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Why Algae ?

* Food
* Spirulina, Chlorella, Irish moss, Sea lettuce etc.
* Algae oil (Omega-3 and Omega-6)

* Fertilizer and agar

* Pollution control
e Waste water treatment, CO, reduction

* Energy production

* biodiesel, biobutanol, biogasoline, methane,
ethanol

* Fast growth, does not compete with agriculture

e Other usage

* cosmetics animal feed, bioplastic, pharmaceutical
ingredients

e Job Creation



Hurdles in Algae Cultivation

Short term areal production of 30-50 g/m?/day is high

BUT

Annualized areal production rates of 13.2 g/m?/day:
ANL, NREL, PNNL 2012

We need to be higher to meet Economic threshold: 25-50 g/m2/day
annualized

Conditions in production ponds are not found in nature

Pond crashes responsible for loss of 10-30% of
annualized production

We need : High productivity,

The reasons for failure are poorly understood resilient algae culture and,
* Low resources and low technical sophistication .
low operation cost
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“Perhaps the most worrisome component of the large-scale algal cultivation enterprise is the fact that algal

predators and pathogens are both pervasive and little understood.”

- DOE Draft Algal Biofuels Technology Roadmap (2009)

Todd Lane



Detection of biological agents

Goal : For sustainable reliable
production / cultivation of algae.

— Find probiotic communities and
deleterious species affecting
biomass yield

— New methods to detect deleterious
species

Current detection methods:
Microscopy and gPCR sampling

— Disadvantages
» Prior expertise needed
« Sampling bias in identifications

Microscopy
h S= e




Seq uen C| N g teCh A |q UES for detection of biological agents

Advantages Phylogenetic “Tree of Life” for SSU rRNA

Exploiting the diversity in ssu rRNA gene R\ YA
with DNA sequencing for species NN
classification e et
« Advantages: _‘_"_-':.;ZL:;,-;_.E.:_.‘. SIE
— No prior knowledge needed to classify. e o Entries in Silva SSU database
— No sample based bias _
— Time saver : “, . ¢ 597,607
— Able to classify a larger variety of organisms
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Sandia’s Role in the ATP3 Consortium:

genetic identification of pond crash agents

e 6X1000Lreplicate ponds in 5
geographically distinct locations

* Nannochloropsis oceanica
* Chlorella sp DOE 1412

e Desmodesmus

_________




Research Strategy

We sequenced
and analyzed
~1200 sequences
for a full year of
operations of
ATP3 ponds in
2014



SSU rRNA Amplicon

sequencing and analysis workflow

Pond

Sequencer

Extract DNA

Pre-processing of
raw reads

lassification of Taxonomy
Silva & Green genes

MAGPie

Machine learning

L . I
Classification
accuracy llumina
MAGPie 65% - Genus
100% > Genus 30% - Species

70% - Species



Output data structure

Map of sequence reads to the 16s

ssu DNA locus

Local conservation
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Table of classified OTUs and their abundances can be displayed on websites as well

taxid in DB Taxanomy taxa Pond 1 Pond 2 Pond 3 Pond 4 Pond 5 Pond 6
U41092.1.1792 Eukaryota;Eustigmatophyceae;Eustigmatales;Monodopsidaced Nannochloropsis granulata; 13379 1 1 1 19644 21286
Y14950.1.1794 Eukaryota;Viridiplantae;Chlorophyta;Trebouxiophyceae;Chlore Chlorella sp. Yanagocha RA1; 3375 216 113 677 202
JF834543.1.1228 Eukaryota;Bacillariophyta;Bacillariophyceae; Thalassiophysalesj Amphora sp. PP-2011; 1 1 1 1
DQ059583.1.1784 Eukaryota;Spirotrichea;Urostylida;Holostichidae;Holosticha;Ho] Holosticha diademata; 1

EF165112.1.1687 Eukaryota;Chrysophyceae;Chromulinales;Chromulinaceae;Och)Ochromonas cf. gloeopara; 1 1 8
FR865727.2.1770 Eukaryota;Viridiplantae;Chlorophyta;Chlorophyceae;Sphaerop| Scenedesmus armatus; 12 27 10 1 4
AY520448.1.1735 Eukaryota;Bicosoecida;Cafeteriaceae;Cafeteria;Cafeteria minint Cafeteria minima; 6 13 3 1 17
AY622191.1.1753 Eukaryota;Metazoa;Arthropoda;Ostracoda;Podocopida;CyclocyCypria crenulata; 36 12 30 3
HM161745.1.1787 Eukaryota;Synurophyceae;Ochromonadales;OchromonadaceagPoterioochromonas sp. Y4; 11 7 3
127634.3.1794 Eukaryota;Labyrinthulomycetes; Thraustochytriaceae;Labyrinth Labyrinthuloides minuta;

