution through histogram reweighting methods.^{53, 54} Finally a continuous profile of $G(r)$ is obtained. The free energy calculated in this way reflects the realistic equilibrium property of the system. Detailed parameters for umbrella sampling will be given in Section 3.1.

2.2.2. MD simulation. MD simulations are carried out to study the equilibrium properties of sulfobetaine brush arrays and the interactions between the alginate gel and the sulfobetaine coating in an aqueous solution. The detailed simulation methods have been discussed in our previous publications.^{62, 63} We use the LAMMPS computational package for all of the MD simulations.⁶⁴ Periodic boundary conditions are applied in the three directions. We use the OPLS all-atom force field^{65, 66} to describe the interatomic interactions among the alginate gel and sulfobetaine arrays. This force field has been parameterized for most of the organic molecules in solutions. For sulfobetaine molecules, we use the partial charges developed by Shao et al. from the DFT calculations using the B3LYP/6-31G** functional and basis set.⁴⁶ The flexible simple point charge (SPC) water model^{67, 68} is employed in MD simulations. We use the Aqvist SPC water compatible potentials⁶⁹ for the monovalent Na^+ and divalent Ca^{2+} ions. As the Aqvist's parameters are only available for alkali and alkaline-earth metal cations, we choose the potential parameters for halide Cl^- ion developed by Joung et al.⁷⁰ The particle-particle-particle-

1
2
3 mesh solver is used to calculate the long-range electrostatic interactions.⁷¹ The cut-off
4 distance for the short-range Lennard-Jones interactions is set to 10 Å. The equations of
5 motion of the particles are propagated through the velocity Verlet algorithm with a time
6 step of 1 fs in a constant-*NVT* ensemble. The temperature is controlled at 300 K using the
7 Nose-Hoover thermostat.
8
9

10
11
12 Figure 2 shows an equilibrium snapshot of the molecular simulation system, in
13 which the hydrated sulfobetaine brush array at the high grafting density and an alginate
14 gel are immersed in water. The sulfobetaine brush coating has a thickness around 3.6 nm.
15 The Ca²⁺ alginate gel is right above the sulfobetaine array. Water layers on the two sides
16 of the coating have a thickness around 10 nm (upper) and 4 nm (lower), respectively. A
17 vapor phase of about 20 nm above the upper solution phase (not shown in Figure 2) is
18 introduced into the system.⁶³ This arrangement allows the system pressure to be
19 comparable to the water vapor pressure.⁷²
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

3. RESULTS

3.1. Ion-pairing Behaviors of Sulfobetaine Zwitterions and Sulfobetaine Brushes by Free Energy Calculations

40
41
42
43 A sulfobetaine zwitterion contains two oppositely charged functional groups, the
44 sulfonate group that carries a negative charge and the quaternary ammonium group that
45 carries a positive charge. Thus noncovalent bond due to electrostatic interactions can be
46 formed.⁷³⁻⁷⁸ For this type of electrostatic “ion-pairing” interaction, we are particularly
47 interested in its strength in different solvent media. Here, we use the umbrella sampling
48 technique^{53, 54, 79} to calculate free energy changes versus the distance between two
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 sulfobetaine zwitterions (Figure 3) or between two sulfobetaine brushes (Figure 5) in
4 different media. For each case, three independent *NVT* MD simulations are performed at
5 $T = 300\text{K}$ in (1) vacuum, (2) water, and (3) 0.5M NaCl solution. In the sulfobetaine
6 zwitterion case, a total of 20 umbrella intervals are set between the two sulfobetaine
7 zwitterions, whose center of mass (COM) distance varies from 3 Å to 13 Å. In the
8 sulfobetaine brush case, a total of 26 intervals between 7 Å and 20 Å COM distance are
9 used. The COM distance between the two sulfobetaine zwitterions or brushes are
10 restrained by a harmonic spring with a spring constant of 20 kJ/(mol-Å²). Umbrella
11 sampling of molecular configuration is carried out by gradually changing the equilibrium
12 distance of the spring within each interval of 0.5 Å. The simulation time for each bin is 2
13 ns.
14
15

16 Figure 4a shows the free energy changes versus the COM distance between two
17 zwitterions in the three media. The free energy value with large distance of COM (i.e. 11
18 Å for Figure 4a and 19 Å for Figure 4b) is set as the reference. It is seen that the free
19 energy profile in vacuum is significantly different from that in water or in NaCl solution.
20 In vacuum, the profile exhibits a global minimum at about 4.5 Å and a second minimum
21 at about 8.5 Å. The energy barrier between the two is around 30 kJ/mol. The equilibrium
22 configuration of the two sulfobetaine zwitterions at the global minimum is shown in
23 Figure 3a, in which two sulfonate-ammonium ion pairs are formed, characterized by the
24 N-S distance between 4.3 – 4.4 Å. The first energy barrier between 4.5 Å and 8.5 Å shown
25 in Figure 4a corresponds to the energy to dissociate the first ion pair, while the second
26 energy barrier corresponds to the complete detachment of the two zwitterions.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 The free energy profiles of the two sulfobetaine zwitterions in water and NaCl
4 solution are very similar. Figure 4a shows a very small energy barrier around 0.5 kJ/mol
5 at about 5.3 Å, indicating a negligible free energy change during the dissociation of the
6 zwitterion pair. Molecular configuration shows that the ion pair between the two
7 zwitterions are essentially hydrated and separated by water molecules at the local free
8 energy minimum at about 5 Å (point C in Figure 4a). This ion-pair structure is far less
9 stable than that in vacuum. Moreover, only one hydrated, weakly bound ion pair (Fig.3c)
10 is infrequently observed, characterized by the N-S distance around 4.46 Å. Thus it is more
11 energetically favorable for the two sulfobetaine zwitterions being fully hydrated rather
12 than forming ion-pair in water or in 0.5M NaCl solution. Our results are consistent with
13 previous simulation results in which no aggregation of sulfobetaine zwitterions was
14 observed in solutions.^{45, 46}
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31 Figure 4b shows the free energy changes versus the COM distance between two
32 zwitterion brushes in the three media. The model of sulfobetaine brush is described in
33 section 2.1.1. Notably, the free energy profiles for the two zwitterion brushes are quite
34 different from those for the two zwitterion pairs. In vacuum, the free energy minima for
35 the two zwitterion brushes exhibit a flat region between 11 – 14 Å COM distances. The
36 equilibrium configuration of the two sulfobetaine brushes within this region is shown in
37 Figure 5a, corresponding to point D in Figure 4b. Here, there are two types of sulfonate-
38 ammonium ion pairs identified. The first type is the intra ion pair from the same
39 sulfobetaine brush (the purple dashed lines), and the second type is the inter ion pair
40 between the two sulfobetaine brushes (the blue dashed lines). The bond lengths of these
41 ion pairs (N-S distance) vary from 4.7 to 5.2 Å. When the two brushes are gradually
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 pulled apart in the region of 11-14 Å COM distances, all ion pairs are kept intact through
4 the internal adjustments of branches in sulfobetaine brushes, resulting in negligible free
5 energy changes in this region. The energy barrier of ~18 kJ/mol between the COM
6 distances 14-15 Å is attributed to overcoming the van der Waals (vdw) and electrostatic
7 interactions between the two brushes, especially between the two adjacent branches in
8 their own sulfobetaine brushes that are suddenly separated during the internal
9 adjustments, as shown in Figure 5a and 5b. The next energy barrier of ~30 kJ/mol from
10 17 to 18.5 Å, as shown in Figure 4b, corresponds to the energy to dissociate the first inter-
11 ion pair. Molecular configuration corresponding to this first dissociation is shown in
12 Figure 5c, and the new free energy level is denoted by point F in Figure 4b. This
13 dissociation barrier is consistent with the ion pair dissociation between the two
14 sulfobetaine zwitterions (see Figure 4a).
15
16

17 The free energy profiles of sulfobetaine brushes in water and in 0.5M NaCl
18 solution exhibit a similar trend, as shown in Figure 4b. They both have energy minima at
19 about 9.4 Å distance, followed by an energy ramp during the dissociation. Molecular
20 configurations at the free energy minima are shown in Figure 5d and 5e, corresponding to
21 points G and H in Figure 4b. Here, ion pairs between the two sulfobetaine brushes in both
22 media are rarely observed, and only few intra ion pairs are seen occasionally (the purple
23 dashed line in Figure 5d and 5e). The fully hydrated state of zwitterion branches leads to
24 a much extended structure of sulfobetaine brushes (see section 3.3 discussion). An
25 important question concerns why the energy ramp beyond 9.5 Å in water is higher by
26 approximately 5-10 kJ/mol than that in NaCl solution. To understand this, we show in
27 Figure 5e all the ions within 5 Å distance from the sulfobetaine brushes. It is clearly seen
28
29

1
2
3 that these ions coordinate with the oppositely charged functional groups, such as Na^+ ions
4 around the sulfonate groups and Cl^- co-ions around the quaternary ammonium groups.
5
6 Although these ionic bindings are dynamic and not stable, they impose a screening effect
7 on the local charges of sulfobetaine branches; therefore reducing the long range
8 electrostatic interactions in the salt solution, and resulting in a low free energy barrier
9 during dissociation. Interestingly, it has been reported that the solubility of sulfobetaine
10 derivatives increases significantly in high-concentration salt solutions,^{80, 81} which is
11 consistent with our free energy calculations.
12
13
14
15
16
17
18
19
20
21
22
23

24 **3.2. Hydration Structure of Sulfobetaine Brush Array**

25
26

27 Figure 6 shows representative molecular configurations of hydrated sulfobetaine
28 brush arrays with different grafting densities. At the high grafting density, the brushes
29 tend to self-assemble into a vertically aligned structure; while at the low grafting density,
30 they are randomly oriented and fully hydrated by water molecules with very weak ion-
31 pair interactions. Figure 7 shows the density distributions of sulfobetaine brush arrays
32 and water, as well as other specific elemental groups in the zwitterions. The water-
33 zwitterion array boundary is defined as the distance at which the density of water
34 molecules is about 80% of its bulk value. Accordingly, we estimate the thicknesses of the
35 high, intermediate and low grafting density brush arrays are 3.6, 2.7, and 1.7 nm,
36 respectively. The averaged material densities of the three brush arrays are 1.1, 0.5, and
37 0.35 g/cm³, respectively. The different hydration structures of brush arrays with different
38 material densities lead to the changes of their surface chemistry. For example, the high-
39 grafting-density brush array exposes more sulfonate groups at the water-zwitterion
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 interface than the low-grafting-density brush array does, resulting in a high-density
4 negatively charged sulfonate groups remaining on the surface and the positively charged
5 quaternary ammonium groups (the blue N group in Figure 7a) staying largely in the inner
6 region of the brush array. This shows that at the water-zwitterion coating interface, the
7 high-density brush array is negatively charged, while the low-density brush array tends to
8 be a neutral surface.
9
10
11
12
13
14
15
16

