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Wind Plant Validation Hierarchy
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MDC4 SWIFT is one assesst within many that will be utilized to build confidence in Nalu's predictive capability.
Maniaci, David Charles, 4/19/2017
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Application
Definition
v
PIRT
v
Prioritization,
Use Cases
v
Physics
Selection

\/

Design

validation ——
Studies

Phase

Algorithm
Development

Grid Process
Development

Scaling

Physics Models

————P  Development &

Cotili ng

———» Grid Development

v

Verification, Testing

Demonstration

Workflow Setupand

Validation Experimentation
L Design Experiment
Instrument Selection
Develop & Deploy
Instrumentation
Develop & Verify
Test Equipment
Instrument
Calibration
Test Plan Safety
Process
Take Data
Process Data, QA/QC
Select Cases for Data Archive
Analysis
+ Experimental Data
Interpretation
> Setup Models of
Cases
Simulate Cases
Process & Compare
Results
v v

Interpretation & Reporting




Uncertainty Quantification e

Levels of Precision
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MDC2 Maniaci, David Charles, 4/17/2017



Projects .

= SWiFT Site Experimental Uncertainty Quantification

= Inflow, Turbine Loads and Acceleration, Wake Measurement
= DTU Spinner Lidar Wake Tracking Uncertainty
= Multi-level Uncertainty Quantification with LES
= V&V Framework and application to wind energy

= Wakebench (IEA Task 31): VV&UQ Framework and User
Guidelines
= 1. Validation framework for wind energy applications
= 2. Uncertainty quantification procedures using subscale wake testing
= 3. Uncertainty quantification procedures using lidar experiments
= 4. Framework for wind plant uncertainty quantification



SWIFT Site Experimental Uncertainty Quantification

= |Inflow Measurements
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= Turbine Measurements

Aerodynamic power
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SWIFT Met Tower Uncertainty

Table 3.1. SWIFT METEOROLOGICAL TOWER UNCER-

TAINTY SUMMARY

Measurand  units & o0/mean (%) mean
a — 1.88x 1073 0.89 0.21
p kg/m?* 7.9x107* 0.0731 1.08
p Pa 1.53 1.71 x 1073 89500
RH % 2.01 4.49 46.8
T K 0.212 0.0733 289
TI (sonic)  — 1.23x 1072 1.02 0.12
U (sonic) m/s 0.0439 0.207 6.82
U (sonic) m/s 0.01 0.207 4.82
V (sonic) m/s 0.01 0.207 4.82
U (cup) m/s 0.20 2.93 6.82
Us (nacelle) m/s 0.50 7.33 6.82
V'r (sonic) © 1.73 86 2.0
WD (sonic) ° 1.22 0.69 176
WD (vane) ° 1.20 0.68 176

Five inflow quantities have uncertainties above 1% of their mean values: veer

(86%), nacelle wind speed (7.3%), relative humidity (4.5%), and cup anemometer

wind speed (2.9%).

The nacelle wind speed, humidity, and cup anemometer uncertainty are all
dominated by low manufacturer specified accuracies. Therefore all of these
uncertainties could be reduced by purchasing higher accuracy sensors.



SWIiFT Wake Measurements ) =

DOE/SNL Scaled Wind Farm Technology (SWIFT) facility
hosted by Texas Tech University (TTU)

Objective: Assess the ability of models to
predict wake shape, strength, and
deflection.
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T. Herges, 2017
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MDC11 Build from validation using a few datasets to looking at ensembles of data.
Maniaci, David Charles, 8/30/2017



Thank you
~ “Ifa man will begin with certainties, he shall
. end in doubts; but if he will be content to

begin with doubts, he shall end in certainties."
- F. Bacon - 1605.

dcmania@sandia.gov
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Multi-level Uncertainty Quantification with LES ) =,

Demonstrated an order of magnitude reduction in computational cost for a cylinder flow
problem by coupling Nalu (CFD) to DAKOTA (UQ) and using a multilevel UQ approach.
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Problem description
« (Laminar) Flow over a cylinder (Re=10-750)
« Input parameters: Density and Viscosity
« Qol: Coefficient of Drag
« 4 levels of mesh resolution
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UQ approach
. Multilevel sampling-based estimator to accelerate
Converg ence s Extlrapolated Variar?ce of the estim?tor

=8~ MLMC

Impact

« Sampling methods are well suited for UQ problems
with extremely high dimensionality (such as wind farm
LES)

. Convergence is guaranteed for non smooth Qols

. Demonstrated order of magnitude improvement in
accuracy/cost of Multilevel estimators (MLMC) relative | | |
to conventional Monte Carlo (MC) for the cylinder s ;

1e+0 1e+l 1e+2 1e+3 1e+4

problem Equivalent HF simulations

Variance of the estimator

*G. Geraci, M. Ebeida, M. Eldred; SNL



