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Why Algae ?

• Food
• Spirulina, Chlorella, Irish moss, Sea lettuce etc.
• Algae oil (Omega-3 and Omega-6)

• Fertilizer and agar

• Pollution control
• Waste water treatment, CO2 reduction

• Energy production
• biodiesel, biobutanol, biogasoline, methane, 

ethanol
• Fast growth, does not compete with agriculture

• Other usage
• cosmetics animal feed, bioplastic, pharmaceutical 

ingredients

• Job Creation 



Hurdles in Algae Cultivation

• Short term areal production of 30-50 g/m2/day is high

BUT

• Annualized areal production rates of 13.2 g/m2/day:  
ANL, NREL, PNNL 2012

• We need to be higher to meet Economic threshold: 25-50 g/m2/day 
annualized

• Conditions in production ponds are not found in nature

• Pond crashes responsible for loss of 10-30% of 
annualized production

• The reasons for failure are poorly understood 
• Low resources and low technical sophistication

We need : High productivity, 
resilient algae culture and, 
low operation cost 



Algae crash agents

Herman Gons et al., Antonie van 
Leeuwenhoek, 81: 319-326, 2002.
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“Perhaps the most worrisome component of the large-scale algal cultivation enterprise is the fact that algal 
predators and pathogens are both pervasive and little understood.” 

- DOE Draft Algal Biofuels Technology Roadmap (2009)
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Detection of biological agents 

Goal : For sustainable reliable 
production / cultivation of algae.

– Find probiotic communities and 
deleterious species affecting 
biomass yield 

– New methods to detect deleterious 
species

Current detection methods: 
Microscopy and qPCR sampling 

– Disadvantages

• Prior expertise needed

• Sampling bias in identifications

Microscopy qPCR



Phylogenetic “Tree of Life” for SSU rRNA

Exploiting the diversity in ssu rRNA gene 
with DNA sequencing for species 
classification

• Advantages:
– No prior knowledge needed to classify.

– No sample based bias

– Time saver

– Able to classify a larger variety of organisms

Advantages

Sequencing techniques for detection of biological agents

Entries in Silva SSU database 
597,607



Sandia’s Role in the ATP3 Consortium: 
genetic identification of pond crash agents

• 6 X 1000 L replicate ponds in 5 
geographically distinct locations

• Nannochloropsis oceanica 

• Chlorella sp  DOE 1412

• Desmodesmus



Research Strategy

We sequenced 
and analyzed 
~1200 sequences 
for a full year of 
operations of 
ATP3 ponds in 
2014

Collecting samples for various 
time-points and storing in RNA 
later and shipping at -4oC

Sample prep and sequencing

Analysis through MAGPie to 
obtain community structure  

Metadata 
associated with 
samples, Strain, 
location, 
weather, pond 
health, 
productivity

Machine learning 

Pond crash signature



Pond

Sequencer

Microbiome

SSU rRNA Amplicon 
sequencing  and analysis workflow

MAGPie

Sample Extract DNA Sequencer

Pre-processing of
raw reads

OTU
clustering

Classification of Taxonomy
Silva & Green genes

Machine learning
USEARCH

Classification 
accuracy

MAGPie 

100%  Genus
70%  Species

Illumina

65%  Genus
30%  Species 



Output data structure 

Table of classified OTUs and their abundances can be displayed on websites as well  

taxid in DB Taxanomy taxa Pond 1 Pond 2 Pond 3 Pond 4 Pond 5 Pond 6

U41092.1.1792 Eukaryota;Eustigmatophyceae;Eustigmatales;Monodopsidacea Nannochloropsis granulata; 13379 1 1 1 19644 21286
Y14950.1.1794 Eukaryota;Viridiplantae;Chlorophyta;Trebouxiophyceae;ChlorelChlorella sp. Yanaqocha RA1; 3375 216 113 677 202

JF834543.1.1228 Eukaryota;Bacillariophyta;Bacillariophyceae;Thalassiophysales;CAmphora sp. PP-2011; 1 1 1 1

DQ059583.1.1784 Eukaryota;Spirotrichea;Urostylida;Holostichidae;Holosticha;HolHolosticha diademata; 1
EF165112.1.1687 Eukaryota;Chrysophyceae;Chromulinales;Chromulinaceae;OchrOchromonas cf. gloeopara; 1 1 8

FR865727.2.1770 Eukaryota;Viridiplantae;Chlorophyta;Chlorophyceae;Sphaeropl Scenedesmus armatus; 12 27 10 1 4

AY520448.1.1735 Eukaryota;Bicosoecida;Cafeteriaceae;Cafeteria;Cafeteria minimCafeteria minima; 6 13 3 1 17
AY622191.1.1753 Eukaryota;Metazoa;Arthropoda;Ostracoda;Podocopida;CyclocyCypria crenulata; 36 12 30 3