17 In order to further study the detailed hydration structure of zwitterion brush array
18 at different grafting density, in Figure 8a-c, we plot the radial distribution functions
19 (RDFs) for different contact pairs. The corresponding integrals of these RDFs, the
20 coordination numbers, are shown in Figure 8d-f. In particular, we investigate the
21 hydration property of C atoms in the quaternary ammonium group by looking at the C
22 (quaternary ammonium) – O (water) RDF profile and its integration with distance,
23 because the central N atom is far away from the surrounding water molecules. Similarly,
24 for the sulfonate group, we calculate the O (sulfonate) – O (water) RDF profile and its
25 integration to characterize its hydration property. In Figure 8a, the first and second
26 hydration shells of the O atom in sulfonate groups are located at about 2.7 Å and 5 Å,
27 regardless of the grafting density. In contrast, Figure 8b shows different shifts of RDF
28 peaks of the C (quaternary ammonium) – O (water) contact pair depending on the
29 grafting density. For the high grafting density array, the first hydration peak is located at
30 about 3.1 Å. This first peak is shifted by 0.5 Å for the intermediate- and low-grafting
31 densities. The similar shifts are also seen for the second hydration peaks. We attribute
32 this difference in RDF shift between the O (sulfonate) – O (water) and C (quaternary
33 ammonium) – O (water) to the different interaction strengths between the quaternary
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 ammonium–water and sulfonate–water contact pairs. Namely, the quaternary ammonium–
4 water interaction is much weaker than the sulfonate–water interaction. Consequently, the
5 hydration shells around the quaternary ammonium groups are more favorable to deform
6 under more constraint conditions (i.e. in high-grafting-density array) than the hydration
7 shells around sulfonate groups. These findings are consistent with Shao et al.’s simulation
8 results, which show that water molecules around the sulfonate groups have a higher
9 structure order and a lower mobility than those around quaternary ammonium groups.⁴⁶
10
11
12
13
14
15
16
17
18

19 To investigate ion pair interactions, Figure 8c shows the O (sulfonate) – C
20 (quaternary ammonium) RDFs for three different grafting densities. Note that the
21 distance between the quaternary ammonium C atoms and the sulfonate O atoms *within*
22 the same sulfobetaine zwitterion branch is in the range of 5 – 6 Å, while the distance
23 between the two in an ion pair is about 3 – 3.5 Å. Figure 8c and 8f clearly shows the
24 existence of ion pairs whose total number increases with the grafting density. About 3
25 quaternary ammonium C atoms coordinate with one sulfonate O in the high-grafting-
26 density array, while less than 0.5 in the low-grafting-density array.
27
28
29
30
31
32
33
34
35
36
37

38 Figure 8d shows the coordination numbers of water molecules around the oxygen
39 atoms in sulfonate groups. These functional groups in the high-grafting-density array are
40 less hydrated than in the low-grafting-density array. Here, only 1.6 water molecules are
41 within the first hydration shell of sulfonate in the high-grafting-density array, while in the
42 low-grafting-density array this number of hydration water molecules is increased to 2.3.
43 In Shao el al.’s paper,⁴⁶ the sulfonate groups have a coordination number of 7.08 water
44 molecules within the first hydration shell in a fully hydrated state, namely, about 2.36
45 water molecules around the O atoms in a sulfonate group. Our calculation result for the
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 low-grafting-density array is close to their simulation result, indicating that the low-
4 grafting-density array of sulfobetaine brushes is almost fully hydrated. The overall
5 inadequate hydration for the high-grafting-density array is also illustrated in Figure 7a,
6 which shows that the average water density within the brush array is only about 0.2 g/cm³.
7
8
9
10
11
12
13
14

15 **3.3. Repulsive Hydration Force between Alginate Gel and Sulfobetaine Brush Array**

16

17 In order to understand the antifouling mechanism of sulfobetaine zwitterion
18 coating, we carried out steered molecular dynamics (SMD) simulations to study
19 molecular interactions between the brush array and an alginate foulant in an aqueous
20 solution. While the umbrella sampling can be used to find the realistic free energy of the
21 alginate gel on the surface at different locations, the computational cost is enormous. For
22 this reason, we follow our previous work by simply dragging the alginate foulant towards
23 the zwitterion coating surface at different locations. While this method is a very
24 approximate approach to detect foulant-surface interactions, it can significantly save
25 computing times. After a 5 ns MD equilibrium run, no attachment of the alginate gel on
26 the sulfobetaine array is seen, indicating that no strong attractive force exists between the
27 foulant and the coating surface. This is similar to what we found for PEG coating,⁵² but
28 differs from the case of polyamide membrane surfaces, in which we observed strong
29 ionic binding between an alginate gel and the membrane surface.^{62, 63} We choose nine
30 different locations shown in Figure 9 to run SMD simulations. The alginate gel is pushed
31 downward to the sulfobetaine brush array by a driving spring without any constraint in
32 the lateral directions. The driving speed is 0.005 Å/ps, slow enough to ensure an
33 approximately quasistatic approaching to the surface. For each grafting density brush
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

array, no significant differences in the force-distance curves is seen for the nine independent SMD runs. Thus only one force-distance curve from the nine simulations at each brush array density is chosen for analysis. These force-distance curves at different brush array densities are shown in Figure 10. Note that repulsive forces in simulations correspond to negative values, while adhesion forces correspond to positive values. These are consistent with our previous definitions.^{62, 63} In all three SMD simulations, repulsive forces are seen to increase dramatically as the alginate gel is dragged to press the zwitterion brush array. However, the distance at which the repulsive force begins to dramatically increase depends on the grafting density. The repulsive force corresponding to the high-density array starts to increase much earlier and steeper, mainly because of the denser and thicker zwitterion coating material. This phenomenon can be further analyzed by looking at the different deformation mechanisms of sulfobetaine branches under compression. We use three angles θ_{xy} , θ_{xz} and θ_{yz} to quantify the orientation of each branch in brushes. θ_{xy} is defined as the angle between the projection of vector **R** on the *x*-*y* plane and the *y*-axis (see Figure 1c); vector **R** is defined from the C atom connecting to the backbone of the brush to the S atom in the sulfonate group. These two atoms are highlighted in purple in Figure 1a the middle panel, which shows a typical branch. θ_{xz} and θ_{yz} follow the similar definition as θ_{xy} , but as they both have the similar distribution as θ_{xy} during the deformation of the brush array, we only focus on θ_{xy} orientation distribution changes. The histograms of θ_{xy} in an equilibrium run over 2 ns are shown in Figure 11a. It is seen that the grafting density influences the orientations of branches: θ_{xy} of the high-grafting-density array takes two major values around $-\pi$ and π due to the less hydrated, more organized structure of the self-assembled brush array, while θ_{xy} is more evenly

1
2
3 distributed in the low-grafting-density array due to its fully hydrated, randomly oriented
4 structure.
5
6

7
8 When the alginate gel approaches the sulfobetaine array surface, the surface
9 coating is under compression. Figure 11b shows the redistributions of orientation angle
10 θ_{xy} of the three brush arrays under the same load of 1 nN, corresponding to the load
11 points A, B and C in the three force-distance curves shown in Figure 10. Negligible
12 changes of θ_{xy} distribution are seen for the high-grafting-density array, and dramatic
13 changes of θ_{xy} are seen for the intermediate- and low-grafting-density arrays. We attribute
14 this θ_{xy} re-distribution to the flexibility of zwitterion branches. In Figure 12 we show the
15 molecular configurations of the high- and intermediate (as the low-density array has the
16 similar behavior as the intermediate array, we only show the latter)-grafting-density
17 arrays under 1 nN compression. Compared with the high-density array configuration, the
18 change in molecular configuration of the intermediate-density array under 1 nN force is
19 significant, resulting in a large cavity on the surface coating to accommodate the alginate
20 gel. We further investigate changes of the number of water molecules within a 3 Å layer
21 around the van der Waals (vdw) surface of sulfobetaine array. We find that under the
22 compression of alginate gel, water molecules around the high-density array is only
23 reduced from 150 ± 5 to 148 ± 8 , indicating that the surface water is difficult to be
24 squeezed out and thus the repulsive force mainly originates from compressing the densely
25 populated hydration water between the gel and sulfobetaine array (Figure 12a). This
26 situation is very similar to our previous findings for the PEG coating.⁵² For the
27 intermediate-grafting-density array whose surface morphology has a large change under
28 alginate compression, water molecules around the vdw surface is reduced from 188 ± 12
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 to 169 ± 18 . We find that the repulsive force is mainly due to the deformation of
4 zwitterion branches, namely, the change of the configurational entropy of the brush array.
5
6 Although there is still a hydration water layer around the array surface, these hydration
7 water molecules have less contribution to the repulsive force. This conclusion can be
8 verified in Figure 10, in which we show the hydration water layer-foulant interactions
9 during SMD simulations for the high-, intermediate- and low-grafting-density array
10 surfaces. The significantly monotonic increase of alginate gel-water interaction can only
11 be observed in the high density system. In contrast, force fluctuations around zero
12 between alginate gel and water layer are observed in the intermediate- or low-grafting
13 density systems, indicating that compression of hydration water layer has much less
14 contribution to the total repulsive force. Specifically, for the low-grafting-density array,
15 we find that several branches are heavily twisted under compression. Note that even the
16 space between the two brushes in this case is as wide as 18 \AA , which is much larger than
17 the average diameter of the alginate gel of $\sim 8 \text{ \AA}$, there is still strong repulsive force due
18 to the deformation and distortion of zwitterion branches.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4. SUMMARY

In this study, we perform molecular dynamics simulations to investigate the interactions between two sulfobetaine zwitterions and between two sulfobetaine brushes. Simulation results show that it is more energetically favorable for the two sulfobetaine zwitterions or brushes being fully hydrated in aqueous solutions than in vacuum where strong ion pairs are formed. The energy barriers for dissociation in water and solution are much lower than that in vacuum. In addition, the energy ramp in water is higher by

1
2
3 approximately 5-10 kJ/mol than that in NaCl solution, possibly due to ion screening
4 effect. Three sulfobetaine brush arrays with different grafting densities have been built to
5 investigate the interactions between foulant gel and sulfobetaine coating in aqueous
6 environment. The different properties of each array, including the thickness, distribution
7 of functional groups, hydration structure and the branch orientations have been carefully
8 studied. The SMD simulations reveal strong repulsive forces between foulant gel and
9 sulfobetaine array surface regardless of grafting densities, indicating their good
10 antifouling properties. We also show the different origins of these repulsive forces: in
11 high-grafting-density array, the major contributor is the surface hydration layer, while
12 deformation of surface branches has main contribution in the intermediate and low-
13 density arrays. The present study provides detailed information on the hydration structure
14 and antifouling mechanisms of sulfobetaine coating from the molecular perspectives.
15 These findings may help to understand general antifouling mechanisms of various
16 polyzwitterion coatings using different grafting materials and methodology, and shed
17 light on the molecular design of future anti-fouling materials.

