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1. Introduction - Nanoparticle Self-Assembly
» Collective properties of nanoparticle arrays
%%g * Nanoparticle interactions

. State of art work
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2. Self-assembly of nanoparticle arrays

» Surfactant assisted formation of nanoparticle micelles
« 3D nanoparticle ordered arrays
« Synchrotron characterizations

3. Pressure Induced Assembly and Formation of 1-3D Nanostructures
« High pressure induced assembly
"y N * 1-3D metallic nanostructures (Au and Ag)
h 4 ] * Semiconductor nanowires (CdSe, etc.)

— * Pressure-tuned nanoparticle coupling and collective
property
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Applications of Nanoparticles and Arrays

Size/shape-dependent and collective optical, electrical, and magnetic

properties.
e.g., surface plasmon resonance (SPR), tuning refractive index for optical
coatings, tuning dielectric constant, QD/solar cells, electron
transport/conductance, magnetic memory, etc.

Chemical and biological sensing, imaging, & therapeutics.
e.g., Surface enhanced Raman scattering (SERS) based chem-/bio-sensor
systems, MRI contrast agents, cell killing, etc.

Catalyst arrays for orientated growth of nanomaterials and arrays.
e.g., carbon nanotube arrays/films, nanowire arrays, etc.

(CdSe) quantum dot size increases

A 4

Sanderson, K., Nature
vol.459, 760-761, 2009.
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Synthesis of Nanoparticles at Ambient Pressure

(1) “Hot Soap” solution method

A Monodisperse Colloid Growth (La Mer Semiconductor and magnetic
P LT nanoparticles:
Bz e.g., CdSe, FePt, etc.
5 ;_ ....fl ..E.H'.'rh.ﬂ*i-?n.}'hwhrﬁ
£5l8les Organic ligands:
E”- A oot R Trioctylphosphine
stwald Ripan araticn . . .
§ oo S Trioctylphosphine oxide
200 |l'-:¢:||:|T“_ﬂﬂn:'iur1 ‘ 303 1000} (;H3(CH2)nNH2
(Seconds) g

CH,(CH,),COOH

Murray, C.B. et al., Annu. Rev. Mater. Sci. 30, 545-610, 2000.

Yin, Y., et al., Nature, v.437,664-670, 2005.

(2) Phase transition synthesis of metal nanocrystals

CH,(CH,) SH
n e
|~ (CH;3(CH,);),N*Br-
e NaBH,
*HAuCl, Gold & silver

Laboratories

. Sandia
nanoparticles @ National

* Brust, M., et al., J. Chem. Soc.-Chem. Comm. 7, 801-802, 1994.



Nanoparticle Assembly at Ambient Pressure:
Balanced Nanoparticle Interactions

Disordered with defects:. |
vacancy, grain boundary, etc.

Balanced Nanoparticle interactions: :
-Attraction [ U AT L S
-Van der Waals I I OIS
*Charge interactions
*Dipole-dipole

o
o @M

Ordered array
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Nanoparticle Self-Assembly at Ambient Pressure:

1. Balanced Nanoparticle

1. Solvent anealing 2. Heterogeneous nucleation

a

Non-
solvent
" layer ™

Buffer layer—

CdSe
ﬂgnﬂcrystgﬁ
~17in a solvent

Scattered intensity (arbitrary units)

20

Murray, et al., Science, 1995. Talapin, et al., Adv. Mater. 2001.

3. Solvent Evaporation Sscassty

& Ordered thin film
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Nanoparticle Self-Assembly at Ambient Pressure:

2. DNA-Programmable

Ligand-receptor interactions

G MGG R ST © e, (i
W SEBIRC0Y IDOTOUS, FITOOCUTY TN
o -
Salf-Assambly % . m
v N
e _

b
7R r e AAGACGMTAT”MCMs . Fcace- A TTGTTAAATATTCGTCTT ¥
3 TTCTGCTTATAAATTGTT-A-GCGC ® ¥ AACAATTTATAAGCAGAA- A —85 ‘F”
; Linker A Linker A
" T l T<T,

