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INTRODUCTION AND MOTIVATION:
CHALLENGES AND OBJECTIVES

e High pressure (~1 ATM and beyond) plasma is
challenging environment.

e Higher densities.
e Chemically complex environments
o Smaller length scales.
o Shorter lifetimes.
¢ Investigate diagnostics methods to access this
challenging environment
e Extend laser-collision induced fluorescence

(LCIF) to atmospheric pressure helium discharge. =, =
e Examine suitability of ultrafast-short pulse lasers AN_‘_' T3 N,
= Pumped ~/S
for use to these environments. l/

Outline challenges and demonstrate implementation of LCIF to

@ Sandia highly collisional environments.
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OVERVIEW OF CHALLENGS OF EXTENDING
LCIF TO HIGH PRESSURE

e Observed LCIF is superposition of several complex et I/ T
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@ Sandia Simplifications likely not to be so forthcoming at higher
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NEUTRAL INTERACTIONS KEY SOURCE OF
INCREASED COMPLEXITY

e Neutral-impact redistribution can play dominant role at higher
pressures

e More-types and evolving nature of neutrals (dimers).
o “Book keeping” can require sophisticated models.
e Uncertainties in species and cross-sections limit accuracy.
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Neutrals are anticipated place limits on lower
bound of electron detection.



LIFETIMES OF EXCITED STATES BECOME VERY
SHORT AT HIGHER DENSITIES

e Physics of electron-impact redistribution is not expected to change at

higher pressures.

e Sheer number of electrons increase probability of redistribution.
o Effective Lifetimes become reduced because of redistribution.
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National short (~5 ns) at target conditions.

@ Sandia Lifetime of excited states are quite
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ULTRASHORT-PULSE LASER IS USED FOR
INITIATION LCIF EVENT

e Ti:Sapphire, regenerative laser used to generate excitation pulse.

e Tuned amplifier to 780 nm — doubled in BBO for ~ 390 nm.
e ~100 fs pulse with 10 nm bandwidth (~ 100 cm-1).

e Short-pulse laser well suited to interrogate short lifetimes (< 10 ns)
and broad absorption profiles (~ 1 nm) associated with high pressure.

o Still realize “step-like” populating process.
e Sample most or all of the probed states.

Anticipated absorption profiles Estimates of linewidths

1 Torr
= 10 Torr
100 Torr

—— 1000 Torr ns laser ~ 0.5 GHz or 0.1 cm"’
fs laser ~ 500 GHz or 100 cm!
Pressure Broadening ~ 0.01 GHz/Torr (He)

-éO 0 2‘0
Frequency Detuning (GHz)
@ Sandia Short pulse enables access to all of the
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KEY CHALLENGE: GENERATING AND
MANIPULATING WELL CHARACTERIZED PLASMA

e Need plasma with well controlled n_, E/N to calibrate LCIF.

e Plasma generation in 640 Torr He.
e Double pulse method to separate generation and interrogation.

o Spectrometer to identify, camera to image.

Key interrogation methods

Discharge configuration

ICCD

Spectrometer

389 nm
100 fs

Current probe

ICCD

Setup enables good access and control of the plasma

@ ﬁgggﬁal for LCIF calibration.
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DOUBLE PULSE PLASMA SEPERATES GENERATION
FROM MANIPULATION

e Need plasma with well controlled n_, E/N to calibrate LCIF.

o First voltage pulse dictates plasma density and distribution.
e Second pulse drives current through afterglow.

Sample Response Observed Filament
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Structure of the filament does not change

@ ﬁg?igiﬁal significantly as it is “heated” — at least initially.
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UTILIZE CURRENT-VOLTAGE TRENDS TO
BOUND PLASMA PARAMETERS

e Published drift data (Phelps) is used to bound E/N with heating voltage.

e Knees in current correspond to knees in drift velocities.
e Electron density remains roughly constant at lower E/N values.

Extracted Current Anticipated plasma parameters
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LCIF EVOLVES THROUGH SEVERAL
SPECTROSCOPIC PATHWAYS

e Transitions from the laser excited 33P state have different E/N scaling
e Capitalize on unique characteristics to assess <E> and E/N.

Pathway and Rates

<E>T 0.1eV 0.6eV 6.3 eV

333333

™
£
L 106 R
Q SRETHHEE
____________ . 3D "é - _am® 33P -> 43D

3 =
8 107

667 nm g o ]
cC ; A
0
D E
LLl

10°9 Lo

E/N (Td)

Natlﬂnal * Cross sections: Yu. Ralchenko, Atomic Data and Nuclear Data Tables 94, 603 (2008)

Sandia Identify pathways that yield good signals and are “easy to” evaluate.
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RATIO OF LCIF LINES ARE UTILIZED TO
IDENTIFY SCALING TRENDS

e E/N is tuned and LCIF is measured early during applied pulse.
o Ratio of LCIF to laser excited 33P LIF is used to normalize signals.
e LCIF acquired for ~ 10 ns, immediately after laser pulse.

LCIF scaling with E/N

33P 33D/33P 3'D/33P 43D/33P
2000 T RAALA BT T R e ML R
4 0.09
0.05
o 1500 0.08
® 3 0.04
o 0.07
© 1000
= 2 0.06 0.03
[
k=2
I 1 0.05 0.02
0.04 0.01
0.1 1 0.1 1 0.1 1
E/N (Td) n, ~ 4x10"3 e/cm3

Several LCIF transitions are observable!



RATIO OF LCIF LINES ARE UTILIZED TO
IDENTIFY SCALING TRENDS

e Benchmark scaling of density dependence of 33D LCIF.
o Utilize the E/N invariance of 33D LCIF above ~ 2 Td

Simplified Scaling Observed Scaling of LCIF
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DEMONSTRATION OF SPATIAL
RESOLUTION PROVIDED BY LCIF

e Radial structure observed for various E/N. Averaged
e Initial peak electron density of 2x10'3 e/cm?’. domain
e Measured ~ 2 us in afterglow of first voltage pulse.
e Measured in first 20 ns of applied heating pulse.
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DEMONSTRATION OF SPATIALAND TEMPORAL
RESOLUTION PROVIDED BY LCIF

e Measured evolution of plasma formation during second pulse.
e Initial peak electron density of 2x10'3 e/cm? (2 ps afterglow)
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UTLIZATION OF LCIF TO UNDERSTAND /joaoe

domain

DISCHARGE EVOLUTION ™ [y

o Streak-like images of plasma initiation to examine
dynamics of plasma formation.

e Axial profiles at center of discharge.
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CONCLUSIONS

e Ultra-fast LCIF shows promise for interrogating high pressure plasma
systems.

e Outlined pitfalls that might be encountered at higher-pressure systems.
e Can be extended to other systems of interest (Ar, N,...).
e Preliminary LCIF results were published earlier this year

e E.V. Barnat and A. Fierro, J.Phys.D:Appl. Phys. 50 (2017) 14LT01

Thank you for your attention!
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UTILIZE CURRENT-VOLTAGE TRENDS TO
BOUND PLASMA PARAMETERS

Published drift data

J. Pack et al. JOAP, 71 (11) p5363, 1992
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