HM161745.1.1787 Eukaryota;Synurophyceae;Ochromonadales;OchromonadaceaePoterioochromonas sp. Y4; 11 7 3

L27634.3.1794 Eukaryota;Labyrinthulomycetes;Thraustochytriaceae;Labyrinth Labyrinthuloides minuta;
EU106848.1.1693 Eukaryota;Bicosoecida;Caecitellus;Caecitellus sp. RCC1072; Caecitellus sp. RCC1072; 2 14 21 63

M74497.1.1789 Eukaryota;Viridiplantae;Chlorophyta;Chlorophyceae;Sphaeropl Hydrodictyon reticulatum; 7 12 11 20

JN120201.1.1541 Eukaryota;Oligohymenophorea;Opisthonectidae;Opisthonecta;Opisthonecta henneguyi;
DQ514856.1.1722 Eukaryota;Bacillariophyta;Coscinodiscophyceae;StephanodiscacCyclotella meneghiniana; 5 1

EU032356.1.1751 Eukaryota;Oligohymenophorea;Pleuronematida;Cyclidiidae;CycCyclidium glaucoma; 1 9 1 8 1

JF489982.1.1752 Eukaryota;Eustigmatophyceae;Eustigmatales;Monodopsidacea Nannochloropsis oceanica; 1

EU039885.1.1700 Eukaryota;Colpodea;Colpodida;Hausmanniellidae;Bresslauides;Bresslauides discoideus;
U49911.1.1808 Eukaryota;Metazoa;Rotifera;Monogononta;Ploimida;BrachionidBrachionus plicatilis; 11 2 9

AF352222.1.2260 Eukaryota;Viridiplantae;Streptophyta;Zygnemophyceae;DesmidClosterium moniliferum;

HQ912576.1.1744 Eukaryota;Bacillariophyta;Coscinodiscophyceae;StephanodiscacCyclotella meneghiniana;

Map of sequence reads to the 16s 
ssu DNA locus 



Can we apply machine learning on this data to 
learn more ?



Crash       

Healthy
in crash samples

~50% of reads came 
from 3 species 

Healthy

Crash Healthy
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Diversity in crash ponds



16s data for Spring 2014 
all sites

Heatmap of clustered 
samples and species 

Sites cluster together

Clustering analysis:
Highlights the community structure of the various geographical locations and health of the 
ponds 
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And within same sites the community structure gradually 
changed with time

Early Mid Late

Community structure gradually changed with time



Clustering analysis on the ponds 
could differentiate the healthy 
and crashed ponds. 

Ash-Free Dry Weight

Clustering highlights pre-crash signature

Principle component analysis :
crashed ponds have a different

microbiome signature
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tSNE dimension 1

tSNE-plots 
The clusters obtained from the tSNE 
transformation explain most of the variations 
in the microbial ecology of the samples. Hence 
when we apply the decision tree over these 
datasets we can only identify few key features 
of biomarkers of crashes 

“tSNE (t-distributed stochastic neighbor 
embedding) algorithm is a machine learning 
algorithm for dimensionality reduction. It is a 
nonlinear dimensionality reduction technique 
that is particularly well-suited for embedding 
high-dimensional data into a space of two or 
three dimensions, which can then be visualized 
in a scatter plot.)” 
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tSNE-plots 
The clusters obtained from the tSNE 
transformation explain most of the variations 
in the microbial ecology of the samples. Hence 
when we apply the decision tree over these 
datasets we can only identify few key features 
of biomarkers of crashes 

“tSNE (t-distributed stochastic neighbor 
embedding) algorithm is a machine learning 
algorithm for dimensionality reduction. It is a 
nonlinear dimensionality reduction technique 
that is particularly well-suited for embedding 
high-dimensional data into a space of two or 
three dimensions, which can then be visualized 
in a scatter plot.)” 
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tSNE-plots 
The clusters obtained from the tSNE 
transformation explain most of the variations 
in the microbial ecology of the samples. Hence 
when we apply the decision tree over these 
datasets we can only identify few key features 
of biomarkers of crashes 

“tSNE (t-distributed stochastic neighbor 
embedding) algorithm is a machine learning 
algorithm for dimensionality reduction. It is a 
nonlinear dimensionality reduction technique 
that is particularly well-suited for embedding 
high-dimensional data into a space of two or 
three dimensions, which can then be visualized 
in a scatter plot.)” 



Microbial Network in ATP3 Ponds



Microbial Network in ATP3 Ponds



Machine learning on pond crashes

Species 1 Species 2 Species 3
….

