
SANDIA REPORT
SAND2018-13130
Unlimited Release
Printed November 2018

Application Note:
Mixed Signal Simulation with Xyce-

Peter E. Sholander, Richard L. Schiek

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2018-13130
Unlimited Release

Printed November 2018

Application Note:
Mixed Signal Simulation with XyceTM

Peter E. Sholander and Richard L. Schiek
Electrical Models and Simulation
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1177

Abstract

This application note describes how the Xyce circuit simulator can be coupled with ex-
ternal simulators via either a Python-based interface that leverages the Python ctypes
foreign function library or via the Verilog Procedural Interface (VPI). It also documents the
usage of these interfaces on RHEL6 and RHEL7, with Python 2.6 or 2.7. These interfaces
are still under development and may change in the future. So, a key purpose of this appli-
cation note is to solicit feedback on these interfaces from both internal Sandia Xyce users
and other performers on the DARPA Posh Open Source Hardware (POSH) program.

3

4

Contents

1.1 Target Audience and Prerequisites

2. XyceClnterface

2.1 API Description

2.1.1 xyce_open

2.1.2 xyceinitialize

2.1.3 xyce_runSimulation

2.1.4 xyce_simulateUntil

2.1.5 xyce_close

2.1.6 xyce_getDeviceNames

2.1.7 xyce_getDACDeviceNames

2.1.8 xyce_updateTimevoltagePairs

2.1.9 xyce_checkResponsevar

2.1.10 xyce_obtainResponse

2.1.11 xyce_setADCWidths

2.1.12 xyce_getTimevoltagePairsADC

2.1.13 xyce_getADCMap

2.2 Xyce Shared Objects Building and Testing Guide for RHEL6 and RHEL7

5

13

 13

 13

 14

 15

 15

 15

 16

 16

 17

 17

 18

 18

 19

19

. . 19

233. Python Wrappers to XyceClnterface

233.1 API Description

233.1.1 xyceinterface

233.1.2Inittalizel

243.1.3_runSImulationl

243 1 4 simulateUntill

243 1 5 closel

253.1.6 getDeviceNames

253.1.7 getDACDeviceNames

253.1.8 updateTimeVoltagePairs

253.1.9 checkResponseVar

263.1.10 obtainResponse

263.1.11 setAllaWidths1

263.1.12 getTimeVoltagePairsADC

273.1.13 getADCMap

273.2 Examples

303.3 Known Limitations and Bugs

314. Xyce VPI Interface to Icarus

314.1AcartisOverviewl

314.2 Xyce VPI Implementation and Examples

344.3 VPI Building Guide for RHEL6 and RHEL7

365. Device Models for Mixed Signal Simulation

6

5.1 Analog-to-Digital Converter

5.2 Digital-to-Analog Converter

6.1 Known Issues with Coordinated Time Stepping

7

36

39

40

40

List of Figures

202.1 Compiling Xyce as Shared Objects on RHEL6 with gcc

212.2 Compiling Xyce as Shared Objects on RHEL7 with gcc

293.1 Python Program for runACircuit example

293.2 Xyce Netlist for runACircuit Python example

324.1 Verilog Program for runXyce VPI example

324.2 Xyce Netlist for runXyce VPI example

334.3 VPI File for runXyce VPI example

344.4 Compiling vvp Program with an Installed Xyce Build

354.5 Compiling vvp Program with a not Installed Xyce Build

385.1 Calculation of the YADC Output State

426.1 Xyce Netlist for Time Stepping Example

436.2 Python Program for Time Stepping Example

446.3 Abbreviated stdout for Time Stepping Example

8

List of Tables

5.1ADC_Deviceinstance_Parameters1 37

5.2ADCDeviceModetParameters1 38

5.3 DACDeviceModeLParameters1 39

9

10

1. Introduction

Xyce is Sandia National Laboratories' SPICE-compatible high-performance analog circuit
simulator, written to support the simulation needs of the laboratories' electrical designers.
It has the capability to solve extremely large circuit problems on large-scale parallel com-
puting platforms, and contains device models specifically tailored to meet Sandia's needs.

This application note documents recent work on interfacing Xyce to both Verilog and
VHDL (VHSIC Hardware Description Language) simulation codes. These interfaces are
still under development and may change in the future. So, a key purpose of this application
note is to solicit early feedback on these interfaces from both internal Sandia Xyce users
and other performers on the DARPA Posh Open Source Hardware (POSH) program.