W 6 ¥S-A, -AAGACGAATATTTAACAA CGCG-A-TTGTTAAATATTCGTCTT ¥ @

10 ,
¥ rI'CTG C'ITATAAATI'GT: A- IGCGCI ?ACAATTI’ATAAGCAGA.? A, D—S5

Region 1 (18-mer) Region 2 Region 1 (18-mer)

c

@ ¥'S-A, -AAGACGAATATTTAACAA ¥ S TTCCTTT-X-TTGTTAAATATTCGTCTT &
S TTCTGCTTATAAATTGTT-X-AAGGAAA ¥ ¥ AACAATTTATAAGCAGAA-A, -S° €P1

| Linker X Linker Y
T>T, Tl T<T,
m r S- A AAGACGAATA'I'I'I'AACM TTCCTTT-X-TTGTTAAATATTCGTCTT ¥

@Fw
% TTCTGCTTATAATTGTTX-AAGGAAA  AACAATTTATAAGCAGAA-A,g ¥

Region 1 (18-mer) Region 2 Region 1 (18-mer)
Y. Li, et al. JACS, 2015, 137, pp4320-4323; Jaswinder Sharma, ef al., Science 323, 112-116, 2009; Sung Yong Park, Sandia
et al., Nature 451, 530-556, 2008; Dmytro Nykypanchk, et al., Nature 451, 549, 2008. National

Laboratories



Nanoparticle Self-Assembly at Ambient Pressure:

3. Dipole-Dipole Interactions and Chemical Reactions

Dipole-Dipole Interaction

Z.Y. Tang, et al., Science 297, 237, 2002.
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Chemical Reactions
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Nanoparticle Interactions and Coupling

Nanoparticle coupling depends on interparticle separation distance

LR a® -
2.5 '.i-‘."" o8
- d$> * R
Organic ligands ; a:w »j;\f ‘HLLH E%}?%f:?::
b
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|

Balanced nanoparticle interactions:
Attraction

*Van der Waals

*Charge interactions

*Dipole-dipole
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Tuning Plasmonic Response from Alkanethiolate-Stabilized Gold
Nanoparticle Superlattices
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Langmuir-Blodget to Tune Nanoparticle Separaion

LB process

pressure sensor mobile barrier

Teflon trough
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well for film deposition
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Tao, A. R. et al., Acc. Chem. Res., vol. 41, No. 12, 1662-1673, 2008.
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Water-Soluble Nanocrystal-Micelles and Their Self-Assembly
into Robust, Ordered, Three-Dimensional Arrays

Bio-tagging

Water soluble

Metal, semiconductor
nanocrystals

Absorbance (arbitrary units)
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Scanning Electron Microscopy Images of Ordered Gold NC/Silica Films

@ National
Fan et al. Adv. Funct. Maters., vol. 16, 891-895, 2006. Laboratories



In-situ Grazing Incidence Small-Angle X-ray Scattering
Characterizations of Ordered 3D Nanoparticle Films.
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Orientated Self-Assembly of Ordered Gold Nanocrystal/Silica Films

Through control of evaporation and silica condensation, highly-orientated 3D
nanocrystal/silica thin films are syntheS|zed with {111} planes paraIIeI to substrates.

SRR H|gh resolutlon .SEM
i |mages of (111) p{anes
3 - = ; *"i"f = ": . *
s - G ,-v ;’%—% y < 3 "._-,'t_ =

o : S - ) Sandia
Fan et al. Langmuir, 24 (19) 10575-10578, 2008, Adv. Funct. Maters., vol. 16, 891-895, 2006. lﬂ" National
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Nanoparticle Films with Tunable Optical Property

Self-assembly method was extended to other nanoparticles to tune film property.

Material Measured Index n Measured Absorption k
Porous Silica (Acid Catalyzed) 1.18-1.25 <0.15 (out to 10 zm)
Low | Porous Silica (Base Catalyzed) 1.19-1.25 <.01 (out to 10 zm)
Index
Dense Silica 1.4 To Be Measured
TiO, (Acid Catalyzed) 1.4-2.4 <0.15 (out to 10 um)
Medium
Index | TiO, (Base Catalyzed) 1.7-1.8 <.01 (out to 7 um)
CdSe 1.7-1.8+ <0.15 (out to 10 zm)
Gold 1.8-1.9+ <0.15 (out to 10 um)
High
Index Ge 2-4 =« Under Development
FePt ~2.2+ ~.1
PbSe ~2.2+ ~.1

* Theoretical Values



Application of Nanoparticle Coatings for Near Infrared Reflectors
(2007 R&D 100 Award)

Quarter wave stacking of self-assembled nanoparticle films for near infrared reflectors, overcomes
the harsh conditions from conventional processing (CVD, sputtering, etc) with improved
functionality.