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 59 60 ACKNOWLEDGEMENTS

50
51
52
53
54
55
56
57
58
59
59
60
This work was supported by the National Science Foundation (NSF 1034158 and
NSF 1149704), American Chemical Society Petroleum Research Fund (ACS PRF), and
the National Energy Research Scientific Computing Center (NERSC).

- 50
51
52
53
54
55
56
57
58
59
59
60
1. Elimelech, M.; Phillip, W. A., The Future of Seawater Desalination: Energy, Technology, and the Environment. *Science* **2011**, 333, (6043), 712-717.
2. Elimelech, M., The global challenge for adequate and safe water. *Journal of Water Supply Research and Technology-Aqua* **2006**, 55, (1), 3-10.

1
2
3. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M.,
4 Science and technology for water purification in the coming decades. *Nature* **2008**, 452, (7185), 301-310.
5. Khulbe, K. C.; Feng, C.; Matsuura, T., The Art of Surface Modification of Synthetic Polymeric
6 Membranes. *Journal of Applied Polymer Science* **2010**, 115, (2), 855-895.
7. Camacho, L. M.; Dumee, L.; Zhang, J.; Li, J.-d.; Duke, M.; Gomez, J.; Gray, S., Advances in
8 Membrane Distillation for Water Desalination and Purification Applications. *Water* **2013**, 5, (1), 94-196.
9. Zhao, S.; Zou, L.; Tang, C. Y.; Mulcahy, D., Recent developments in forward osmosis:
10 Opportunities and challenges. *J. Membr. Sci.* **2012**, 396, 1-21.
11. Kang, G.-d.; Cao, Y.-m., Development of antifouling reverse osmosis membranes for water
12 treatment: A review. *Water Research* **2012**, 46, (3), 584-600.
13. Lee, K. P.; Arnot, T. C.; Mattia, D., A review of reverse osmosis membrane materials for
14 desalination-Development to date and future potential. *J. Membr. Sci.* **2011**, 370, (1-2), 1-22.
15. Tang, C. Y.; Chong, T. H.; Fane, A. G., Colloidal interactions and fouling of NF and RO
16 membranes: A review. *Advances in Colloid and Interface Science* **2011**, 164, (1-2), 126-143.
17. Li, D.; Wang, H., Recent developments in reverse osmosis desalination membranes. *J. Mater.
18 Chem.* **2010**, 20, (22), 4551-4566.
19. Milton Harris, J., *Poly(ethylene glycol) chemistry: biotechnical and biomedical applications*.
20 Springer Science+Business Media: New York, 1992.
21. Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y., Superlow fouling sulfobetaine and carboxybetaine
22 polymers on glass slides. *Langmuir* **2006**, 22, (24), 10072-10077.
23. Vaisocherova, H.; Yang, W.; Zhang, Z.; Cao, Z. Q.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S.
24 Y., Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling
25 sensitive and specific protein detection in undiluted blood plasma. *Anal. Chem.* **2008**, 80, (20), 7894-7901.
26. Yang, W.; Zhang, L.; Wang, S. L.; White, A. D.; Jiang, S. Y., Functionalizable and ultra stable
27 nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. *Biomaterials* **2009**,
30, (29), 5617-5621.
28. Yang, W.; Chen, S. F.; Cheng, G.; Vaisocherova, H.; Xue, H.; Li, W.; Zhang, J. L.; Jiang, S. Y.,
29 Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-
30 grafted surfaces. *Langmuir* **2008**, 24, (17), 9211-9214.
31. Zhang, Z.; Chen, S. F.; Chang, Y.; Jiang, S. Y., Surface grafted sulfobetaine polymers via atom
32 transfer radical polymerization as superlow fouling coatings. *J. Phys. Chem. B* **2006**, 110, (22), 10799-
33 10804.
34. Gaberc-Porekar, V.; Zore, I.; Podobnik, B.; Menart, V., Obstacles and pitfalls in the PEGylation of
35 therapeutic proteins. *Curr. Opin. Drug Discov. Dev.* **2008**, 11, (2), 242-250.
36. Jiang, S.; Cao, Z., Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials
37 and Their Derivatives for Biological Applications. *Advanced materials* **2010**, 22, (9), 920-932.
38. Yang, R.; Xu, J.; Ozaydin-Ince, G.; Wong, S. Y.; Gleason, K. K., Surface-Tethered Zwitterionic
39 Ultrathin Antifouling Coatings on Reverse Osmosis Membranes by Initiated Chemical Vapor Deposition.
40 *Chemistry of Materials* **2011**, 23, (5), 1263-1272.
41. Yu, H.-Y.; Kang, Y.; Liu, Y.; Mi, B., Grafting polyzwitterions onto polyamide by click chemistry
42 and nucleophilic substitution on nitrogen: A novel approach to enhance membrane fouling resistance. *J.
43 Membr. Sci.* **2014**, 449, 50-57.
44. Bernstein, R.; Belfer, S.; Freger, V., Bacterial attachment to RO membranes surface-modified by
45 concentration-polarization-enhanced graft polymerization. *Environ Sci Technol* **2011**, 45, (14), 5973-80.
46. Mi, Y.-F.; Zhao, Q.; Ji, Y.-L.; An, Q.-F.; Gao, C.-J., A novel route for surface zwitterionic
47 functionalization of polyamide nanofiltration membranes with improved performance. *J. Membr. Sci.* **2015**,
490, 311-320.
48. Zhang, Y.; Wang, Z.; Lin, W.; Sun, H.; Wu, L.; Chen, S., A facile method for polyamide
49 membrane modification by poly(sulfobetaine methacrylate) to improve fouling resistance. *J. Membr. Sci.*
50 **2013**, 446, 164-170.
51. Chang, Y.; Chang, W. J.; Shih, Y. J.; Wei, T. C.; Hsue, G. H., Zwitterionic Sulfobetaine-Grafted
52 Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-
53 Induced Surface Copolymerization. *ACS Appl. Mater. Interfaces* **2011**, 3, (4), 1228-1237.
54. Chen, S. F.; Li, L. Y.; Zhao, C.; Zheng, J., Surface hydration: Principles and applications toward
55 low-fouling/nonfouling biomaterials. *Polymer* **2010**, 51, (23), 5283-5293.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

26. Schlenoff, J. B., Zwitterion: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. *Langmuir* **2014**, 30, (32), 9625-9636.
27. Sun, Q.; Su, Y. L.; Ma, X. L.; Wang, Y. Q.; Jiang, Z. Y., Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer. *J. Membr. Sci.* **2006**, 285, (1-2), 299-305.
28. Yang, W. J.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Rittschof, D., Polymer brush coatings for combating marine biofouling. *Prog. Polym. Sci.* **2014**, 39, (5), 1017-1042.
29. Yang, Y. F.; Li, Y.; Li, Q. L.; Wan, L. S.; Xu, Z. K., Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. *J. Membr. Sci.* **2010**, 362, (1-2), 255-264.
30. Chen, S. F.; Zheng, J.; Li, L. Y.; Jiang, S. Y., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. *J. Am. Chem. Soc.* **2005**, 127, (41), 14473-14478.
31. Jiang, S. Y.; Cao, Z. Q., Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. *Advanced materials* **2010**, 22, (9), 920-932.
32. Sin, M. C.; Chen, S. H.; Chang, Y., Hemocompatibility of zwitterionic interfaces and membranes. *Polym. J.* **2014**, 46, (8), 436-443.
33. Chang, Y.; Shih, Y. J.; Lai, C. J.; Kung, H. H.; Jiang, S. Y., Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. *Adv. Funct. Mater.* **2013**, 23, (9), 1100-1110.
34. Hadidi, M.; Zydny, A. L., Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions. *J. Membr. Sci.* **2014**, 452, 97-103.
35. Rohani, M. M.; Zydny, A. L., Protein transport through zwitterionic ultrafiltration membranes. *J. Membr. Sci.* **2012**, 397, 1-8.
36. Leng, C.; Han, X. F.; Shao, Q.; Zhu, Y. H.; Li, Y. T.; Jiang, S. Y.; Chen, Z., In Situ Probing of the Surface Hydration of Zwitterionic Polymer Brushes: Structural and Environmental Effects. *J. Phys. Chem. C* **2014**, 118, (29), 15840-15845.
37. Ridgway, H. F.; Orbell, J.; Gray, S., Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: Recent developments and future prospects. *J. Membr. Sci.* **2017**, 524, 436-448.
38. Wei, T.; Zhang, L.; Zhao, H. Y.; Ma, H.; Sajib, M. S. J.; Jiang, H.; Murad, S., Aromatic Polyamide Reverse-Osmosis Membrane: An Atomistic Molecular Dynamics Simulation. *J. Phys. Chem. B* **2016**, 120, (39), 10311-10318.
39. Harder, E.; Walters, D. E.; Bodnar, Y. D.; Faibis, R. S.; Roux, B., Molecular Dynamics Study of a Polymeric Reverse Osmosis Membrane. *J. Phys. Chem. B* **2009**, 113, (30), 10177-10182.
40. Nadler, R.; Srebnik, S., Molecular simulation of polyamide synthesis by interfacial polymerization. *J. Membr. Sci.* **2008**, 315, (1-2), 100-105.
41. Eslami, H.; Muller-Plathe, F., Molecular Dynamics Simulation of Water Influence on Local Structure of Nanoconfined Polyamide-6,6. *J. Phys. Chem. B* **2011**, 115, (32), 9720-9731.
42. Kotelyanskii, M.; Wagner, N. J.; Paulaitis, M. E., Building large amorphous polymer structures: Atomistic simulation of glassy polystyrene. *Macromolecules* **1996**, 29, (26), 8497-8506.
43. Hughes, Z. E.; Gale, J. D., A computational investigation of the properties of a reverse osmosis membrane. *J. Mater. Chem.* **2010**, 20, (36), 7788-7799.
44. Du, H. B.; Qian, X. H., The Hydration Properties of Carboxybetaine Zwitterion Brushes. *J. Comput. Chem.* **2016**, 37, (10), 877-885.
45. Shao, Q.; He, Y.; Jiang, S. Y., Molecular Dynamics Simulation Study of Ion Interactions with Zwitterions. *J. Phys. Chem. B* **2011**, 115, (25), 8358-8363.
46. Shao, Q.; He, Y.; White, A. D.; Jiang, S. Y., Difference in Hydration between Carboxybetaine and Sulfobetaine. *J. Phys. Chem. B* **2010**, 114, (49), 16625-16631.
47. Shao, Q.; He, Y.; White, A. D.; Jiang, S. Y., Different effects of zwitterion and ethylene glycol on proteins. *J. Chem. Phys.* **2012**, 136, (22), 6.
48. Nagumo, R.; Akamatsu, K.; Miura, R.; Suzuki, A.; Tsuboi, H.; Hatakeyama, N.; Takaba, H.; Miyamoto, A., Assessment of the Antifouling Properties of Polyzwitterions from Free Energy Calculations by Molecular Dynamics Simulations. *Ind. Eng. Chem. Res.* **2012**, 51, (11), 4458-4462.