Chapter 2 gives a description of the XyceCInterface class and its methods. It also de-
scribes how to build Xyce as "shared" objects that can be invoked by, or linked with, other
programs. That XyceCInterface class provides the basis of the Python-based and VPI-
based interfaces that are the described in Chapters 3 and . Working examples are given
for both of these interfaces. Finally, this application note only documents the usage of
these interfaces on RHEL6 and RHEL7, with Python 2.6 or 2.7. Their support on OSX
and Windows, as well as compatibility with Python 3, is "future work".

Reference [1] describes the Xyce General External Interface, which is another mecha-
nism for external simulation codes to use Xyce as their circuit simulator. That approach
can be used on a wide variety of circuit/mesh coupling problems. An example is coupling
frequency-domain electromagnetic simulators to Xyce, and performing the frequency-
domain analyses that Xyce provides such as harmonic balance.

1.1 Target Audience and Prerequisites

This application note is intended for users and developers of existing simulation codes
who wish to use Xyce in order to add circuit simulation capability to their existing capabil-
ities. It assumes that you have already downloaded and compiled XyceTM according to its
documentation, that you have installed it in a manner that allows you to run it directly by
typing "Xyce" in the command line, and that you are able to run a basic netlist using that
installed copy of Xyce. Section 2.2 then gives more instructions of how to compile and
install Xyce as "shared objects" that can be linked with the open-source Verilog simulator

11

Icarus [2] via the Verilog Procedural Interface (VPI) [3], or invoked via the Sandia-supplied
Python interface.

For external open-source users, source code for Xyce can be obtained from our website
at xyce.sandia.gov. Internal Sandia users should contact the Xyce development team for
either source code access or access to a build of the shared-objects version of Xyce.
That capability is not included, by default, in the Xyce 6.10 binaries that are distributed
within Sandia.

The Xyce Reference Guide [4] and Users' Guide [5] provide more detail on Xyce syntax
and usage for circuit simulation. Readers who are not familiar with SPICE or Xyce are
encouraged to work through the tutorial examples in Chapters 2 and 3 of the Users' Guide
before trying to run the examples given in this application note. Those two chapters
explain how to run transient (.TRAN) simulations in Xyce, using a simple Diode Clipper
circuit as an example. Reference [6] contains a brief explanation of the mathematical
foundations of parallel circuit simulation in Xyce. All of these documents are available on
our website at xyce.sandia.gov.

This application note assumes minimal familiarity with Verilog. So, section 4.1 gives a
brief overview of Icarus, which is an open-source Verilog simulation and synthesis tool.

One purpose of this application note is to solicit feedback on these Mixed Signal Inter-
faces. The Xyce development team can be contacted via email at xyce@sandia.gov.

12

2. XyceClnterface

The XyceCInterf ace class provides methods to invoke various methods on a pointer to
an N_CIR_Xyce object (whose class name is Xyce: :Circuit : :Simulator), which is the
topmost object in a Xyce simulation. Section 2.1 provides a detailed description of the
methods provided the XyceCInterf ace class. The parameters, return values, known limi-
tations and bugs for each method are described. Examples of how to use these methods
are given in subsequent chapters of this application note. Section 2.2 then gives a de-
scription of how to build the Xyce 6.10 source code so that it includes the XyceCInterf ace
class and can be linked to, or invoked as, "shared objects" by other programs.

Chapters 3 and 4 describe Python-based and VPI-based interfaces that leverage the
XyceCInterf ace class. However, that class can also be leveraged directly by C++ codes
that do not need the full generality of the Xyce General External Interface [1].

2.1 API Description

For the Xyce 6.10 release, the XyceClnterface.0 and XyceClnterface.h files are located
in the utils/XyceClnterface subdirectory of the Xyce source tree. The names, signatures
and return types of these methods may change in future Xyce releases. In addition,
slightly different versions and additional methods may be developed for the Python-based
and VPI-based interfaces described in subsequent chapters.

2.1 .1 xyce_open

void xyce_open(void ** ptr)

This method allows the calling program to obtain a void** pointer to an N_CIR_Xyce object.
It must be called before any of the other methods described below. The type of this pointer
may change in future Xyce releases.

13

2.1.2 xyceinitialize

int xyce_initialize(void ** ptr, int argc, char ** argv)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method. The other two arguments for the xyce_initialize method mimic the function
of the same arguments in a normal C or C++ main function: they are interpreted as
representing the command line that invoked Xyce. The argument argc is the number of
strings present in the array of strings, argv.

