

RESEARCH NEEDS FOR DEEP BOREHOLES

SAND2017-12544C

Patrick V. Brady, Bill W. Arnold, Robert J. MacKinnon, Ernest L. Hardin, David C. Sassani, Kristopher L. Kuhlman, and Geoff A. Freeze

Sandia National Laboratories
Albuquerque, New Mexico

Attendees at the Deep Borehole Science Needs Workshop, Albuquerque, New Mexico November 12, 2014. Participants from left to right: Paul Johnson/LANL, Pat Brady/Sandia, Bill Arnold/Sandia, Kris Kuhlman/Sandia, Hari Viswanathan/LANL, Andrew Manning/USGS, John Cochran/Sandia, Dave Sassani/Sandia, Ernie Hardin/Sandia, Teklu Hadgu/Sandia, Frank Perry/LANL, Tom Daley/LBNL, Florie Caporuscio/LANL, Jim Houseworth/LBNL, Bob MacKinnon/Sandia, Dave Sevougian/Sandia, Dan King/DOE, Geoff Freeze/Sandia, Mark Freshley/PNNL, Tim Gunter/DOE, Lance Roberts/SD School of Mines, Mark Everett/Texas A&M, Jason Heath/Sandia, Mary Lou Zoback/NWTRB, Jack Tilman/Sandia, Paul Reimus/LANL. Not shown: Peter Davies/Sandia, Marianne Walck/Sandia, Erik Webb/Sandia, Fergus Gibb/Sheffield, Karl Travis/Sheffield, Frank Hansen/Sandia, Susan Altman/Sandia.

Collected Red Issues

- (3) Surface-based geophysics for e.g. salinity/fracture determination (Seismic/EM/Gravity/Aeromagnetic)
- (1) Dating the water using isotopic tracers; Identification of the fluid source, profiling
- (1) How to get GOOD samples (consistent data from multiple methods).
- (2) How to get GOOD data (e.g. pressures) at great depth in relatively impermeable formations?
- (2) Are we causing/will we cause over-pressured conditions?
- (3) Quality of sampling methodologies; how much will drilling perturb situation? “Tag” the drilling fluids? Use small well results to inform big well analyses.
- (4) Characterization of fractures, how they might change, which ones are conductive.
- (5) Long-term monitoring (using new materials? – e.g. self-monitoring fibers); seals that communicate their performance. New techniques – e.g. that sense seals wall rock bonding, fracture densities.
- (6) Geomechanical predictors of borehole stability = in situ stress measurements
- (UK) - Formation and behavior (fluid mechanics) of disturbed rock zone

Collected **Green** Issues

(4) Vertical dipole pump test/tracer tests

- (2) How will it all change once temperature changes, corrosion occurs, etc.?
- (3) Redox disequilibria/reducing conditions
- (5) Evolving seals mineralogy over T, P, time.
- (5) Gas generation/movement past seals.

Elements of Science Needs

- 1 - Groundwater in the deep crystalline basement at disposal zone depths is very old and has been isolated from the surface for very long times.
- 2 - Ambient fluid potential does not have a significant upward gradient between the disposal zone and the shallow subsurface (i.e., overpressured conditions are not present).
- 3 - Deep groundwater has high salinity, well known chemical composition, and is chemically reducing.
- 4 - Bulk permeability of host rock and the borehole DRZ are acceptably low.
- 5 - Borehole seals, plugs, and grout have sufficient integrity and durability to meet safety requirements.
- 6 – Basic parameter values chemical, thermal, hydrology
- 7 – Equipment and approaches for monitoring post-closure data

Element 1

Groundwater in the deep crystalline basement at disposal zone depths is very old and has been isolated from the surface for very long times.

