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Wind Energy Industry Trends

• Global wind energy industry expected to 
double in capacity over the next decade

• The U.S. is on track to produce 35% of its 
electricity by wind energy in 2050

• China has the highest installed wind 
energy capacity, doubling that in the U.S.

• India and South America will likely see 
significant growth 

Source: GWEC, “Global Wind Energy Outlook 2016”
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Wind Energy Industry Trends

• New markets are opening as land 
and resource restrictions are 
faced across the world

• Offshore wind energy industry is 
growing globally
– In 2016, the first offshore wind plant 

was installed in the U.S.

– China has been installing offshore 
wind plants to access better wind 
resources

– The first floating offshore wind plant 
was installed off the coast of 
Scotland to access deep-water sites

• Land-based wind turbines are 
being designed for lower wind 
resource sites as the better sites 
have been developed

Source: Global Wind Energy Council

Scenario projections of U.S. wind energy installation through 2050
Source: DOE Wind Vision Report

2013 2050
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Wind Turbine Blade Trends

• Wind turbines are getting larger, and blades are getting longer

• The growing offshore wind industry is enabling very large wind turbines

• Land-based wind turbine blades are getting longer for the same power 
rating, to access low-wind resource sites and for higher energy capture
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Wind Turbine Blade Trends

• Trends suggest that wind turbine designs will continue to utilize longer 
blades for land-based machines, particularly in the U.S. and Europe

• The offshore wind energy market will demand very large blades
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Wind Turbine Blade Material Trends

• Despite industry growth in blade length, carbon fiber usage in wind 
turbine spar caps is not predicted to grow over the next 5 years

• Stated reasons by turbine OEMs include price concerns, manufacturing 
sensitivities, and supply chain limitations/concerns

• High-modulus glass fiber has been pursued as an alternative
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Wind Turbine Blade Material Trends

• In 2012, nearly 20% of global 
installations used carbon fiber blade 
designs (Source: MAKE)

• GE’s transition away from carbon 
fiber blade designs reduced the 
market share of CFRP designs
– GE may revisit the use of carbon fiber in 

their higher power capacity platforms

• The improved system performance 
of carbon fiber blade designs must 
result in a reduced cost of energy 
for OEMs to heavily utilize carbon 
fiber blade designs
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Wind Turbine Blade Material Trends

• In 2015, none of the installed 4-8 MW wind turbines utilized carbon 
fiber

• The usage of carbon fiber in blade designs is expected to increase for 
large, land-based machines and offshore wind turbines
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Wind Turbine Blade Material Trends

• Carbon fiber blade designs produce a system value by reducing the 
blade and tower-top weight, however, OEMs have identified ways to 
design blades at all available lengths using only glass fiber
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Optimized Carbon Fiber for Wind Energy Project 

The objective of this project is to assess the commercial 
viability of cost-competitive, tailored carbon fiber 

composites for use in wind turbine blades.  

• Wind turbine blades have unique loading criterion, including nearly 
equivalent compressive and tensile loads

• The driving design loads for wind turbines vary for high and low wind 
speed sites, and based on blade length and weight – producing distinct 
material demands

• Composites for wind turbines are selected based on a cost-driven 
design, compared to the performance-driven aerospace industry
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Project Overview – Team and Capabilities

• DOE’s designated rotor design group
• Experience in design, manufacturing, 

and testing of novel blade concepts

• Composites development/applications and 
Leadership in DOE Low Cost Carbon Fiber Program

• Carbon Fiber Technology Facility for technology 
demonstration/licensing opportunities 

• Cost-modeling utilized to guide focal activities

• Nearly 3 decades of experience and expertise in testing 
of composite materials for the SNL/MSU/DOE database

• Failure analysis methodologies utilized to characterize 
material failure progress during testing and post-mortem 

Bend-twist coupled blade design

National Rotor 
Testbed design

Carbon Fiber 
Technology 
Facility

Substructure test frame
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Project Overview

Precursors
CF 

Processing
Material 

forms
Blade 
design

Blade 
operation

ORNL LCCF R&D Program

ORNL LCCF Cost Model

SNL Rotor R&D Program

SNL Blade Mfg. Cost Model

MSU Testing Program

Mech. Properties

SNL Numerical Materials and Design (NuMAD) 
Blade Structural Optimization Framework 

Baseline Rotor Design Optimized CF Rotor Design$

𝑘𝑊ℎ
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Carbon Fiber Cost Modeling

Carbon Fiber model (Baseline -- 1500 t/year line capacity)

Evaluate carbon fiber manufacturing at the level of nine major process steps:

• User may examine any production volume from 1 - 18,000 t/y (economies of scale for a fully 
utilized carbon fiber lines between low and high production volume)

• Test sensitivity of key parameters such as line speed, residence times and temperatures of 
oxidation, LT, and HT, precursor cost, etc.