The string argv [0] is taken to be the name of the program, and no use is made of it.
Subsequent elements of the argv array are command line options as documented in
Chapter 3 of the Xyce Reference Guide [4]. The final argument string in this array should
be the name of the Xyce netlist to be processed.

The xyce_initalize method actually invokes the initializeEarly and initializeLate
methods of the underlying N_CIR_Xyce object. The initializeEarly method instantiates
the devices present in the netlist and allocates all of the solvers and packages needed.
The initializeLate method then completes the analysis of the circuit topology, sets
up the internal vector and matrix storage, initializes the output manager, and makes the
N_CIR_Xyce object ready for the simulation to take place. If the external programs using
the Python-based and VPI-based interfaces described in this application note needed to
set Xyce-internal device properties directly, rather than via the simulation's Xyce netlist,
then the existing xyce_initalize method of the XyceCInterface class could likely be
split into separate xyce_initializeEarly and xyce_initialiazeLate methods. That split
approach was taken for the Xyce General External Interface [1].

This method returns a integer value that maps to the Xyce: :Circuit : :Simulator: :RunStatus
enum values. So this function returns 0 for the run status of "ERROR", 1 for the run sta-
tus of "SUCCESS" and 2 for the run status of "DONE". More details on these run-status
codes are:

"ERROR" signifies failure of the initialization, and the actual error condition will have been
printed to Xyce's standard error stream. Further calls to that XyceClnterface object's
methods should not be made, as Xyce has effectively terminated with a fatal error when
this value is returned.

"DONE" signifies that all processing is complete. This return value is used when the com-
mand line arguments include an argument that prevents Xyce from proceeding to a full
simulation, such as "-syntax", "-count", "-v", "-norun" and so forth. If xyce_initialize
returns this value, Xyce has effectively exited successfully and further calls such as
xyce_runSimulation should not be performed.

"SUCCESS" signifies that the initialization was successful, and the XyceCInterface object
is ready for futher calls such as xyce_runSimulation.

14

2.1.3 xyce_runSimulation

int xyce_runSimulation(void ** ptr)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize.

This method causes Xyce to run the entire simulation specified in the netlist to completion.
It returns the status codes described in the xyce_initialize subsection above.

2.1.4 xyce_simulateUntil

int xyce_simulateUntil(void **ptr,

double requestedUntilTime,

double & completedUntilTime)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize.

This method causes Xyce to perform a limited simulation not to exceed the simulation time
specified in requestedUntilTime. Upon return, completedUntilTime will contain the ac-
tual time that Xyce reached, which will be less than or equal to requestedUntilTime either
because the netlist specified a final time earlier than requestedUntilTime, or because
there was a fatal convergence error. Each call to xyce_simulateUntil after the first one
resumes the current simulation from where the last call left off. If xyce_simulateUntil () is
called with requestedUntilTime less than the current simulation time then the simulation
will proceed to completion from that current simulation time.

This method returns 1 if the simulation completed successfully, either by reaching the
value of requestedUntilTime or the final time specified in the netlist, whichever is ear-
lier. It returns 0 if the run was unsuccessful. If xyce_simulateUntil returns 1 and
completedUntilTime is less than requestedUntilTime then Xyce has completed its work
and further calls to xyce_simulateUntil will do nothing.

2.1.5 xyce close

void xyce_close(void ** ptr)

15

This method causes Xyce to close all output files after a simulation run is complete and
emit timing information. It also deletes the pointer to the N_CIR_Xyce object. It should be
called after the Xyce simulation is complete.

2.1.6 xyce_getDeviceNames

int xyce_getDeviceNames(void ** ptr,

char * modelGroupName,

int & numDevNames,

char ** deviceNames)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize.

xyce_getDeviceNames takes a character array containing a "model group" name, and re-
turns a char** array of the names for all devices in the netlist of that type. It is a general
purpose method that can be given any valid model group name ("M" for NAOSFErs, "C)"
for BJTs, etc. [4]).

This method currently always returns O. So, it is the responsibility of the calling code to
verify that deviceNames has a non-zero length before attempting to access it. (Note: The
return code and return type might be changed in future releases for improved compatibility
with the Xyce General External Interface [1].)

2.1.7 xyce_getDACDeviceNames

int xyce_getDACDeviceNames(void ** ptr,

int & numDevNames,

char ** deviceNames)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method.

xyce_getDACDeviceNames returns a char** array of the names for all the DAC devices in the
netlist. So, it is basically a specialized version of the more general xyce_getDeviceNames
method described above.

