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Abstract: Valorization of lignin has the potential to significantly improve the economics of lignocellulosic biorefineries. Figure 2: Internalization of Compounds and Single Cell Analysis
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lignin in nature is efficient, but occurs very slowly. Engineering microbes to produce efficient and directed lignin A SCF1 Alkyne B E. coli Alkyne
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lignin breakdown products across the cellular membrane (Chaudhry et al., 2007; D'Argenio et al., 1999; Harwood et al., B GGE
1994; Jokela et al., 1987), but direct measurements of the substrate range and specificity are lacking (Nichols and Z 12000
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Organism and Growth Conditions: 2000
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