EU106848.1.1693 Eukaryota;Bicosoecida;Caecitellus;Caecitellus sp. RCC1072; Caecitellus sp. RCC1072; 2 14 21 63
M74497.1.1789 Eukaryota;Viridiplantae;Chlorophyta;Chlorophyceae;Sphaerop| Hydrodictyon reticulatum; 7 12 11 20
IN120201.1.1541 Eukaryota;Oligohymenophorea;Opisthonectidae;Opisthonectaj Opisthonecta henneguyi;

DQ514856.1.1722 Eukaryota;Bacillariophyta;Coscinodiscophyceae;Stephanodiscaj Cyclotella meneghiniana; 5 1
EU032356.1.1751 Eukaryota;Oligohymenophorea;Pleuronematida;Cyclidiidae;Cy¢ Cyclidium glaucoma; 1 9 1 8 1
JF489982.1.1752 Eukaryota;Eustigmatophyceae;Eustigmatales;Monodopsidaced Nannochloropsis oceanica; 1
EU039885.1.1700 Eukaryota;Colpodea;Colpodida;Hausmanniellidae;BresslauidesjBresslauides discoideus;

U49911.1.1808 Eukaryota;Metazoa;Rotifera;Monogononta;Ploimida;BrachionijBrachionus plicatilis; 11 2 9
AF352222.1.2260 Eukaryota;Viridiplantae;Streptophyta;Zygnemophyceae;Desmi{ Closterium moniliferum;

HQ912576.1.1744 Eukaryota;Bacillariophyta;Coscinodiscophyceae;Stephanodiscaj Cyclotella meneghiniana;







in crash samples
~50% of reads came
from 3 species
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Clustering analysis:

Highlights the community structure of the various geographical locations and health of the

16s data for Spring 2014
all sites

Heatmap of clustered
samples and species

Sites cluster together




Community structure gradually changed with time
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And within same sites the community structure gradually
changed with time



Clustering highlights pre-crash signature

Clustering analysis on the ponds
could differentiate the healthy
and crashed ponds.
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Principle component analysis :
crashed ponds have a different
microbiome signature

Principal Component Scatter Plot with Colored Clusters
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tSNE-plots

The clusters obtained from the tSNE 60
transformation explain most of the variations

in the microbial ecology of the samples. Hence

when we apply the decision tree over these

datasets we can only identify few key features 40 L
of biomarkers of crashes

“tSNE (t-distributed stochastic neighbor
embedding) algorithm is a machine learning
algorithm for dimensionality reduction. It is a
nonlinear dimensionality reduction technique
that is particularly well-suited for embedding
high-dimensional data into a space of two or
three dimensions, which can then be visualized
in a scatter plot.)”

20

tSNE dimension 2
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The clusters obtained from the tSNE
transformation explain most of the variations
in the microbial ecology of the samples. Hence
when we apply the decision tree over these
datasets we can only identify few key features
of biomarkers of crashes

“tSNE (t-distributed stochastic neighbor
embedding) algorithm is a machine learning
algorithm for dimensionality reduction. It is a
nonlinear dimensionality reduction technique
that is particularly well-suited for embedding
high-dimensional data into a space of two or
three dimensions, which can then be visualized
in a scatter plot.)”

tSNE dimension 2

tSNE-plots
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The clusters obtained from the tSNE
transformation explain most of the variations
in the microbial ecology of the samples. Hence
when we apply the decision tree over these
datasets we can only identify few key features
of biomarkers of crashes

“tSNE (t-distributed stochastic neighbor
embedding) algorithm is a machine learning
algorithm for dimensionality reduction. It is a
nonlinear dimensionality reduction technique
that is particularly well-suited for embedding
high-dimensional data into a space of two or
three dimensions, which can then be visualized
in a scatter plot.)”

tSNE dimension 2

tSNE-plots

60

40

20

L

L]

L)