This method currently always returns O. So, it is the responsibility of the calling code to
verify that deviceNames has a non-zero length before attempting to access it. (Note: The
return code and return type might be changed in future releases for improved compatibility
with the Xyce General External Interface [I].)

16

2.1.8 xyce_updateTimeVoltagePairs

int xyce_updateTimeVoltagePairs(void ** ptr,

char * DACname,

int numPoints,

double * timeArray,

double * voltageArray)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize. If DACname is not the name of a
valid DAC device in the Xyce netlist then the function will execute with a Xyce warning
message and return 0 as noted below.

This method will return 1 if the time-voltage pairs for the specified DACname were success-
fully updated. Otherwise, it will return O.

Examples of how to use this method, with both Python and VPI, are provided in the re-
lease src subdirectories utils/XyceCInterface/Python_examples/runCircuitWithDACs
and utils/XyceClnterface/VPI_examples/runxyceWithDAC.

(Note: because of a coding error introduced late in the release process, this function will
unconditionally emit the warning message "Netlist warning: Failed to update the time-
voltage pairs for the DAC" even if the update was successfully. There should be a patch
file available to fix this issue for external users who build Xyce from source. It has been
fixed for internal users who use Sandia HPC and CEE resources.)

2.1.9 xyce_checkResponseVar

int xyce_checkResponseVar(void ** ptr, char * variable_name)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize.

xyce_checkResponseVar takes a character array containing a "measure name". It returns
1 if variable_name is a valid measure name in the the Xyce simulation. Otherwise, it
returns O.

An example Xyce measure statement is as follows [4]. This example is a MAX measure for
a transient (TRAN) simulation. Its name is MAXV1, where that name is not case-sensitive. It
returns the maximum value of the quantity v(1) found during the simulation.

17

.MEASURE TRAN MAXV1 MAX V(1)

2.1 .1 0 xyce_obtain Response

xyce_obtainResponse(void ** ptr, char * variable_name, double &value)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize.

xyce_obtainResponse takes a character array containing a "measure" name. It returns the
value of that . MEASURE statement at the current simulation time in the value parameter. If
the Xyce simulation has completed then it will return the value at the final simulation time.

This method returns 1 if the requested variable_name is a valid measure name in the the
Xyce simulation. Otherwise, it returns O. For a return value of 0, the value parameter will
also be set to O.

2.1 .1 1 xyce_setADCWidths

int xyce_setADCWidths(void ** ptr,

int numADCnames,

char ** ADCnames,

int * widths)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize.

xyce_setADCWidths takes a char** array of the ADC names for which the "output bit-vector
widths" are being setting. The parameter widths is then an int* array of those widths.
Each ADC will then have 2**width quantization levels, where different ADCs may have
different widths.

This method will return 1 if the "output bit-vector width"is succesfully updated at every
ADC specified in ADCnames. It will return 0 if the update process fails at any ADC specified
in ADCnames.

The "error condition" of ADCnames and widths being of unequal lengths is checked when
this method is invoked via the Python ctypes-based interface. It is not checked when
xyce_setAmaidths is invoked directly. This will likely be fixed in a future release.

18

The ADC widths can be set via this function, the WIDTH instance parameter for each indi-
vidual YADC device and the associated YADC model parameters (see Section 5.1). The
order of precedence is in that order. This function should have the highest precedence,
since it occurs after the xyce_initialize method is called.

2.1.12 xyce_getTimeVoltagePairsADC

int xyce_getTimeVoltagePairsADC(void** ptr,

int * numADCnames,

char ** ADCnames,

int * numPoints,

double ** timeArray,

double ** voltageArray)

This method assumes that the pointer ptr was previously obtained with the xyce_open
method and successfully initialized with the xyce_initialize method. So, it must be
called after the calls to xyce_open and xyce_initialize.

xyce_getTimeVoltagePairsADC returns a char** array of the names for all the ADC de-
vices in the netlist. The formats of the returned numPoints, timeArray and voltageArray
parameters will be illustrated further in Section 6.1. This function is the "least mature" of
the XyceCInterface methods and Section 6.1 describes its limitations via a Python-based
example. Many of these limitations stem from known limitations in the YADC device (see
Section 5.1) implemented in Xyce 6.10.

This method will return 1 if there are ADC devices in the netlist. It will return 0 otherwise.

2.1.13 xyce_getADCMap

int xyce_getADCMap(void ** ptr)

This method is in the XyceCInterface source files, but has not been implemented yet.

