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Heat Exchangers are Critical for sCO?2

(" PCHEs )
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J.P. Gibbs, P. Hejzlar, & M.J. Driscoll. (2006). Applicability of Supercritical CO2 Power Conversion Systems to GEN IV Reactors (Topical
Report No. MIT-GFR-037) (p. 97). Cambridge, MA: Center for Advanced Nuclear Energy Systems MIT Department of Nuclear Science and

Engineering.




Heat Exchangers are a Major Cost (@i

“IA] 30% reduction in

HX cost would have [a]

meaningful impact on
system cost.”

T. Held, “Performance & cost targets for sCO2 heat exchangers,” presented at the National Energy Technology Laboratory - EPRI
Workshop on Heat Exchangers for Supercritical CO2 Power Cycles, San Diego, CA, USA, 15-Oct-2015. 4
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Sodium Fast Reactor Molten Salt Reactor Gas Fast Reactor

Sodium/Sodium HXer Salt/Salt HXer (N/A)

High reliability, tritium High reliability, tritium N/A
Sodium/sCO2 HXer Salt/sCO2 HXer Helium/sCO2 HXer
Tritium, high pressure Tritium, high pressure High pressure

sCO2 Recuperator
sCO2 Water Cooler
High sCO2-side temperature and pressure, corrosion, size/cost




Solar Power Pathway Exchangers @&

Solid (particles) Liquid (salt) Gas (+ storage)

Particle Receiver Molten Salt Receiver Gas Receiver
Efficiency Corrosion, cycling Cycling
Particle/sCO2 HXer Molten Salt/sCO2 HXer *Storage/sCO2 Hxer
Erosion, size/cost, cycling Corrosion, size/cost, cycling Size/cost, cycling

sCO2 Recuperator
sCO2 Air Cooler
High sCO2-side temperature and pressure, corrosion, size/cost




Fossil Power Pathway Exchangers @&
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sCO2 Recuperator sCO2 Recuperator sCO2 Recuperator

Combustion products, T/P  Combustion products, T/P High temperature/pressure
sCO2 Air Cooler
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Sandia

Key Research Areas )

= Lifetime validation of compact heat exchangers
= Failure modes
= Pressure/thermal/corrosion-assisted fatigue
= Creep behavior and lifetime
= |nspection and monitoring

= Affordable compact heat exchanger configurations
= Configurations with large (gas/liquid) and small (sCO2) flow areas

= Fabrication using advanced corrosion-resistant materials (nickels)
= Tritium management for nuclear applications

= Methods to leverage low-cost materials at high temperature
= Corrosion-resistant coatings for stainless steels
= Coating failure potential and lifetime
= Modular designs to allow for shorter lifetimes
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Project Map — Nuclear Applications [

UW-Madison NEUP
CFA-17-12481
sCO2-cooled
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roject Map — Solar Applications @&
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Project Map —sCO2 Cycle Level ) 5,

—-
\ Shaft Speed

Main .
VPE CRADA Comp a Generator a Turbine
1822.01

Design, Shims, Buffer //
Headers, Lifetime Volume
1 b

STEP 03
2.04.19.06

Cost & Lifetime Recomp
Comp
|

Comprex SBIR
FY17 P1R2
Large-shim

Diffusion Bonding BV AVAVAVASS E Y A AVAVAV A
11 ]
( N
Technology Comm. Fund \/\/\/\/\_ _\/\/\/\/\_"‘ \/\/\/\/\—"‘
Optimized Headers p of Low Temperature High Temperature
\ 2 J recooler Recuperator Recuperator

TCF-17-13556
4 i N\
Small-Business Voucher
EERE-0999-1766
Screen-printed Shims
\ J
[l |

