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Abstract—This paper describes the implementation of the 
adaptive cross approximation in the method of moments code 
EIGER. This purely algebraic method provides a mechanism to 
reduce memory usage and overall computation time.  In addition, 
this work has been targeted for massively parallel platforms to 
extend the viable frequency range for electromagnetic 
compatibility and interference problems.
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I. INTRODUCTION

The integral equations solved by the Method of Moments
(MOM) are an invaluable tool to analyze and then predict the 
response of systems to electromagnetic environments[1].  
Since there is a memory limitation prohibiting the storage of 
the full matrix for problems large with respect to frequency, 
alternative techniques have been identified to circumvent this 
restriction.  These alternative techniques are based on methods 
that use the reduction of the degrees of freedom for the far zone 
interactions to decrease the storage requirement.  The method 
to be examined is matrix compression using the adaptive cross 
approximation(ACA)[2], implemented in EIGER[3].

II. FORMULATION

A. Approximation to the Matrix Equation

The electric and magnetic field integral equations are cast 
using the standard Stratton-Chu formulation.  They are 
combined to avoid the interior resonance problem associated 
with closed surfaces using a coupling parameter of 0.5.  Once 
the equations are defined, the Rao-Wilton-Glisson expansions 
are used for the currents on the surface of the scatterer.  
Following the application of Galerkin’s method a system of 
linear equations is formed.
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where N is the number of unknowns. The ACA method and 
other “compression” techniques have theoretical basis from the 

work of Bucci and Franceschetti[4]. Simply stated - separated 
clusters of unknowns (on elements) have a reduced order to 
adequately describe their interactions.  From the moment 
method point of view a cluster of elements containing m test 
elements interacting with a cluster of n source elements can be 
described by a matrix that has less then m x n contributions.  
With this thought in mind the matrix equation can be written 
as:
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The MOM blocks are full matrix blocks representing the 
interaction between a group of testing and source functions 
which are computed in the standard way. The 
COM(compressed) blocks represent the interaction between a 
group of testing functions and source functions approximated 
via the ACA.  The steps include the identification of the 
interaction blocks and then the computation of the blocks.  The 
blocks are identified by encapsulating the entire geometry into 
a group (identified as a box) which is then sub-divided by 
using an oct-tree (Figure 1).  The box at the lowest level of the 
oct-tree should be large enough allow compression of the block 
(box to box) interaction.

Figure 1.  An example of a meshed object and corresponding 
oct-tree boxes used for the compression algorithm.
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Each compressed block is described as
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    The algorithm is described in detail by Zhao et. al[2].  The 
key feature consists of building a low-rank matrix in an 
iterative fashion without building the entire matrix block.  At 
each iteration, the Frobenius norm of the new approximation is 
compared to the calculated value of the approximate matrix 
multiplied by an error criterion.
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Where ε is the compression tolerance used in the algorithm. 
When this criterion is met the for the k’th iteration the process 
stops, a compressed form of the matrix is obtained, and the 
memory storage is now (m+n) x r elements instead of m x n.

The filling of the different matrix blocks (MOM and COM) 
has been implemented for use on parallel computing platforms.  
To efficiently perform this operation a load-balancing scheme 
has been used in the distribution of the different blocks to 
multiple processors based on the size of the different blocks.  It 
is straightforward to load-balance the MOM blocks due to the
knowledge of the sizes of the blocks.  The distribution of the 
COM blocks are based on an estimate of their size from the 
work of Bucci and Franceschetti[4].  

Now with the matrix blocks computed equation 1 can be 
solved using an iterative solver.  Two such solvers have been 
implemented and tested – generalized minimum residual 
method(GMRES) and the transpose free quasi-minimal 
residual method (TFQMR).  The results shown here are for the 
GMRES algorithm with restart[5].

B. Parallel Considerations

Two different algorithms were used to distribute the matrix 
fill for both MOM and COM blocks to the different processors.  
First, a simplified technique was employed that only used the 
number of blocks without regard to the size of work in each 
block. The rule for this algorithm was that no processor would 
have no more, or less, than one block with respect to any of the 
other processors. This implementation resulted in a highly 
imbalanced time for the matrix fill on the different processors.  
To improve this the computational workload in each block was 
calculated for the MOM blocks and estimated for the COM
blocks using [4].  This resulted in a very balanced fill for the 
matrix blocks.

III. RESULTS

The algorithm was applied to the VFY-218 with a grid 
density that would be used for up to 1.2 GHz.  This problem 
was also solved using LU decomposition for comparison.  The 
job statistics are shown in Table 1 and are for a compression
tolerance (ε) of 1.5e-03 and a solver tolerance of 1.e-06 using 
the GMRES solver.  The incident plane wave electric field is 

polarized in the phi direction and is incident on the nose of the 
aircraft.

Table 1.Statistics for the Vfy-218 (934,128 unknowns).

Solution 
Method

Memory 
Used  

(GBytes)

Solution 
Time(hours)

Number of 
Processors

Direct 
Solve(LU)

13962 4.6 5040

ACA 
(GMRES)

436 13.5 80

The comparison of the bistatic RCS between the direct solve 
and using ACA is shown in Figure 2.

Figure 2. Comparison of bistatic RCS for the VFY-218 at 
1GHz for the LU and ACA solution.

IV. CONCLUSIONS

This paper demonstrates the utility of the method of 
moments when coupled with the ACA and an iterative solver.  
Further work is continuing to improve the solution accuracy, 
developing methods of evaluating the accuracy, and solver 
efficiency.
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