2.2 Xyce Shared Objects Building and
Testing Guide for RHEL6 and RHEL7

This section describes how to build the source code for the Xyce 6.10 release as "shared
objects" that can be linked with, or invoked by, other simulators. It covers the build pro-
cess for the gcc compilier on RHEL6 and RHEL7 for a serial build. For information on

19

how to build with the Intel compilers, or on other Linux variants, please contact the Xyce
development team.

At this point, a build process for the XyceCInterf ace code in support of Mixed Signal in-
terfaces is not supported on either OSX or Windows. Support for those operating systems
is expected in future releases though. Finally, the mixed signal interfaces have only been
demonstrated with a serial build of Xyce.

The reconf igure scripts shown in Figures 2.1 and 2.2 have been shown to work on
RHEL6 and RHEL7. They will produce . so libraries that can invoked by Python via the
Sandia-supplied ctypes interface described in Chapter 3 and also linked with Icarus to
create Verilog vvp programs as described in Chapter . The top-level Xyce build directory
build is denoted as $xyceBuildDir in these reconf igure scripts. These scripts also refer
to the top-level installation directory of Trilinos as $archdir, and assume that Trilinos has
been built according to the guidance in the Xyce Building Guide [7]. The top-level Xyce
src directory is referred to as $xyceSrcDir.

$xyceSrcDir/configure

ARCHDIR=$archdir

--disable-verbose_linear

--disable-verbose_nonlinear

--disable-verbose_time

--enable-shared \

--enable-xyce-shareable

--prefix=$xyceBuildDir

CC=gcc

CXX=g++

F77=gfortran

CXXFLAGS="-01. -fno-inline

LDFLAGS="-W1,-rpath=$xyceBuildDir/utils/XyceCInterface

-W1,-rpath=$xyceBuildDir/lib"

Figure 2.1. Compiling Xyce as Shared Objects on RHEL6
with gcc

20

$xyceSrcDir/configure

ARCHDIR=$archdir

--disable-verbose_linear

--disable-verbose_nonlinear

--disable-verbose_time

--enable-shared \

--enable-xyce-shareable

--prefix=$xyceBuildDir

CC=gcc

CXX=g++

F77=gfortran

CXXFLAGS="-01 -fno-inline -std=c++11"

LDFLAGS="-W1,-rpath=$xyceBuildDir/utils/XyceCInterface

-W1,-rpath=$xyceBuildDir/lib"

Figure 2.2. Compiling Xyce as Shared Objects on RHEL7
with gcc

As other notes, the use of --enable-shared and --enable-xyce-shareable is needed in
order to create the . so files. The use of --pref ix is a convenience that places the . so files
in subdirectories under $xyceBuildDir. Finally, the CXXFLAGS are set for a debug build.
That is convenient for co-development with Icarus and Xyce, since the combined vvp
programs (see Chapter) can then be debugged in gcc (or your other favorite debugger).

After running reconfigure and make, it is recommended that a make install also be
done. This has the advantage of placing all of the required . so files into only two sub-
directories, namely $xyceBuildDir/utils/XyceClnterface and $xyceBuildDir/lib. If
make install is not done then the . so files will be in more places, and this issue will
be discussed further in the chapters on the Python Interface (see Chapter 3) and the
Xyce VPI Interface to Icarus (see Chapter). The use of make install also makes the
scripts for linking Xyce to those two interfaces more transparent with respect to whether
the Xyce build is an open-source build or a Sandia-internal build. As a final note, with the
reconf igure scripts given in Figures and 2.2, the XyceClnterface code in the subdi-
rectory $xyceBuildDir/utils/XyceCInterf ace should have been compiled. If not, then
cd to $xyceBuildDir/utils/XyceCInterf ace and run make there also before doing make
install back in $xyceBuildDir.

2.1

To test the installed build the following tags list (--taglist option for the run_xyce_regression
script) should be used. It includes the MIXED_SIGNAL tests that are specific to this appli-
cation note. Per the "Some tests only work when tested from a build directory" section of
the "Running the Xyce Regression Suite" web-page [8] the tag -library should be used
if make install was used. The addition of +mixedsignal to this tagslist will just run the

21

MIXED_SIGNAL tests.

n+serial+nightly-library?noverbose?klu-verbose?rad?fft?qaspr?nonfree?mixedsignal"

The MIXED_SIGNAL regression tests have not been fully integrated with the release test-
ing process for Xyce yet. So, they may still be "fragile", especially with respect to how
they determine the path to $xyceSrcDir. In addition, the Python interface, described in
Chapter 3, was tested with Python 2.6.6, 2.7.4 and 2.7.5 for the Xyce 6.10 release. Some
features (and regression tests) are known to fail when the tests are run with Python 3.4.2
or 3.5.2. (Note: the regression tests may be hard-coded to use Python 2.x on Sandia sys-
tems.) So, the reader should contact the Xyce development team if they have problems
with either the build or test processes described in this section.