HPC4Manufacturing APOLLO

Proposed DE-EE0001720
SEARCH Enhancements Switch-bed Regenerators

Exchanger

Primary Heat




Project Map — Component Level @&

STEP 03 - Lifetime STEP 03 - Design HPC4Manufacturing
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VPE Bonding Process Certification @
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Side A (straight) Side B (Z-side) solutionScope$=[All design steps (mech, thermo, TH) |
Step 1. Side A and E Stream Compositions {by mass %) Calculats ]ﬂ Savs Inputs ﬁ-ﬁ Load inputs ]
Choose the fluid set:  |Refprop Fluid(s) Refprop Fluid(s) Summary of PCHE Design
First 8 fiuid components: [1as]y [1se]1 [R1Z33ZDFLD] Job Number
[s]%1  [ACETONEFLD [f]rs  [1BUTENEFLD RunDate =
[s]m1  [Nitrogenfa) [s]s1 [FBUTENEFLD Job Title
e Sub-hxer model o e —
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P—
[l [l o e e i
° ASME BPVC (o] [e]m  [TBUTENEFLD Core Cross Section (HxW) A= =" [n]
[e]mea [e]s1 [TBUTENEFLD Side A Surface Area Az, = " ]
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L4 Slngle, tWO—phase, Step 2. Specify Fluid Flow Rates Heat Transfer Rate (Duty) 9= """ [W]
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t I fI [Intet States T Pa Te P | Step 3. Specify Inlet State for Sides A and B MAWT (same as MDMT)  MAWT = =[]
supercritical TIOws et Pressure P JTT0ERE Fal P <[Z0ETT] P Number o Eiched Plate Pairs  Neows = * 1
Inlet Temperature Tﬂ..n["q TEI.Inl.-K] Side A Channels per Plate  Mgp 0= * [
Inlet Quality (£100 =sup or sub)  Ca = " Qgpn=" Side B Channels par Plate  Mype= "[]
. Outlet Pressure  Page= ~""" [Fa] Pae= """ [Fa] Mumber of Un-etched Plates =
e QOver 400 fluids Outiet Tempersture o= [ R oy [ Step 5. Other Conrols
Outlet Quality (H100 =sup or sub) Qo= " = Max Active core volume width Wm,‘u[m]
Step 4. Specify the Allowable Pressure Drop Max Active core volume height Hm_,u[m]
Pressure Drop  dFsumy = ™" [Fa] dPsumg = " [Fa] Extra width provided  Wiysra 30 [m]
Drop f Operating Pressure  dPq = “ [%] dPg s = "7 5] Extra height provided H“m@[m]
Step 5. Specify Header Orientations Step 6. Specify the Perfformance Measure
Header Axis Orientation Vertical Vertical c Type
Step 7. Specify Core Channel Geometry } . . )
Diffusion Bonding Joint Efici 07|
Cramel Width . w, 1000126 | (] e 0001255 ) Imadermcld'nd:rg.poimem 'W EDE::
I Cle| . -
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SEARCH Experimental Verification @
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Design Optimization ) B
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Hybrid Additive Manufacturing ) .

Core and Manifold Assembly




Hybrid Additive Manufacturing ) .
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Alternative Headers: )
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Flow maldistribution in PCHEs reduces effectiveness

=  Flow maldistribution (a) Upper view
can have a significant | veiociy

. Streamline 1

impact on compact 237

heat exchanger l

effectiveness with - 17.8

reductions of 5-15%

= Others have
predicted flow
maldistribution with
computational fluid
dynamics (CFD)

"= No experimental data

are known for this
issue Baek, S., Lee, C., and Jeong, S., 2014, "Effect of Flow Maldistribution and Axial
Conduction on Compact Microchannel Heat Exchanger,” Cryogenics, 60, pp. 49-61.

e Ll A R A W WD D D
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Alternative Headers:

We measured the flow distribution with PIV in a PCHE prototype

B We performed the
first known
measurements of
flow distribution in
compact heat

exchangers i gL'y [Wsua]izaﬁ(m]

An acrylic PCHE
prototype was
made for use with

water

An optical system
called Particle
Image Velocimetry
(PIV) was used to
measure flow fields

Laser : Linear Slide Camera

R
-

AP Transducer Ps
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Alternative Headers: =
Velocity magnitude was mapped out in space and reveals variations
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Lance, B. W,, Carlson, M. D., “Printed Circuit Heat Exchanger Flow Distribution Measurements,” 2017 ASME Turbo Expo, ¢
24
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Lifetime Validation Testing ) .

= Testing
" Headers
= Cores
= Full Parts
= Flexibility
= 1to 10 ksi
= 10 to 60 ksi
= Remote
operation
= Modes

=  Proof test
= Burst test

="  Pressure
fatigue
= Thermal

fatigue
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Key Research Areas )

= Lifetime validation of compact heat exchangers
= Failure modes
= Pressure/thermal/corrosion-assisted fatigue
= Creep behavior and lifetime
= |nspection and monitoring

= Affordable compact heat exchanger configurations
= Configurations with large (gas/liquid) and small (sCO2) flow areas

= Fabrication using advanced corrosion-resistant materials (nickels)
= Tritium management for nuclear applications

= Methods to leverage low-cost materials at high temperature
= Corrosion-resistant coatings for stainless steels
= Coating failure potential and lifetime
= Modular designs to allow for shorter lifetimes
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