L

° Spﬁnd
SUMMER

e Fall
'dO @
e l::c
o o ® : O<~...
a0 T AN
iy R T
- o

-10 0 10 20

tSNE dihmension 1



Rahnella Nautilia V"mm/ Sneathiella
Pedobacter Wat

Alicyclobacillus apeka
Aeromonas

Phenylobacterium Thiovifga

Ensifer Hyphomicrobium
Siphonobaxer:
Peredibacter

Fluviic
Lysgbacareibulibacter Whricicia

Roseos ra Tiobacter Herbasifil4@eobacter
rkhol d
Hymenoacter. o~ AciiESESLS A acraysagoccptectobEopn® nermof¥aella
b4 $omorphomipapsbacier Ralstonia,
\ Aciditerrimonas AZotvoacter  jiangella
v N Skermariella Ch'goflexys
Vitovorax L . terium
S by
Rheinheimera hireaetdim Ph.©.licysHScreroides Thermomonas
S ¢ » 6iljticums
Brevun\imbrfas A(mw‘;’;’;gvjmﬂgphm
% .| H\ hgek Dyad-bacter Nihessn
Glaciecola \e ), A L Acidovorax Simplicispi
e gy SR \ Flavehacterium Perphyrobacter

Georgfuchsia

14,
%-coosm‘p@ww
Abrobacte < Cemabacte L | a0 e
A mﬂ“""ﬂv";ﬁ%sﬂwum

SE0COCCUS Chelatococcus

b3 g
0 0 SRhirge.inicella
et e L

b Apalobactersiyeki®'s g Aquabacter

< ”F\a»ug@:’@zgn an‘ﬁcm' nthobacter
/

Novosphingeiunr 4,
mfwmms":w ¥
0 Sohiagbzaetl
Pseudomonas

\ 1oy,
Fer\bacterifrvinkrdpionhParabachifiomonas

acter

N
Deinocpedky - Rosea Paenibacillus
Zobitm

b
~y  Mephyloversatilis
AV

Limnobacter

/% \iastomonas

Eubacterium

ENgabethkingia

D

XU Mxgrfonas

/| Marinovum

/ Arenibacter

Salinimicrobium

by nfrophobacter

Sdbacillus

inomonas

s
NFS

jafs o
h gt
(/ I
K

Sulfuricurvum DI EctothiorhsdB9ARY?

grphus

X F‘ esulfovibrio
ol W cadaa

\\ AR

= Oceanicaulis

) hodothcmb\um

gainjfienia

y/ Oligoflexus

Leeuwenhoekiella

Microbial Network in ATP3Ponds

p NI S
‘) Smerae 5,

Tropicimonas

Silanimonas



Alicyclobacillus

L

Elizabethkingia
Maricaulis

Caenis piligibucter,

Ochrobactrum VA

y /
Reiclenbachiella ‘ AW/{"/

Crocinitomix
Tepidimicrobium

Alcanivorax| Algimonas.

Nautilia
Pedobacter

! Hyphomicrobium

Ricicia

5 é“*‘iw”vmeommr

; Il
Vo et
{Awup«g\e/ J\aaneua

Thrmomonas

Georgfuchsia

enibacillus

Limnobacter

Eubacterium

Ekhidna J K
] Collingita, N
Desulfarculus y ¢ if /{”1 E’D Zta Marinovum
Lab{§0kiaceer Um‘("‘Dc‘uvxyuyxiug 1} 7 % \maineola
It
- ﬂa‘;’m?%&w\gn‘m\aw«rom\(rubmm
A’ r : ),
Phycsphaci s @ “Wsofiibatbna; Caminibyfl fonheis Mfrob ‘*Zo\r(us
H\\rr—\ﬂg}hm(uy\m phiciobacils ons Se‘b st e Arenibacter
hia/Stigella K acterium
foNipra g(wmueﬁawk icl 8
ra Acholeplasma Prevotell& nyvibacteriun
MRS, ; e S“% ybacterty i amaiin AT—

Gonah g sac e
au nmﬁmmnmiaw(m

ksia
h AlgogphQyiRnwee!
B\ fs
Methylogaldr ‘Sandardtisbrh S5 U’BOW‘/"@Mmrm apr ;i e Syntrophobacter
s hinl Ruegerhylopha
Koria Nt E’*‘“’" m.g;w,\&m i RoseOvaris Halarfiohds BInivibriR othiobacillus
¥ < -+ Sagithkyita " 5
Leptonema ) Tatgeg o «L & Close iR Xlb (aigioiact o Y MOBAGIE0l -
X 10 4le®>ovulum AT vl dhadospil
Mnnmwhmnek“ﬂdqztbms.omnm Dl 2scds Nisa Oldmanng
Bacteriogora Oceanibacuuf
"M BBl ircingulighacier  Natronogella £ Xitellibacter
mmnqamb..uco A Hahangium Léwinell
A ““““”"‘D\m 12 onast “-llovibrio Legionginicola Yonggapriia
ireimonas MMVWWM aMalinoscillum Saccharospirilom . Teaiamarphus
Piscirickettsta. © Aqurgoirillu R
4 < y F ubribacterium, - Rossicyclus
pesilfoaAiBIRIBHH = Sualochamasium Desulfovibrio
Pelagibius
M ot alegentib
A\ (i lagnetospird. o Salegentibacter .8