Finally, this application note only discusses the build process for RHEL6 and RHEL7.
The authors do welcome feedback though on the reader's experience with other Linux
variants, especially Ubuntu.

2.2.1 Post-Release Code Fixes

If Xyce was built from source then please contact the Xyce Development Team for any
patch files related to the Mixed Signal Interface. In particular a fix for the "unconditional
emission" of a warning message by the function xyce_updateTimevoltagePairs should
be available.

22

3. Python Wrappers to
XyceC I nterface

A Sandia-supplied implementation of ctype-based Python wrappers for the XyceCInterface
class is available in the release subdirectory utils/XyceCInterf ace. The file name is
xyce_interface.py. As background, ctypes is a "foreign function library for Python. It
provides C compatible data types, and allows calling functions in DLLs or shared libraries.
It can be used to wrap these libraries in pure Python." More information on ctypes can be
found at [9].

This application note will not discuss the internals of the xyce_interface.py file. The key
point is that it provides a wrapper for the methods documented in Section

3.1 API Description

2.1

This section provides a mapping of the Python interfaces methods to the underlying
XyceCInterface methods described in Section

3.1.1 xyceinterface

xyceObj = xyce_interface()

2.1

This method allows the calling Python program to invoke the underlying xyce_open method
of the XyceClnterface. It creates a pointer to an N_CIR_Xyce object (which is also called
a "xyce" object in some of the example files discussed in Section 3.2). It must be called
before any of the other Python-based methods described below.

3.1.2 initialize

result = xyceObj.initialize(argv)

This method assumes that xyceObj was previously obtained with the xyce_interface
method. The argument (argv) represents the command line that invoked Xyce, but it

23

should not include the program name Xyce. This method allows the calling Python pro-
gram to invoke the underlying xyce_initialize method of the XyceClnterface. The
return value (in result) is the same as for the underlying xyce_initialize method of
XyceClnterface.

If initialize() returns 2 (which is the Xyce::Circuit::Simulator::RunStatus of "DONE")
then the calling .py file will likely segfault. This can happen for Xyce command line options
such as -norun that prevent Xyce from proceeding to a full simulation. (This is not an
expected use case for the Python interface.) This should be fixed in a future release.

3.1.3 runSimulation

result = xyceObj.runSimulation()

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows
the calling Python program to invoke the underlying xyce_runsimulation method of the
XyceCInterface. The return value (in result) for this Python method is the same as for
the xyce_runSimulation method of XyceClnterface.

3.1.4 simulateUntil

(result, actual_time) = xyceObj .simulateUntil(requested_time)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows
the calling Python program to invoke the underlying xyce_simulateUntil method of the
XyceClnterface. The return value (in result) is the same as for the xyce_simulateUntil
method of XyceClnterface. See Section 2.1.4 for a discussion of the requested_time pa-
rameter. For the Python method, actual_time is a returned value rather than a parameter
in the function call. It is also described in Section

3.1.5 close

xyceObj . close()

2.1.4

This method causes Xyce to close all output files after a simulation run is complete and
emit timing information. It also deletes the pointer to the N_CIR_Xyce object. It should be
called after the Xyce simulation is complete.

24

3.1.6 getDeviceNames

(result, deviceNames) = xyceObj.getDeviceNames(modelGroupName)

This method assumes that xyceObj was previously obtained with the xyce_interf ace
method and successfully initialized with the initialize method. This method allows
the calling Python program to invoke the underlying xyce_getDeviceNames method of the
XyceCInterf ace. The return value (in result) is the same as for the xyce_getDeviceNames
method of XyceCInterf ace. For the Python method, deviceNames is a returned array
rather than a parameter in the function call. Valid values for the modelGroupName parame-
ter are discussed in Section 2.1.61

3.1.7 getDACDeviceNames

(result, DACnames) = xyceObj.getDACDeviceNames()

This method is basically a specialized version of the Python method getDeviceNames that
only returns the names of YDAC devices in the simulation. See Section 2.1.4. for more
details on the underlying xyce_getDACDeviceNames method of XyceCInterf ace.