- **Dating the water using isotopic tracers** and best tools – history/provenance; which isotopes, which tracers? What mixtures?
- **Identification of the fluid source, profiling**
- Fluid inclusions vs. fracture fluids
- Mineral equilibria in fractures
- Disequilibria between rocks and waters; can we reproduce water compositions theoretically?
- Multiple source water mixing(?)
- **How to get GOOD samples (consistent data from multiple methods).**

Element 2

Ambient fluid potential does not have a significant upward gradient between the disposal zone and the shallow subsurface (i.e., overpressured conditions are not present).

- **How to get GOOD data (e.g. pressures) at great depth in relatively impermeable formations?**
- What scales (time, distance) are the measurements interrogating?
- **How will it all change once temperature changes, corrosion occurs, etc.?**
- Determine fracture pressure; how close to ambient pressure?
- How to use flow survey to integrate pressure? What tools?
- Salinity profile links to pressure.
- Long-term monitoring of microseismicity to infer shear state and evolution.
- How to model time-dependent rock mechanics and hydrology.
- **Are we causing/will we cause over-pressured conditions?**

Element 3

Deep groundwater has high salinity, well known chemical composition, and is chemically reducing.

- **Quality of sampling methodologies; how much will drilling perturb situation? “Tag” the drilling fluids? Use small well results to inform big well analyses.**
- Sorption coefficients and solubilities in high TDS brines at $T > 100C$, especially anions. Pitzer coefficients available?
- Reactive transport modeling approaches
- Fracture mineralogy and whole rock mineralogy; isotopic analysis of fracture mineralogy
- Multi-method distinguishing of scale-dependent permeabilities
- Tailored backfills
- **Redox disequilibria/reducing conditions**
- Microbial activity? Colloids?
- Use high value characterization targets to choose drilling fluids (if we can)
- What will corrosion do to geochemical behavior?
- **Surface-based geophysics for e.g. salinity/fracture determination (Seismic/EM/Gravity/Aeromagnetic)**

Element 4

Bulk permeability of host rock and the borehole DRZ are acceptably low.

- **Characterization of fractures, how they might change, which ones are conductive.**
- Borehole televIEWER to provide 3D fracture imaging.
- Packer bleedoff measurements
- **Vertical dipole pump test/tracer tests**
- Time-phased sampling of groundwater to track DRZ reactivity.
- Cross-well and surface-borehole hydrogeologic/geophysical analysis
- 4d seismic, passive imaging tracked through time
- Reaction-transport analysis of long pump time geochemical results.
- Standard borehole fractured rock permeability testing

Element 5

Borehole seals, plugs, and grout have sufficient integrity and durability to meet safety requirements.

- **Long-term monitoring (using new materials? – e.g. self-monitoring fibers); seals that communicate their performance. New techniques – e.g. that sense seals wall rock bonding, fracture densities.**
- Include Karl/Fergus' comments
- Keep track of international URL's (Canadian)
- Alternative sealing materials – e.g. tailored epoxies
- **Evolving seals mineralogy over T, P, time.**
- **Gas generation/movement past seals.**
- How to demonstrate better seals performance
- Seals sensitivity to heat/pressure from waste.
- Seals cross-interaction
- Better waste forms; resistant to corrosion, etc.

UK Science Needs

- 1 - Sealing the borehole above the waste
 - Rock welding
- 2 - Sealing and support matrices
 - High density support (HDSM)
 - Class G cement formulation
- 3 - Fluid mechanics and package deployment
- 4 - Thermal modeling
- 5 - Thermal hydrologic modeling
- **6 - Formation and behavior (fluid mechanics) of disturbed rock zone**
- Larger diameter borehole/canisters

Grab Bag

- What is the “standard” optimal site characterization protocol for dozens of boreholes?

Element 6. Basic parameter values chemical, thermal, hydrology
Equipment and approaches for monitoring post-closure data

- **Geomechanical predictors of borehole stability = in situ stress measurements,**
- Thermodynamic gaps = e.g. Green rust, RN sulfides.
- High T, P, high salinity, sensors
- Data collection while drilling

Decision Points

1. Do you want to drill at a given site based on surface characterization?
2. Do you want to go beyond initial borehole characterization?
3. What about perturbations from waste emplacement?