SEM image of quarter wave stacking Reflectivity studies show high and reproducible reflectivity
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Directed Assembly- Nanoparticle Assembly under Pressure:

Mimic Manufacturing Processes - Embossing or Imprinting

Controlled pressure

VLl
Features:
Substrate  Rapid
» Cost effective
release * High throughput
« High fidelity

Substrate
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Pressure-Induced Assembly and Fabrication

An external pressure overcomes balanced interparticle interactions, enables
engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and
interparticle separation distance, and to fabricate new nanoparticle architectures.
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I S Ad S
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® . :
= » Provide controlled pressure fields:
2 > - Hydrostatic & uniaxial
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pressure

« Allow in-situ structural and property characterizations

o - Absorption, emission, etc.
f‘ , - Crystal structure, phase transition, etc.
X - Structural evolution with pressure i
Diamond Anvil Cell (DAC) @ National
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Before Compression — Starting Materials: Ordered

Spherical Gold Nanoparticle Arrays

5 nm gold nanoparticles and fcc lattice (a = 10.4 nm)

Intensity

\

Balanced particle interactions

LY
~

Synchrotron

Diamond anvil cell (DAC)
Ambient pressure

A= SRyl
D auipnm).
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After Compression — Formation of 1D Nanowires
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Bundles of 1D Nanowire Arrays

Uniform length
L
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Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010. @ Sandia



Pressure Tuned 1D Nanostructures

Diameter
~5nm
A ér o 4 ‘ i i
2ot Fietasaat e e S 5 San.dla
National

Wu H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010. Laboratories



In-situ Synchrotron X-ray Studies of Nanoparticle

Assembly under Pressure

An external pressure overcomes specific interparticle interactions, enables
engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and
interparticle separation distance, and to fabricate new nanoparticle architectures.

b)

™ ¥ Reversible N 4
0-9 GPa Pt i
2 N ¢
2 ) 727 d)0.53
7] B
(]C.) L S F TrTrrr N fCC ..
£ . 0.52 N
o \\\.\ Ny
0.51- .
6— P - -
0.501 . i'f— ___________________ HeX
0 4 8 12 0 4 8 12
S Pressure (GPa) Pressure (GPa)
05 10 15 20 25 d _
2 Theta (degree) b R=dj4/d 444
Wu H. & Fan H. et al., J. Am. Chem. Soc., 132, 12826-12828, 2010 andia

National

& Angew. Chem. Int. Ed., 49, 8431-8434, 2010. Laboratories



Pressure-Induced Nanoparticle Assembly Processes

fce 2D-Hexaganol Array
Plan-view Cross-sectional view Plan-view Cross-sectional
Pressure view
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Pressure-Induced Formation of 3D Nanostructures

Interconnected 3D gold networks are formed depending on initial nanoparticle packing
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Electron Microscopy of 3D Networks

SEM images

TEM image
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Before Compression — Starting Materials: Ag Nanoparticles
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Structural Evolution of Ag Nanoparticle Arrays during

Compression and Release

14.58 GPa =

7

9.12 GPa

O

7.00 GPa

O
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S Intensity
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a=94.63 A
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Wang, et al. J. Am. Chem. Soc. 2011, 133, 14484-14487.
Li, B.; Fan H., et al., Nat. Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).
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Structural Evolution of Ag Nanoparticle Assemblies during

Compression and Release
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Oriented Consolidation and Formation of Ag Nanowires

Wang, et al. . Am. Chem. Soc. 2011, 133, 14484—-14487. Sandia
National

Li, B.; Fan H., et al., Nat. Commun. 5:4179 doi: 10.1038/ncomms5179 (2014). Laboratories



Oriented Consolidation and Formation of Ag Nanowires

Ag nanoparticles connect together through (111) planes to (111) planes since (111) is the major
plane on surface of decahedron-shaped Ag nanoparticles.

111"} (c)

55 nm Ag

88 nm Au
decahedron decahedron

Song, H. et al., J. Phys. Chem. C, 112, 2469-2475, 2008.