3.1.8 updateTimeVoltagePairs

result = xyceObj.updateTimeVoltagePairs(DACname, timeArray, voltageArray)

This method assumes that xyceObj was previously obtained with the xyce_interf ace
method and successfully initialized with the initialize method. This method allows the
calling Python program to invoke the underlying xyce_updateTimeVoltagePairs method
of the XyceCInterf ace. The return value (in result) is the same as for the XyceCInterf ace
method xyce_updateTimeVoltagePairs.

An example of how to use this Python method is provided in the release src subdirectory
utils/XyceCInterface/Python_examples/runCircuitwithDACs.

3.1.9 checkResponseVar

result = xyceObj.checkResponseVarName(variable_name)

This method assumes that xyceObj was previously obtained with the xyce_interf ace
method and successfully initialized with the initialize method. This method allows the

25

calling Python program to invoke the underlying xyce_checkResponseVar method of the
XyceClnterface. The return value (in result) is the same as for the XyceClnterface
method xyce_checkResponseVar.

3.1.10 obtainResponse

(result, value) = xyceObj.obtainResponse(variableName)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows
the calling Python program to invoke the underlying xyce_obtainResponse method of the
XyceClnterface. The return value (in result) is the same as for the XyceClnterface
method xyce_obtainResponse. See Section 2.1.10 for a description of value.

3.1.11 setADCWidths

result = xyceObj.setADCWidths(ADCnames, width)

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows
the calling Python program to invoke the underlying xyce_setADCWidths method of the
XyceClnterface. The return value (in result) is the same as for the XyceClnterface
method xyce_setADCWidths.

See Section 2.1 .1 1 for a description of the ADCnames and widths parameters. The ADC
widths can be set via this function, the WIDTH instance parameter for each individual YADC
device and the associated YADC model parameters (see Section 5.1). The order of prece-
dence is in that order. This function should have the highest precedence, since it occurs
after the xyce_initialize method is called.

The "error condition" of ADCnames and widths being of unequal lengths is checked when
this method is invoked via the Python interface. lt is not checked when xyce_setADCWidths
is invoked directly.

3.1.12 getTimeVoltagePairsADC

(result, ADCnames, numADCnames, numPoints, timeArray, voltageArray)

xyceObj.getTimeVoltagePairsADC()

This method assumes that xyceObj was previously obtained with the xyce_interface
method and successfully initialized with the initialize method. This method allows the

26

calling Python program to invoke the underlying xyce_getTimeVoltagePairsADC method
of the XyceCInterf ace. The return value (in result) is the same as for the XyceCInterf ace
method xyce_getTimevoltagePairsADC.

This function is the "least mature" of the Python methods and Section 6.1 describes its
limitations via a Python-based example. Many of these limitations stem from known limi-
tations in the YADC device (see Section 5.1) implemented in Xyce 6.10.

3.1.13 getADCMap

int xyce0bj.getADCMap()

This method is implemented in the utils/XyceClnterface/xyce_interface.py. file. However,
the underlying xyce_getADCMap method in the XyceCInterf ace has not been implemented
yet. So, its use is not recommended.

3.2 Examples

This section gives a brief example of how to run a Xyce simulation from a Python (2.6
or 2.7) program using the Sandia-supplied ctypes-based interface. Since Python is an
interpreted langauge there is no need for further compilation or linking of Xyce. It is
sufficient to have built Xyce as "shared objects" per the instructions in Section 2.2

An example Python program, called runACircuit .py, is shown in Figure 3.1. The associ-
ated Xyce netlist, which is called runACircuit.cir, is shown in Figure 3.2. (Note: These files
are also found in the release src subdirectory utils/XyceCInterface/Python_examples
just in case cut-n-paste from the .pdf document does not work for the reader.) That Python
program can then be invoked with:

python runACircuit .py

The two caveats are that the location of:

■ xyce_interf ace .py should be added to your PYTHONPATH environment variable.

■ the Xyce shared object (. so) files should be added to your LD_LIBRARY_PATH envi-
ronment variable.

The files UpdatePythonPath. sh and UpdateDynamicLinkerPath. sh in the release subdi-
rectory utils/XyceCInterf ace provide "non-working" examples of how to modify those

27

environment variables. The notional subidirectory paths of /path/to/XycesrcDirectory
and /path/to/XyceBuildDirectory should be replaced with actual paths to your Xyce
source and build directories. The UpdateDynamicLinkerPath. sh file assumes that a make
install build was used. If not then the paths to your shared library files may be different,
as is illustrated for the vvp build process in Figures 4.4 and 4.5

As a note, the current recommendation for the use of LD_LIBRARY_PATH means that the
Python interface will not work on newer versions of OSX because of Apple's System
Integrity Protection (SIP) feature. This issue is under study.