Species M
Result

Pond1_Site1 34 456 2
….

78 Crash

Pond2_Site2 0 2 45
….

900 Healthy

Pond3_Site3 765 0 4
….

22 Healthy

Pond4_Site4 44 334 11
….

12 Healthy

Pond5_Site5 73 543 7
….

5 Crash

…. … …. ….
….

…. ….

Pond6_SiteN 456 100 233
….

33 Healthy

CART

Classification 
Regression Tree



Applying data driven approaches:
Decision Tree reveals pond crash signature

Cross-validated tree showing the 
species determining the signature of 
crash ponds  

Identification of indicator species may 
serve as a early warning for incipient 
crashes

Model 
Accuracy

Crash 
Prediction

Productivity 
Prediction

Chlorella V 87% 71%

Nanno O 91% 65%



Lewinella
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Applying data driven approaches:
Decision Tree reveals pond productivity

Model 
Accuracy

Crash 
Prediction

Productivity 
Prediction

Chlorella V 87% 71%

Nanno O 91% 65%



Summary

• Workflow for quick turnaround of amplicon sequencing 16s and 18s 

• New bioinformatics software pipeline 
• fast and efficient and producing user friendly outputs.
• pipelines used and developed:

• MAGPie (Metagenomics and Amplicon Sequencing Pipeline)

• & RapTOR (Rapid Threat Organism Recognition)

• Identified Eukaryotic and Prokaryotic community structure 
associated with pond crashes

• Further work on better predictive and insightful model is underway



Further work

Ensemble of methods
Machine Learning

Regression Decision forest Bayesian Network

Clustering Support Vector Machines Neural nets

SpeciesAbundance
(NGS)

Weather/Climate

Run parameters
(Harvest strategies)

Nutrient content
Ph, temperature,
salinity

Productivity

Stability/Reliability
Pond crashes

Cost

Inputs Outputs

Modeling on the input variables to optimize the productivity, reliability and cost

Modeling of contaminant
growth within the pond

Species Abundance 
(NGS, microscopy 
counts)

Run parameters
(Harvest strategies)

Contaminant
growth model

Optimal harvest
conditions

Best/optimal operational practices

Development ofasoftwaretool topredictproductivity, reliabilityforgivenset ofharvest runconditions

Further work has being carried out on LDRD (PI RW Davis) and DISCOVR AOP (TW Lane )



Algal Biomass Yield: Cal Poly SLO
Algae cultivation using waste water

• Delhi CA sewage treatment 
plant

• Freshwater natural algal 
assemblages grown on 
primary effluent

• Original Oswald pond 
system 

• ~1000L raceways (mBio 
Eng)
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Algae Cultivation from Municipal 
Waste Water at SLO  
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Ilumatobacter fluminis
Phenylobacterium falsum
Deinococcus misasensis
Sandarakinorhabdus sp. JC2488
Sediminibacterium sp. TEGAF015
Pseudoxanthomonas koreensis
Limnohabitans planktonicus
bacterium enrichment culture clone R1492-14
Rhodobacter azotoformans
Hyphomicrobium sp. W1-1B
Arenimonas sp. NA-09
Comamonas sp. MBIC3885
Roseomonas lacus
Thiocapsa sp. KS1
Bosea sp. BIWAKO-01
Silanimonas lenta
Porphyrobacter sp. KK348
Hydrogenophaga caeni
Mycobacterium sp. PP1
Arcobacter butzleri JV22
Methylosinus trichosporium
Hydrogenophaga sp. AH-24
Polynucleobacter necessarius subsp. asymbioticus
Azohydromonas lata
Mycobacterium sp. TA5
Pseudomonas fulva
Sphingomonas sp. NBRC 15916
Sandarakinorhabdus limnophila
Arcobacter sp. B4b1
Flavobacterium cucumis
Hyphomicrobium sp. 16-60
Roseomonas sp. 1_C16_61
iron-reducing bacterium enrichment culture clone…
Candidatus Nitrospira defluvii
Rhodobacter sp. TCRI
Algoriphagus sp. PR1
Microbacterium arborescens
Burkholderia cepacia
Porphyrobacter tepidarius
Saccharomonospora sp. MSI039
Nanofrustulum shiloi
Hyphomonas neptunium
Clostridium sp. K39

CCA Analysis for productivity and settling

Productivity Settling

Productivity Settling

Canonical Correspondence Analysis of 
productivity and settling for SLO site

Productivity

Settling



Microbial community 
in Influent



Microbial community 
dominated in ponds 
from Infuent (Pinf)



Microbial community 
dominated in ponds 
from reclaimed water 
having high settling 
(PRmW) 
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