1
2
3 49. Chan, W. F.; Chen, H. Y.; Surapathi, A.; Taylor, M. G.; Shao, X. H.; Marand, E.; Johnson, J. K.,
4 Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water
5 Desalination. *ACS Nano* **2013**, 7, (6), 5308-5319.

6 50. Nagumo, R.; Ito, T.; Akamatsu, K.; Miura, R.; Suzuki, A.; Tsuboi, H.; Hatakeyama, N.; Takaba,
7 H.; Miyamoto, A., Molecular dynamics simulations for microscopic behavior of water molecules in the
8 vicinity of zwitterionic self-assembled monolayers. *Polym. J.* **2012**, 44, (11), 1149-1153.

9 51. Shao, Q.; Jiang, S. Y., Influence of Charged Groups on the Properties of Zwitterionic Moieties: A
10 Molecular Simulation Study. *J. Phys. Chem. B* **2014**, 118, (27), 7630-7637.

11 52. Xiang, Y.; Xu, R. G.; Leng, Y. S., Molecular Dynamics Simulations of a Poly(ethylene glycol)-
12 Grafted Polyamide Membrane and Its Interaction with a Calcium Alginate Gel. *Langmuir* **2016**, 32, (18),
13 4424-4433.

14 53. Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.; Rosenberg, J. M., The Weighted
15 Histogram Analysis Method for Free-Energy Calculations on Biomolecules .1. The Method. *J. Comput.*
16 *Chem.* **1992**, 13, (8), 1011-1021.

17 54. Torrie, G. M.; Valleau, J. P., Non-Physical Sampling Distributions in Monte-Carlo Free-Energy
18 Estimation - Umbrella Sampling. *J. Comput. Phys.* **1977**, 23, (2), 187-199.

19 55. Chang, Y.; Chang, Y.; Higuchi, A.; Shih, Y. J.; Li, P. T.; Chen, W. Y.; Tsai, E. M.; Hsue, G. H.,
20 Bioadhesive Control of Plasma Proteins and Blood Cells from Umbilical Cord Blood onto the Interface
21 Grafted with Zwitterionic Polymer Brushes. *Langmuir* **2012**, 28, (9), 4309-4317.

22 56. Siepmann, J. I., A Method for the Direct Calculation of Chemical Potentials for Dense Chain
23 Systems. *Molecular Physics* **1990**, 70, (6), 1145-1158.

24 57. Frenkel, D.; Smit, B., *Understanding molecular simulation from algorithms to application*.
25 Academic Press: San Diego, 1996.

26 58. Plazinski, W.; Rudzinski, W., Molecular modeling of Ca²⁺-oligo(alpha-1-guluronate) complexes:
27 toward the understanding of the junction zone structure in calcium alginate gels. *Structural Chemistry* **2012**,
28 23, (5), 1409-1415.

29 59. Perry, T. D. I. V.; Cygan, R. T.; Mitchell, R., Molecular models of alginic acid: Interactions with
30 calcium ions and calcite surfaces. *Geochimica Et Cosmochimica Acta* **2006**, 70, (14), 3508-3532.

31 60. Brown, T.; Eugene H LeMay, H.; Bursten, B.; Murphy, C.; Woodward, P., *Chemistry: The
Central Science*. Prentice Hall: Boston, 2011.

32 61. Davis, T. A.; Volesky, B.; Mucci, A., A review of the biochemistry of heavy metal biosorption by
33 brown algae. *Water Research* **2003**, 37, (18), 4311-4330.

34 62. Xiang, Y.; Liu, Y.; Mi, B.; Leng, Y., Hydrated Polyamide Membrane and Its Interaction with
35 Alginate: A Molecular Dynamics Study. *Langmuir* **2013**, 29, (37), 11600-11608.

36 63. Xiang, Y.; Liu, Y.; Mi, B.; Leng, Y., Molecular Dynamics Simulations of Polyamide Membrane,
37 Calcium Alginate Gel, and Their Interactions in Aqueous Solution. *Langmuir* **2014**, 30, (30), 9098-9106.

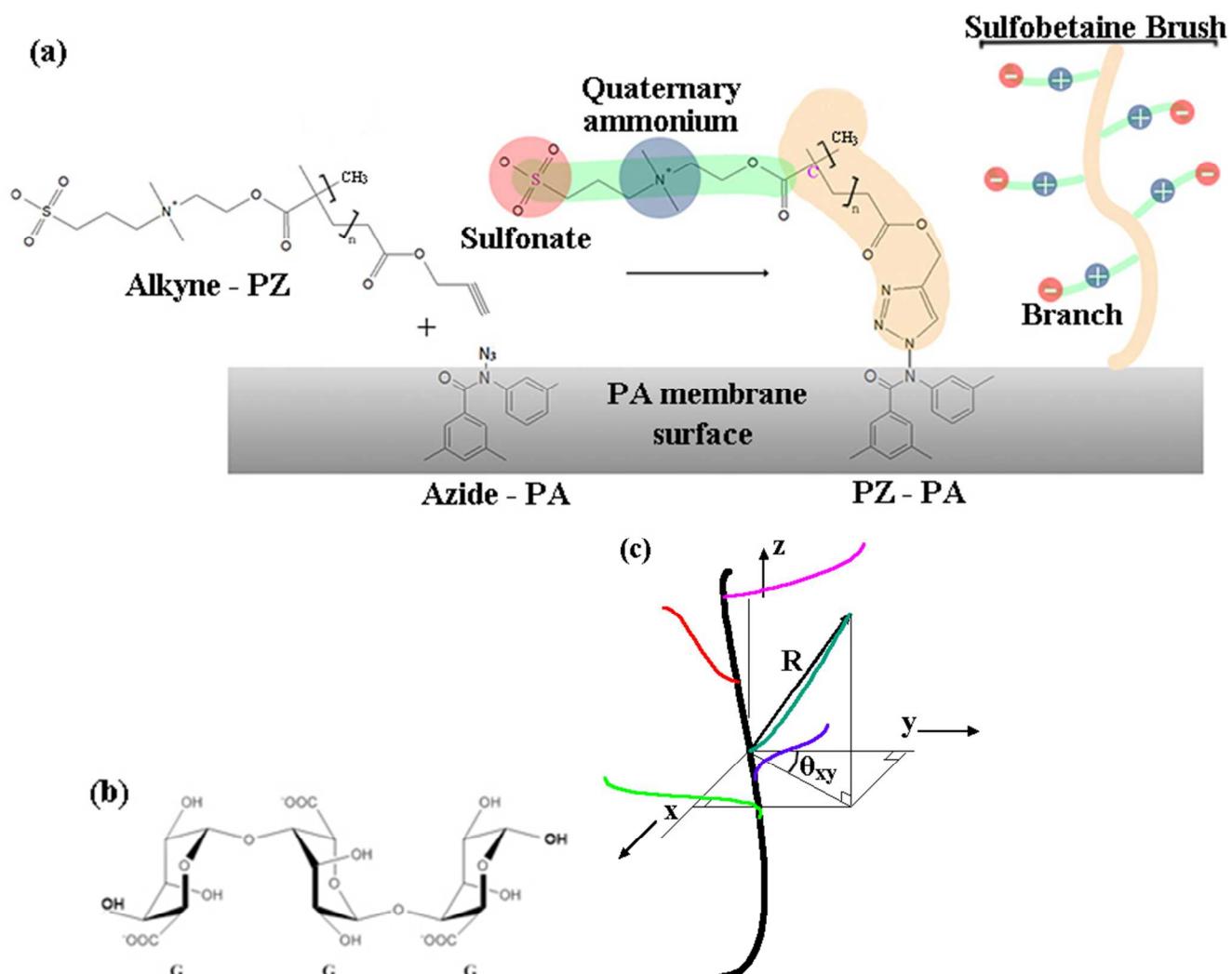
38 64. Plimpton, S., FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-
39 DYNAMICS. *J. Comput. Phys.* **1995**, 117, (1), 1-19.

40 65. Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J., Development and testing of the OPLS all-atom
41 force field on conformational energetics and properties of organic liquids. *J. Am. Chem. Soc.* **1996**, 118,
42 (45), 11225-11236.