Pseudoglifigerionas

rospira

Sulfuricurvum Ectothiorh34BAEY

Dietzia

Tropicimonas

Silanimonas

Oceanicaulis
Rhodoligotmgariomicrobium

ThalassatiRenia

Oligoflexus

Leeuwenhoekiella

Microbial Network in ATP3Ponds

Waddiia

Sneathiella



Machine learning on pond crashes

Species 1 | Species 2 | Species 3 Species M Result
Pond1_Sitel 34 456 2 78 Crash
Pond2_Site2 0 2 45 900 Healthy
Pond3_Site3 765 0 4 22 Healthy
Pond4_Site4 44 334 11 12 Healthy
Pond5_Site5 73 543 7 5 Crash
Pond6_SiteN 456 100 233 33 Healthy

CART
Classification
Regression Tree

Decisipn Tree:
Algprithms




Applying data driven approaches:
Decision Tree reveals pond crash signature

Cross-validated tree showing the
species determining the signature of

Vampirovibrio chlorellavorus
crash ponds i \

Porphyridium purpureum

. V \hlgh\m crash
Nannoch |DI‘OP5I5 Ochromonas gloepara OcHromonas sp.
Amphora sp. I high Ic:}‘u/ Nig\h
| \3\] Uronema’marinium
Holosticha diademata

Chlorella

low high crash healthy

Ochromonds sp

Myconastes homosphaera crash
oy \pign | igh 'c’% Nigh
Caecitellus parvulus crash
healthy ~crash  healtny Caecitellus sp. 'f::f/ \@f |dentification of indicator species may
“?/ \g{l Poteriospumella lacustris
Cinetochilum ovale

o~ \_high crash serve as a early warning for incipient
healthy crash crashes
healthy
/IU( fbr\

Ochromonas cf, gloeopara healthy Model Crash Productivity
Accuracy Prediction Prediction

Chlorella V 87% 71%

crash healthy Nanno O 91% 65%
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Model Crash Productivity

Accuracy Prediction Prediction

Chlorella V 87% 71%
Nanno O 91% 65%




Summary

« Workflow for quick turnaround of amplicon sequencing 16s and 18s

* New bioinformatics software pipeline
« fast and efficient and producing user friendly outputs.
* pipelines used and developed:

* MAGPie (Metagenomics and Amplicon Sequencing Pipeline)
. & RapTOR (Rapid Threat Organism Recognition)

» |dentified Eukaryotic and Prokaryotic community structure
associated with pond crashes

* Further work on better predictive and insightful model is underway



Further work

Further work has being carried out on LDRD (Pl RW Davis) and DISCOVR AOP (TW Lane )

Ensemble of methods
Machine Learning
SpeciesAbundan o e

(N GS Regression Decision forest

Productivity

-

Weather/Climate

/

Stability/Reliability
Pond crashes
Clustering Support Vector Machines Neural nets

™\ cost

Best/optimal operational practices

Run parameters
(Harvest strategies

\

Nutrient content
Ph, temperature,
salinity

Modeling on the input variables to optimize the productivity, reliability and cost —_—

Species Abundance

(NGS, microscopy Modeling of contaminant Contaminant
it growth model

counts) growth within the pond :

Run parameters y =

. : _— Optimal harvest
(Harvest strategies) . '

\ /

l conditions




Algal Biomass Yield: Cal Poly SLO

Algae cultivation using waste water

* Delhi CA sewage treatment - Original Oswald pond

plant system
* Freshwater natural algal « ~1000L raceways (mBio
assemblages grown on Eng)

primary effluent




Algae Cultivation from Municipal
Waste Water at SLO
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Canonical Correspondence Analysis of
productivity and settling for SLO site

30 - T T T T T T -
Productivity 20 1
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CCA Analysis for productivity and settling 100
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Microbial community
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Microbial community
dominated in ponds
from Infuent (Pinf)
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