Laboratories

Wang, et al. J. Am. Chem. Soc. 2011, 133, 14484-14487. 2andia |
ationa
Li, B.; Fan H., et al., Nat. Commun. 5:4179 doi: 10.1038/ncomms5179 (2014). I



Stress-Induced Assembly and Consolidation

of Nanoparticle Superlattices

Intermediate stage 2D hex

Q00

‘====—=—""""""" Reversible

[rreversible
0 GPa < > 8 GPa > 14 GPa

Li, W. et al., Nano Lett. 2014, 14, 4951-4958
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Pressure-Tuned Nanoparticle Interactions and Coupling

Structure - optical property correlation of Ag nanoparticle arrays
a b c
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Semiconductor Nanoparticles (CdSe) under Pressure

Previous studies were focused on structural transformation in atomic lattice of
CdSe nanoparticles and associated optical property changes under pressure.
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Semiconductor Nanoparticles (CdSe) under Pressure

Our studies were focused on structural transformation in CdSe nanoparticle
mesophase and fabrication of new nanostructures under pressure.
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@ National Li, B. et al. Nat. Commun. 8, 14778 doi: 10.1038/ncomms14778 (2017).
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Structural Evolution of Ordered, Self-assembled CdSe

Nanoparticle Arrays under Pressure

5 nm CdSe nanoparticles coated with Octadecylphosphonic acid (ODPA), Trioctylphosphonic oxide (TOPO)
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Tunable Interparticle Spacing in CdSe Arrays

during Compression and Release

Threshold pressure ~8 GPa
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Graph shows the d-spacing of the first Bragg reflection in each HP-SAXS spectrum.
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Atomic Lattice Phase Transition of CdSe Nanoparticles

during Compression and Release
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Transmission Electron Microscopy Image of CdSe Nanowires
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Scanning Transmission Electron Microscopy Image of CdSe Nanowires
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STEM image =

1204

1004

804

40

2045M) n

0 2 4 6 8 1 12 1:m 18 18 20 22 24 26 28 Height profile

b3 b4 b5 b6
b1 b2

TEM by Dr. Ping Lu cq
- Side view %
Nanowire (b) —
B. Li, K. Bian, et al,
. Science Advances
— Top view b1 ( b2 { b3 ( b4 3, €1602916 (2017).




Stress Induced CdSe Nanoparticles Interactions

d spacing (A)
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Absorption peak became sharper and stronger. Absorption

RO ~ peak shows 31 nm red shift (from 605.6 nm to 637.0 nm).
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> R4.51
) 1449 L Absorption peak further extends to longer wavelength (up to
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Ultrafast assembly and synthesis of gold nanostructures

D)

using nanosecond compression via pulsed power
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Ultrafast assembly and synthesis of gold nanostructures

using nanosecond compression via pulsed power
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Ultrafast assembly and synthesis of gold nanostructures
using na ond compression via pulsed power
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Summary: Self-Assembly to Functionalize Nanoparticles and to Fabricate

Robust, Ordered Nanoparticle Films

Soft self-assembly is a simple, economical process, enables the development of unique optical,
electronic, and magnetic nanoparticle thin films in mild conditions, with architectures and properties
unattainable by any other processing methods (CVD, sputtering, etc).

Metal nanoparticles

e.g., Gold, silver, etc. Tunable coating properties:
Semiconductor nanoparticles -Optical property (n, etc)

e.g., PbSe, Ge, CdSe eic. -Electrical property (o, etc)
I\ge’tal o:c;de I;anoparﬁcles Water-Soluble & -External field activated

e.g., TiO,, Si0,, Zro, etc. Biocompatible property alteration
Magnetic nanoparticles Building Block -Hydrophobic

e.g., FePt, FeMnO,, etc.

Engineering Process
-Self-assembly
-Directed-assembly
-Interfacial-assembly
-Rheological control

- more

1, surfactant
2, lipid,
3, block copolymer

Robust, self-assembled
nanoparticle films
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Summary: Pressure-Induced Nanoparticle Engineering

Pressure-Directed Assembly presents a paradigm shift in engineering nanoparticle arrays:

* Allow precise, systematic, and reversible tuning of interparticle distance for interrogation of new
chemical and physical properties.

* Produce new chemically and mechanically stable 1-3D nanostructures, which is not possible for
current top-down and bottom up methods.

Increasing pressure

* %% Reversible < 9GPa m > 9GPa ﬁ
— — —
1 EHE
J \ J

o
Interparticle dlstance shrinkage Interparticle sintering

Diamond anvil cell (DAC)

Pressure-Directed
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