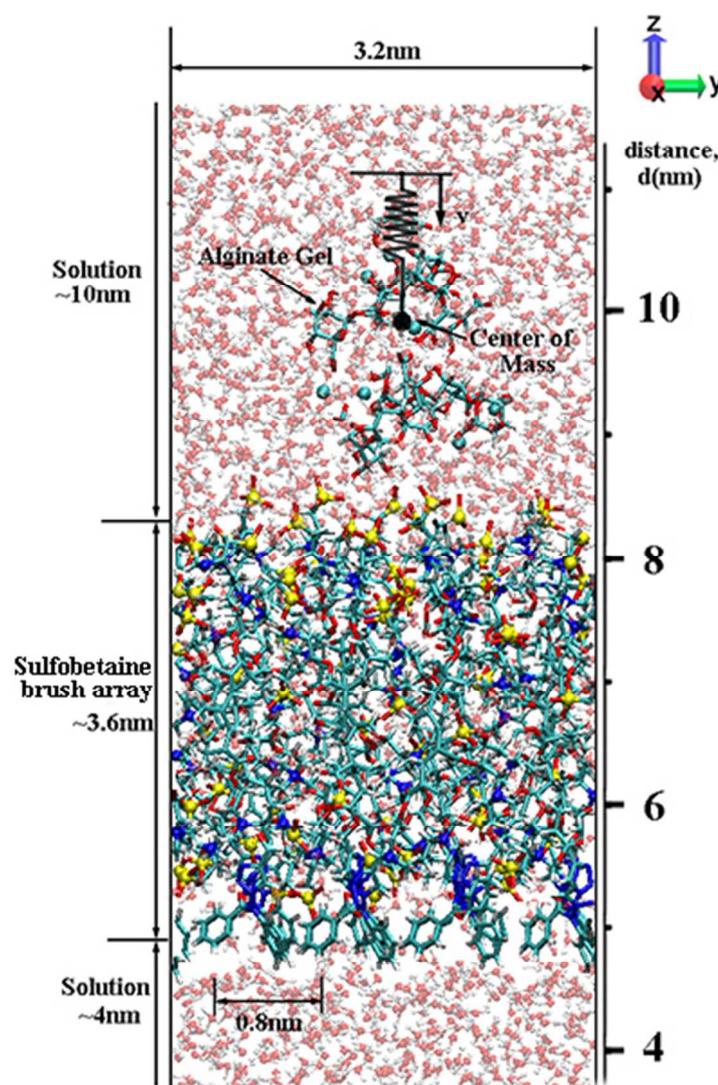
43 66. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L., Evaluation and
44 reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical
45 calculations on peptides. *J. Phys. Chem. B* **2001**, 105, (28), 6474-6487.

46 67. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J., *Interaction models for
water in relation to protein hydration*. D. Riedel Publishing Co.: Dordrecht, The Netherlands, 1981.

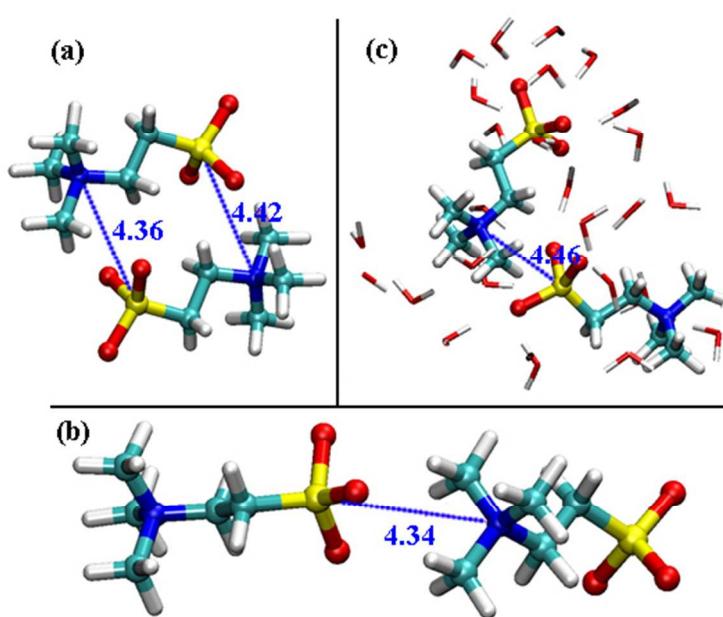
47 68. Teleman, O.; Jonsson, B.; Engstrom, S., A Molecular Dynamics Simulation of a Water Model
48 with Intramolecular Degrees of Freedom. *Molecular Physics* **1987**, 60, (1), 193-203.

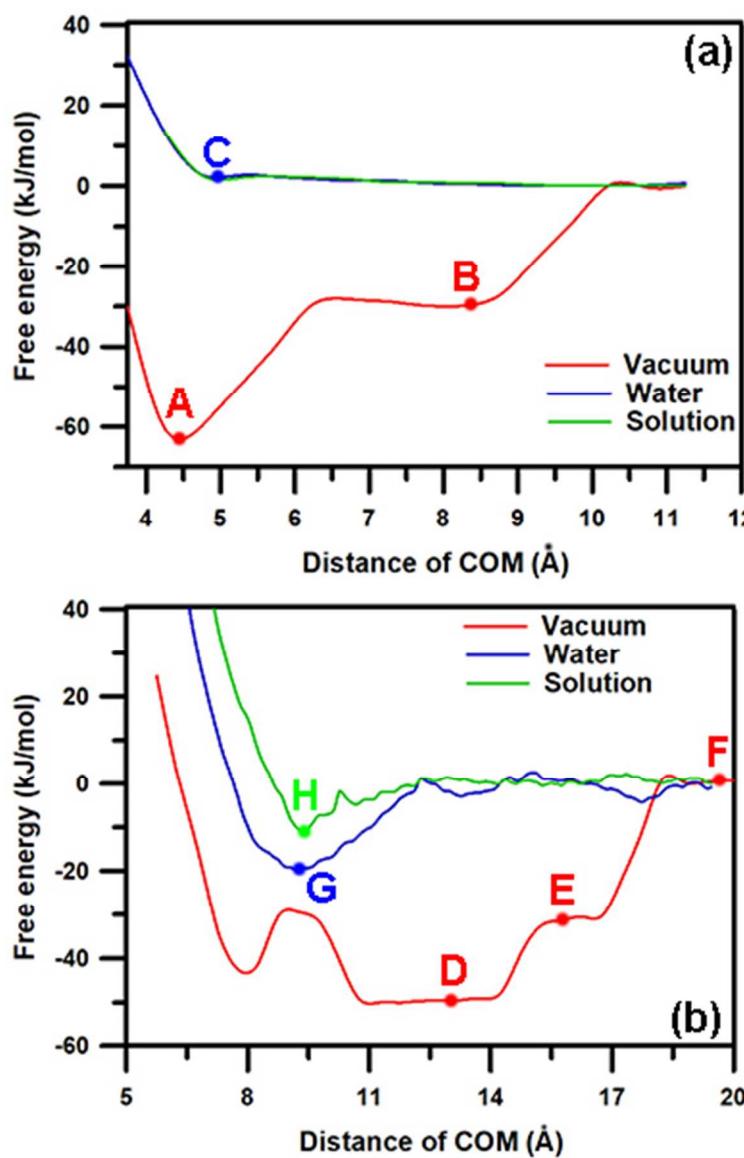

49 69. Aqvist, J., Ion Water Interaction Potentials Derived from Free-Energy Perturbation Simulations.
50 *Journal of Physical Chemistry* **1990**, 94, (21), 8021-8024.

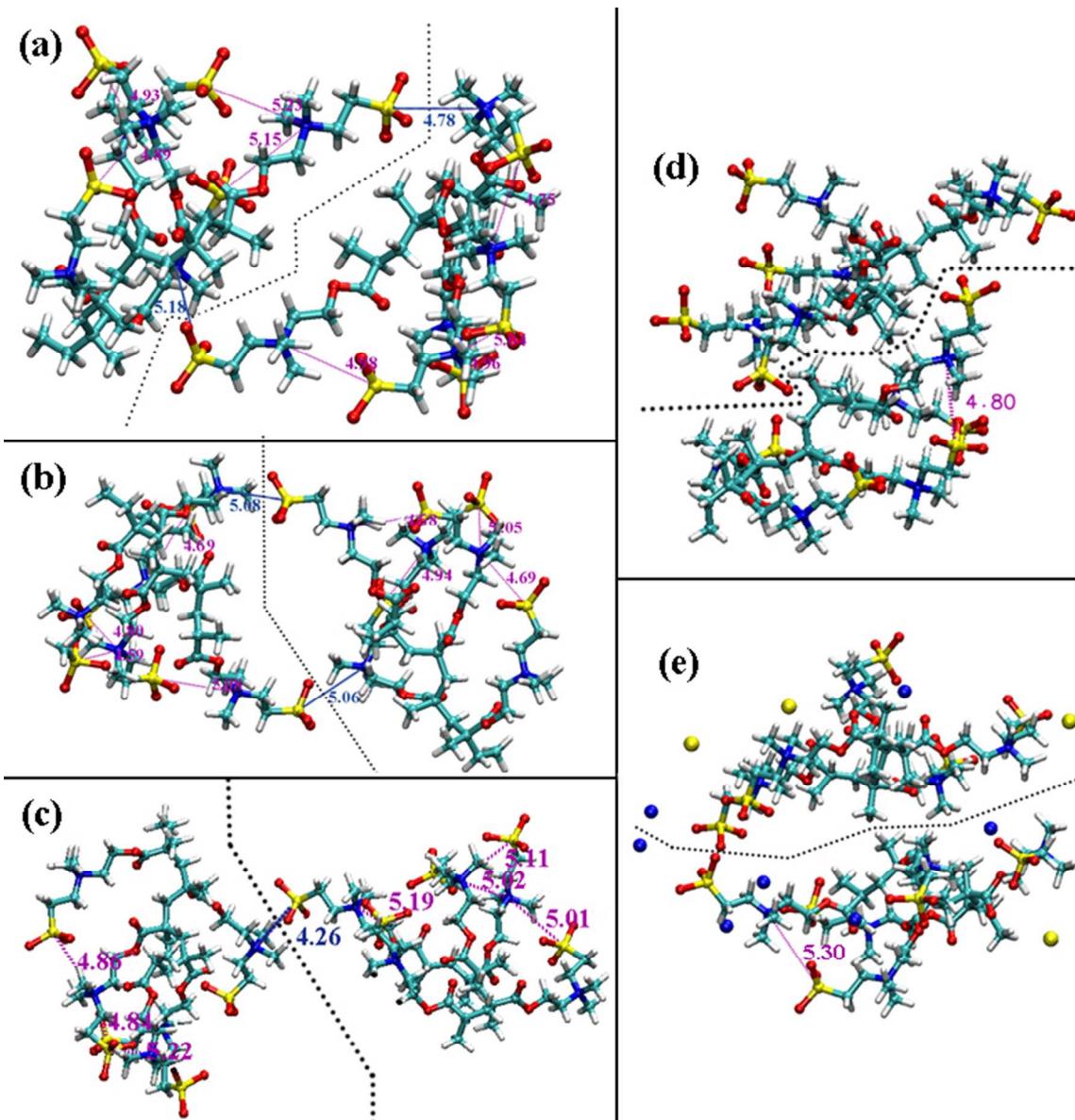
51 70. Joung, I. S.; Cheatham, T. E., Determination of alkali and halide monovalent ion parameters for
52 use in explicitly solvated biomolecular simulations. *Journal of Physical Chemistry B* **2008**, 112, (30), 9020-
53 9041.