Precursor
Pre-

treatment
Oxidation LT HT

Abatement

Surface 
Treatment

Sizing
Winding, 

Inspection,
Shipping

effluent

Precursor model (Baseline -- 7500 t/year line capacity)

Evaluate precursor manufacturing at the level of two major process steps:

• User may examine any production volume from 1 - 45,000 t/y (7,500 t/y and 45,000 t/y used 
as low and high production volume)

• Test sensitivity of key parameters such as spin speed, process yield, raw material costs and 
ratios, energy vector costs, etc.

Polymerization Spinning
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Carbon Fiber Cost Modeling

A cost model is being developed to 
estimate the carbon fiber cost variation 
to its mechanical properties:
• Fiber strength and modulus sensitivity 

calibrated to commercial 24K tow and 
50K tow fiber costs
– Used to correlate strength sensitivity to 

fiber cost

– Fiber modulus correlated to; Low Temp. 
Furnace [1.14 MSI/100oC Increase], High 
Temp. Furnace [0.85 MSI/10 sec. 
Residence Time Increase] [0.24 MSI/1% 
Stretch Increase] 

– Linear fiber cost sensitivity to properties 

– No interdependency between fiber 
strength and modulus assumed

➢ Fiber cost is more correlated to change 
in material strength than modulus

➢ Fiber properties will be correlated to 
final composite properties for blade cost 
impacts

50K Tow

24K Tow

50K Tow Carbon Fiber Cost Distribution ($18.11/kg)
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Material Testing

• Mechanical properties will be derived 
for baseline, commercial products and 
for CFTF low-cost carbon fiber 
materials
– Industry baselines (2-3 will be selected)

– CFTF Precursor #1: Kaltex 457k tow

• Materials will be tested in (1) aligned 
strand infused and (2) pultruded 
composite forms

• Failure analyses will be performed on 
the different samples to gain insight 
into why the materials fail, particularly 
insightful for the heavy-tow materials

ORNL Material Properties for Kaltex Precursor
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Wind Turbine Blade Optimization

• Blade structural optimization 
will be performed with blade 
cost minimization as the 
objective, including material and 
manufacturing cost contributions

• The impact of material choices 
will be assessed using cost 
estimates and tested mechanical 
properties 

• Derived trends of material 
properties vs. cost will be used 
to more broadly address the 
question of which properties 
matter most for particular blade 
designs
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Structural and material optimization will be 
performed using two reference blade models 
that are representative of industry trends:

1. High wind resource (IEC class I-B), large wind turbine 
representative of future offshore wind turbines; DTU 
10 MW aerodynamic design

2. Low wind resource (IEC class III-A), high energy 
capture wind turbine typical of development for the 
low wind speed sites across the U.S.; SNL3.0-148
aerodynamic design

Blade structural optimization performed using 
NuMAD to produce blade structural designs:

• (s1) All-fiberglass reference design

• (s2) Cost-optimized design using carbon fiber cost 
and material property models

Ensures that the results cover the differences from 
driving load conditions and machine type

Wind Turbine Blade Optimization
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Summary

• Without further innovation, carbon fiber will continue to be utilized in certain 
wind turbine designs and represent a share of the industry

• Market trends towards longer blades and larger machines will drive demand 
for carbon fiber blade designs

• OEMs continue to meet the load requirements of even the largest blades using 
all glass designs, motivated by the high cost of CFRP

• An innovative carbon fiber material purposefully optimized for the unique 
demands of a wind turbine may offer a more ideal solution than commercial, 
large-production carbon fiber or glass fiber alone
– What if there was an optimized carbon fiber material whose properties matched the 

system demands for wind turbines, and every OEM wanted to use it?

• This project seeks to address that perceivable material gap through a systems 
design approach that assesses the effect of a range of material specification on 
blade cost

• Interesting opportunities may exist for industry partnerships to find potential 
solutions:
– Wind turbine design is influenced by material design, how else could material design be 

influenced by wind turbine design?
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