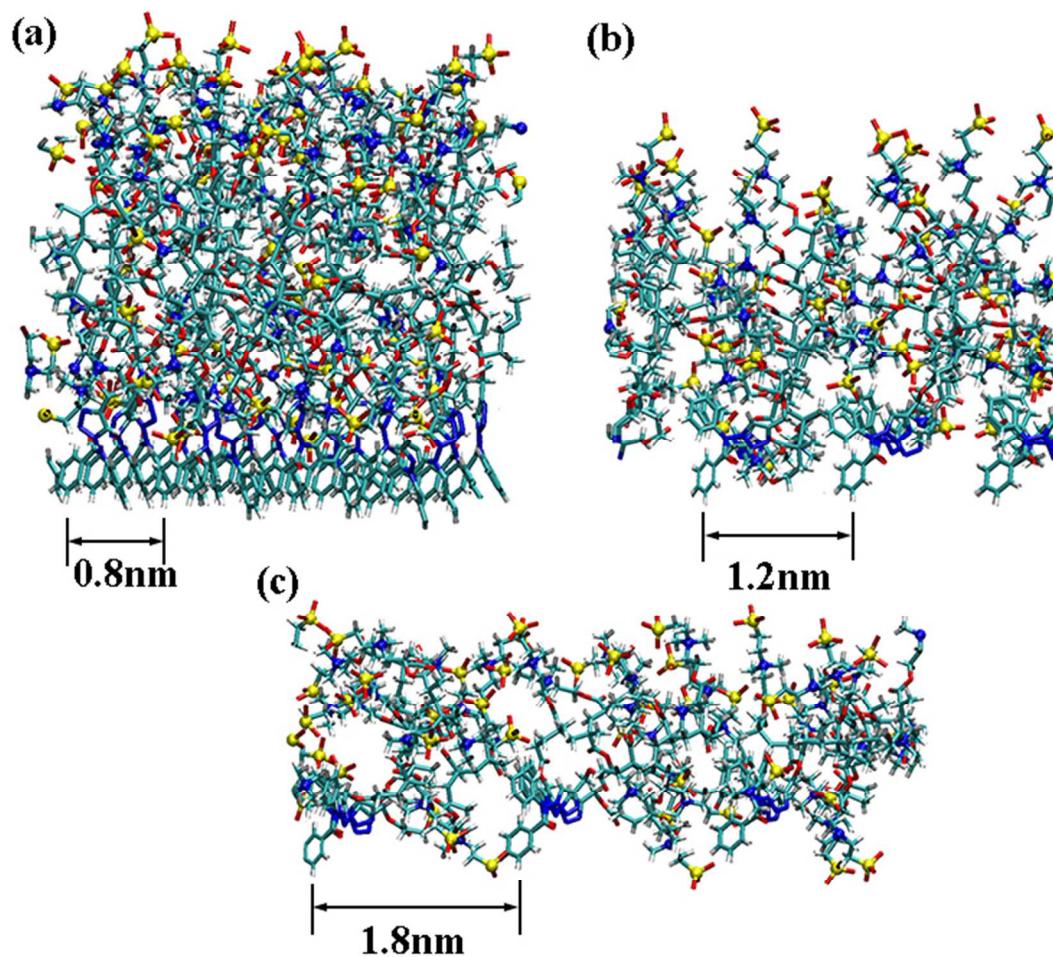

54 71. Hockney, R. W.; Eastwood, J. W., *Computer Simulation Using Particles*. Taylor and Francis
55 Group: London, U.K., 1988.

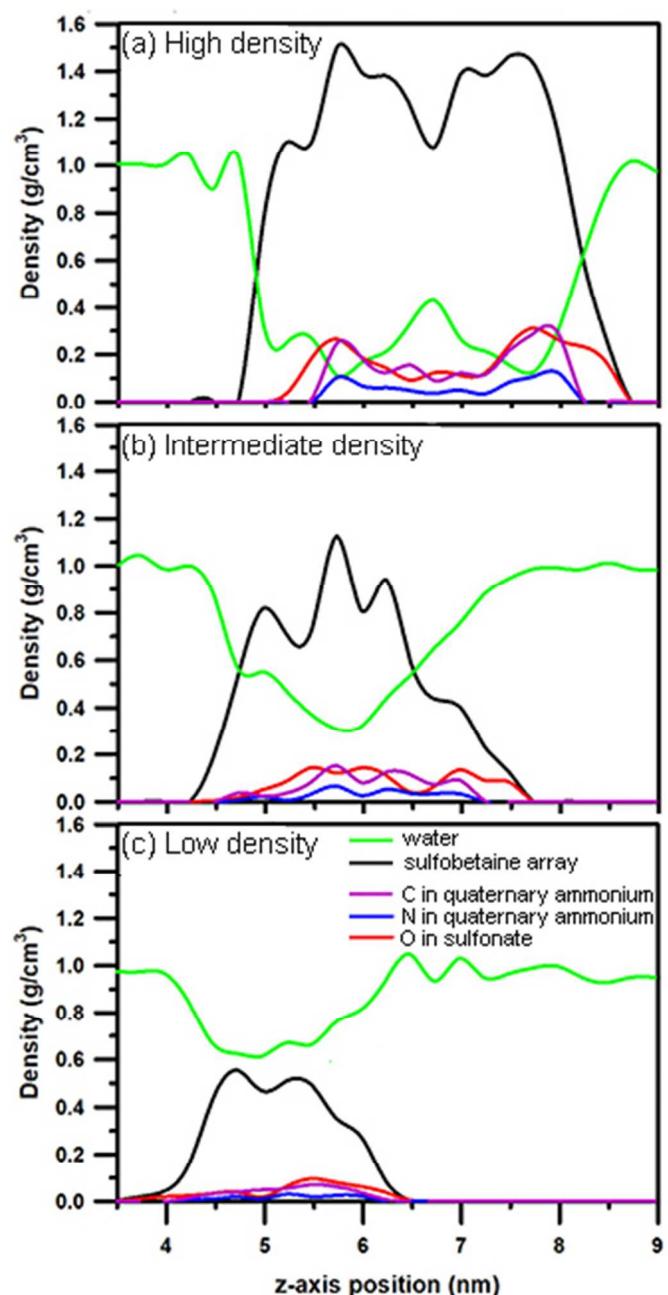
56
57
58
59
60

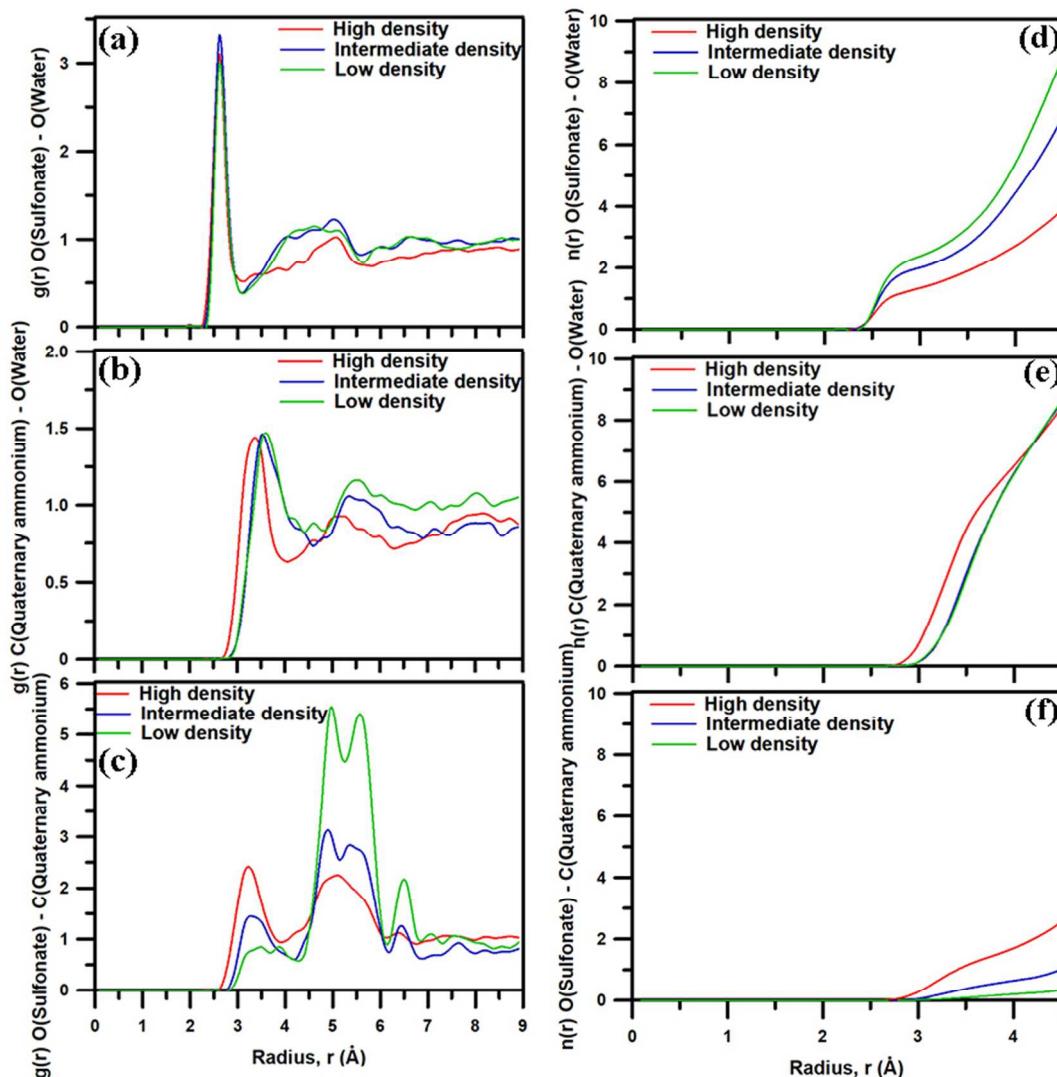

1
2
3 72. Leng, Y., Hydration Force between Mica Surfaces in Aqueous KCl Electrolyte Solution.
4 *Langmuir* **2012**, 28, (12), 5339-5349.
5 73. Rybtchinski, B., Adaptive Supramolecular Nanomaterials Based on Strong Noncovalent
6 Interactions. *ACS Nano* **2011**, 5, (9), 6791-6818.
7 74. Rehm, T. H.; Schmuck, C., Ion-pair induced self-assembly in aqueous solvents. *Chem. Soc. Rev.*
8 **2010**, 39, (10), 3597-3611.
9 75. Rehm, T.; Stepanenko, V.; Zhang, X.; Wurthner, F.; Grohn, F.; Klein, K.; Schmuck, C., A new
10 type of soft vesicle-forming molecule: An amino acid derived guanidiniocarbonyl pyrrole carboxylate
11 zwitterion. *Org. Lett.* **2008**, 10, (7), 1469-1472.
12 76. Schmuck, C.; Wienand, W., Highly stable self-assembly in water: Ion pair driven dimerization of
13 a guanidiniocarbonyl pyrrole carboxylate zwitterion. *J. Am. Chem. Soc.* **2003**, 125, (2), 452-459.
14 77. Rodler, F.; Linders, J.; Fenske, T.; Rehm, T.; Mayer, C.; Schmuck, C., pH-Switchable Vesicles
15 from a Serine-Derived Guanidiniocarbonyl Pyrrole Carboxylate Zwitterion in DMSO. *Angew. Chem.-Int.*
16 *Edit.* **2010**, 49, (46), 8747-8750.
17 78. Groger, G.; Stepanenko, V.; Wurthner, F.; Schmuck, C., Step-wise self-assembly of a small
18 molecule with two orthogonal binding interactions leads to single stranded linear polymers in DMSO.
19 *Chem. Commun.* **2009**, (6), 698-700.
20 79. Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provati, D.; Raiteri, P.; Donadio, D.;
21 Marinelli, F.; Pietrucci, F.; Broglia, R. A.; Parrinello, M., PLUMED: A portable plugin for free-energy
22 calculations with molecular dynamics. *Comput. Phys. Commun.* **2009**, 180, (10), 1961-1972.
23 80. Sundaram, H. S.; Han, X.; Nowinski, A. K.; Ella-Menye, J. R.; Wimbish, C.; Marek, P.; Senecal,
24 K.; Jiang, S. Y., One-Step Dip Coating of Zwitterionic Sulfobetaine Polymers on Hydrophobic and
25 Hydrophilic Surfaces. *ACS Appl. Mater. Interfaces* **2014**, 6, (9), 6664-6671.
26 81. Zheng, S. X.; Yang, Q.; Mi, B. X., Novel antifouling surface with improved hemocompatibility by
27 immobilization of polyzwitterions onto silicon via click chemistry. *Appl. Surf. Sci.* **2016**, 363, 619-626.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

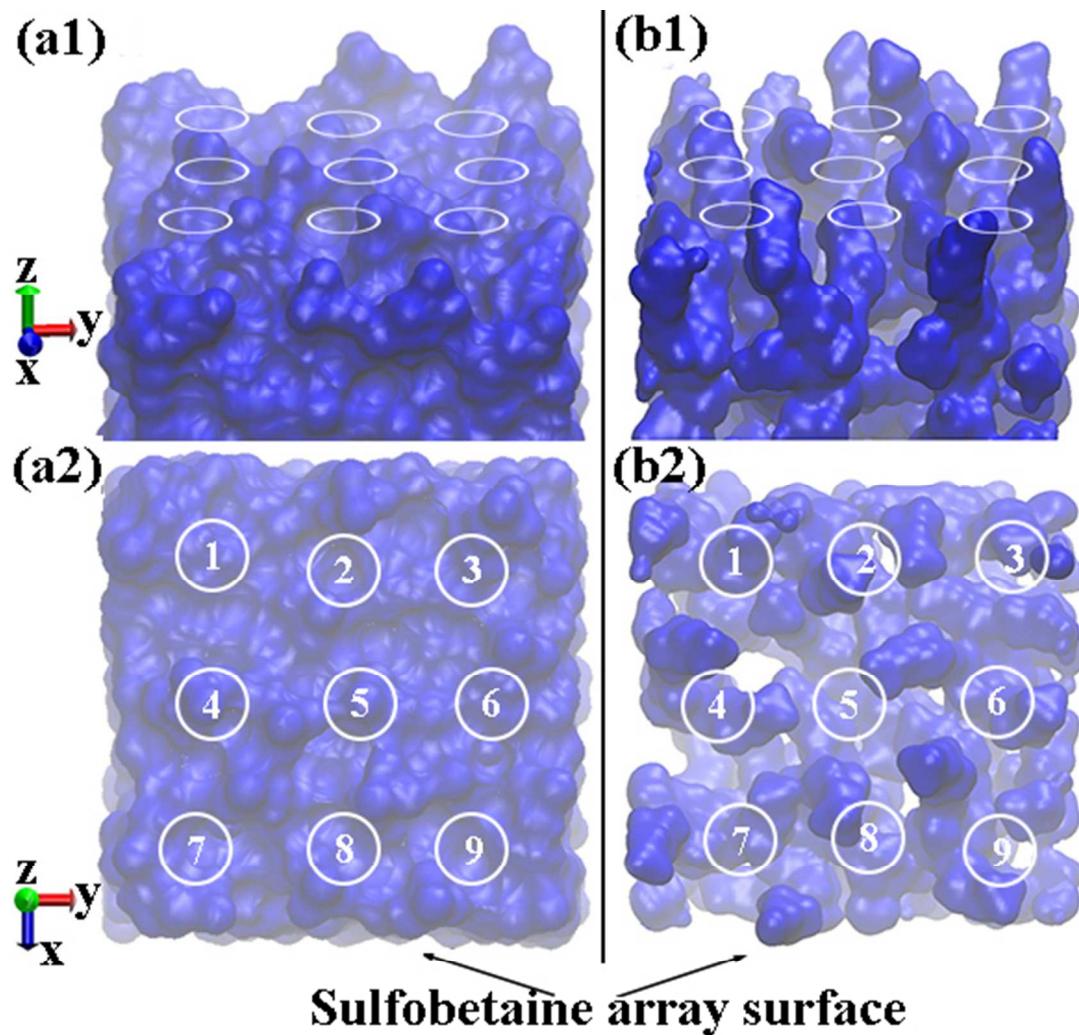

Figure 1. (a) The procedure of grafting sulfobetaine zwitterion on a polyamide membrane surface; (b) an alginate molecule that contains three L-guluronic acid (G) residues; (c) definition of θ_{xy} to evaluate the orientation of branches in a sulfobetaine brush.

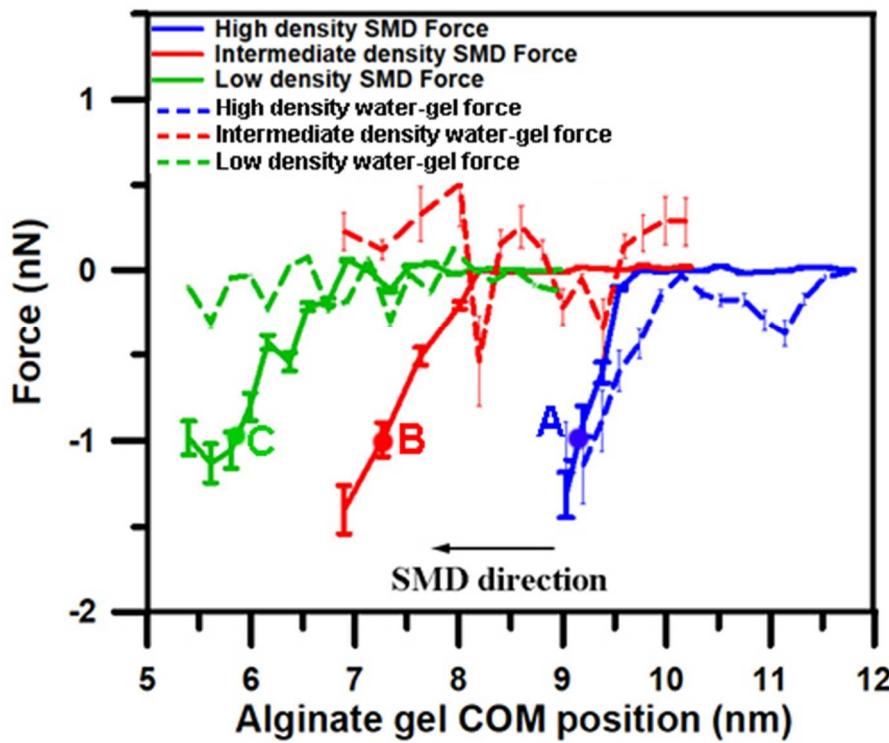

Figure 2. A snapshot of the simulation system containing sulfobetaine brush array with high grafting density and the alginate gel in solution. Colors in stick presentation: red, O; white, H; light blue, C; and dark blue, N. Colors in ball presentation in solution: light blue balls, Ca^{2+} ions. In order to illustrate the distribution of sulfonate groups and quaternary ammonium groups, all the S atoms in sulfonate groups are in yellow and all the N atoms in quaternary ammonium groups are in dark blue using ball presentation. A reference ruler for distance is indicated in the right of the diagram, which is used to evaluate the distance in Figure 7 and Figure 10. The saturated benzene rings representing the roots of brushes are located at 5 nm distance along the z direction. A schematic of the SMD model applied to the alginate gel is also illustrated in the figure.

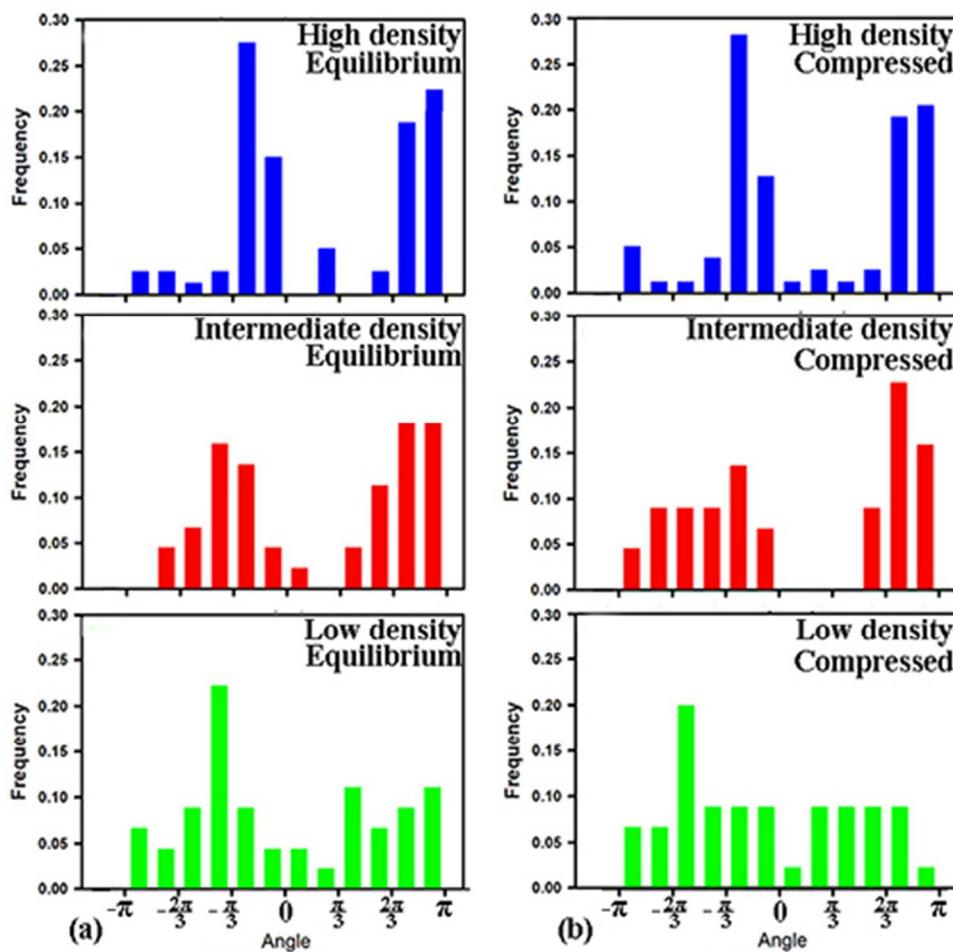

Figure 3. Ion pair structures between two sulfobetaine zwitterions. The S atoms in sulfonate functional groups are connected to the N atoms in quaternary ammonium groups with blue dashes lines. The distances between them are also illustrated. In vacuum, panel (a) shows two mutual ion pairs and panel (b) illustrates one single ion pair. Panel (c) shows a weakly bound ion pair structure in water. Water molecules close to this ion pair are also shown. Panel (a), (b) and (c) correspond to point A, B and C in Figure 4a, respectively. Colors: red, O; white, H; light blue, C; dark blue, N; and yellow, S.


Figure 4. Free energy profiles of (a) two sulfobetaine zwitterions and (b) two sulfobetaine brushes in various media, calculated by umbrella sampling method. A single collective variable, the center of mass (COM) distance between two molecules, is used for calculations.


Figure 5. Typical ion pair structures between two sulfobetaine brushes. The S atoms in sulfonate functional groups are connected to the N atoms in quaternary ammonium groups with colorful dashes lines. The intra ion pairs are in purple and the inter ion pairs are in blue. The distances between them are also illustrated. Panels (a), (b) and (c) show pairs in vacuum. Panels (d) and (e) show brush structures in water and in NaCl solution, respectively. Panel (a), (b), (c), (d) and (e) correspond to point D, E, F, G and H in Figure 4b, respectively. Two brushes are separated by black dashes lines in order to be distinguished. Colors in stick presentation: red, O; white, H; light blue, C; dark blue, N; and yellow, S. Colors in ball presentation in solution: dark blue, Na^+ ; and yellow, Cl^- . Water molecules in (d) and (e) are not shown for clarity.


Figure 6. Snapshots of (a) high-grafting-density, (b) intermediate-grafting-density, and (c) low-grafting-density sulfobetaine brush arrays in hydrated states. Colors: red, O; white, H; light blue, C; dark blue, N; and yellow, S. The S atoms in sulfonate are in yellow and the N atoms in quaternary ammonium are in dark blue using ball presentation. Water molecules in these figures are not shown for clarity.


Figure 7. Material density profiles of the sulfobetaine brush arrays in hydrated states. Water density distribution is also shown in the figure. Panels (a), (b), and (c) correspond to the high-, intermediate-, and low-grafting-density brush arrays, respectively.


Figure 8. Radial distribution functions for the contact pairs between (a) oxygen atoms in sulfonate and water oxygen atoms; (b) carbon atoms in quaternary ammonium and water oxygen atoms; and (c) oxygen atoms in sulfonate and carbon atoms in quaternary ammonium. Panels (d), (e), and (f) correspond to coordination numbers of the three contact pairs, respectively.

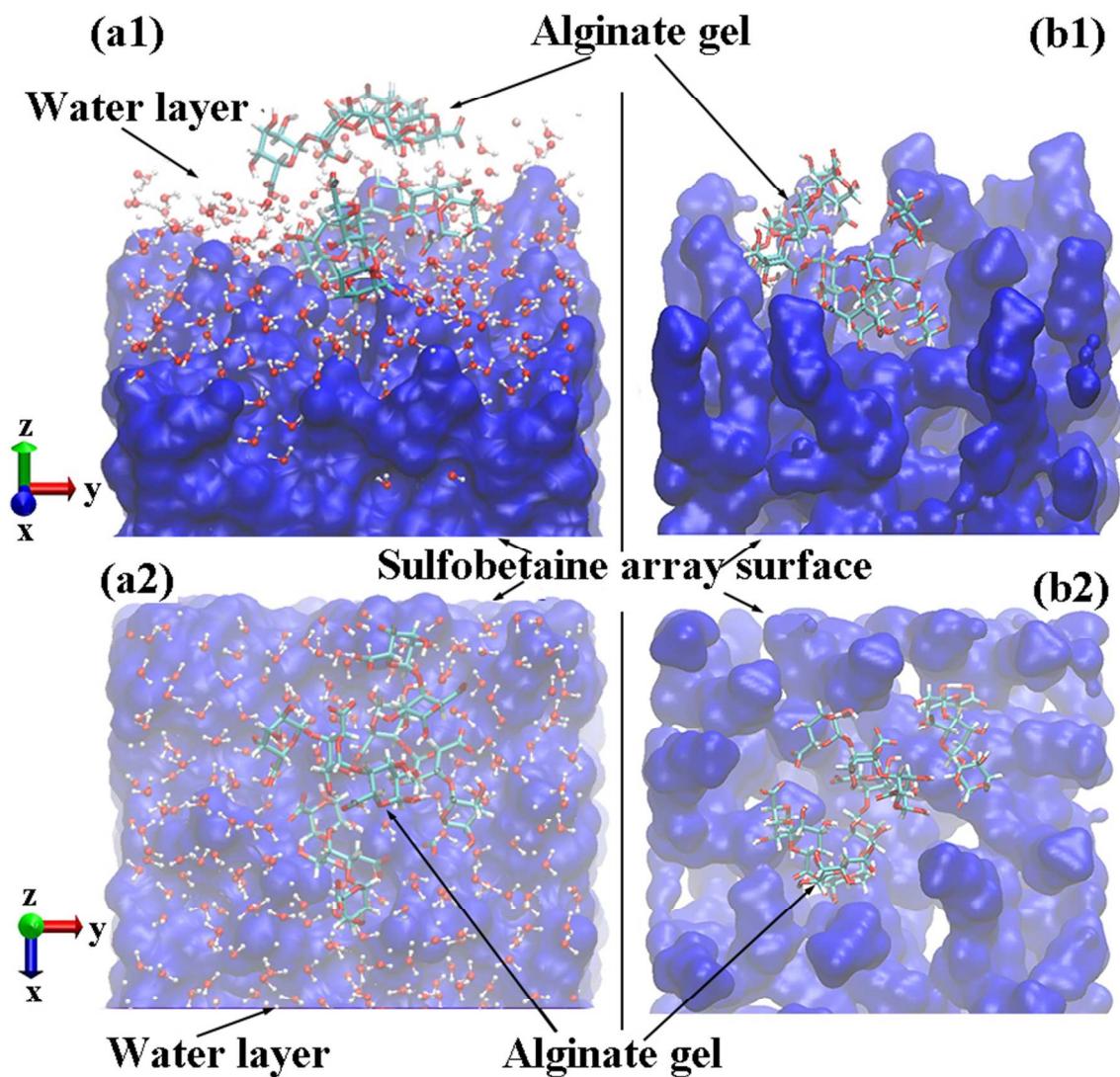

Figure 9. Snapshots of the sulfobetaine brush array surfaces with (a) high grafting density and (b) intermediate grafting density in equilibrium states. The sulfobetaine array surfaces are represented by the blue van der Waals contours. The white circles with different numbers indicate the locations at which independent steered molecular dynamics simulations are performed.

Figure 10. The force-distance profiles obtained from SMD simulations for the high-, intermediate-, and low-grafting-density array surfaces. The horizontal axis represents the position of COM of the alginate gel. Negative values correspond to repulsive spring forces.

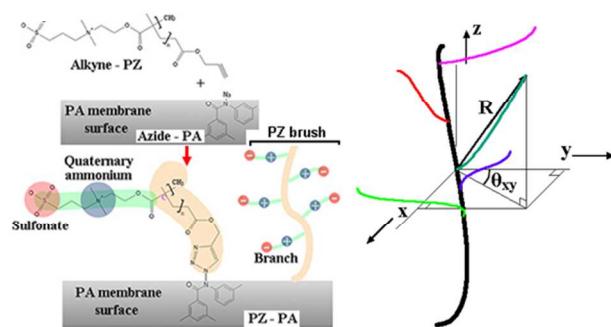


Figure 11. Histograms of branch orientations θ_{xy} for sulfobetaine brush arrays (a) in equilibrium states and (b) under compression of 1nN by an alginate gel. Angle θ_{xy} is defined in Figure 1c, which varies from $-\pi$ to $+\pi$.

Figure 12. Snapshots of the sulfobetaine array surfaces with (a) high grafting density and (b) intermediate grafting density under compression of 1nN by an alginate gel. The sulfobetaine array surfaces are represented by the blue van der Waals contours. Hydration water layer near the high-grafting-density array surface is also shown. Hydration water layer near the intermediate-grafting-density array surface is not shown for clarity.

TOC Figure