Additional examples of using xyce_interf ace . py can be found in the release src subdirec-
tory utils/XyceClnterface/Python_examples. Those examples also use the simulateUntil(),
getDACDeviceNames(), updateTimeVoltagePairs() and obtainResponse 0 methods. See
Reference [10] for an example of how to use xyce_interface.py to interface Xyce to
GHDL [11] and Cocotb [12].

Additional examples can also be found in the Xyce regression test suite in the subdi-
rectory Netlists/MIXED_SIGNAL/Python. However, some of those examples are "error
condition" tests, which purposefully fail or otherwise have purposefully invalid or non-
useful syntaxes. The comments in the files for each test should indicate which ones are
functional examples and which lines in a given test are not valid or useful.

For internal High Performance Computing (HPC) users, the .so files needed to run these
examples can be found in /projects/xyce/XyceRad_6.10/Serial/toss3/lib. The Python
interface file is then in /projects/xyce/XyceRad_6.10/Serial/toss3/python. The exam-
ples are in /projects/xyce/XyceRad_6.10/Serial/toss3/examples.

For internal Common Engineering Environment (CEE) users, the .so files needed to run
these examples can be found in (where RHELX is either RHEL6 or RHEL7, depending on
the CEE machine you are using) /projects/xyce/Xyce_6.10/RHELX/Serial/lib. The
Python interface file is then in /projects/xyce/Xyce_6.10/RHELX/Serial/python. The
examples are in /proj ects/xyce/Xyce_6.10/RHELX/Serial/examples.

28

from xyce_interface import xyce_interface

this calls the xyce_interface.open() method to

make a xyce object

xyceObj = xyce_interface()

print(xyceObj)

argv= ['runACircuit.cir']

print("calling initialize with netlist %s" % argv[0])

result = xyceObj.initialize(argv)

print("return value from initialize is %d" % result)

print("Calling runSimulation...")

result = xyceObj.runSimulation()

print("return value from runSimulation is %d" % result)

print("calling close")

xyceObj.close()

Figure 3.1. Python Program for runACircuit example

* test circuit

V1 1 0 SIN(0 1 1)

R1 1 0 1

.TRAN 0 1

.PRINT TRAN V(1)

.MEASURE TRAN MAXV1 MAX V(1)

.MEASURE TRAN MINV1 MIN V(1)

.END

Figure 3.2. Xyce Netlist for runACircuit Python example

29

3.3 Known Limitations and Bugs
This section has a Iist of the known limitations and bugs of the Python-based version of
the Mixed Signal interface.

■ The existing use of the LD_LIBRARY_PATH environment variable likely limits the use of
this interface to RHEL6 and RHEL7 only.

■ This interface has been tested with Python 2.6.6, 2.7.4 and 2.7.5 for the Xyce 6.10
release. Some features are known to fail when this interface is used with Python
3.4.2 or 3.5.2. Support for Python 3 will likely be added in a future release.

■ The getDeviceNames 0 and getDACDeviceNames 0 methods are currently limited to
returning only up to 1000 devices each. In addition, the individual device names
must each be less than 1000 characters long.

■ If the initialize() method returns 2 (which is the Xyce::Circuit::Simulator::RunStatus
of "DONE") then the calling .py file will likely segfault. This can happen for Xyce
command line options such as -norun that prevent Xyce from proceeding to a full
simulation. This is not an expected use case for the Python interface though.

■ The method updateTimevoltagePairs 0 will unconditionally emit the warning mes-
sage "Netlist warning: Failed to update the time-voltage pairs for the DAC" even if
the update was successfully. (Note: There should be a patch file, for the underlying
Xyce source code, available to fix this for external users who build Xyce from source.
It has been fixed for internal users who use Sandia's HPC and CEE resources.)

■ The method getDeviceNames 0 may not work correctly if an invalid model group
name is used as a parameter. In that case, the first letter of the model group name
will be used. So, for example, a request for devices of model group BOGO will actually
return all of the B devices in the netlist.

30

4. Xyce VPI Interface to
Icarus

This chapter describes how the XyceCInteface class can be used to interface Xyce to
Icarus, which is an open-source Verilog simulation and synthesis tool. It begins with a brief
overview of Icarus. It then gives a working "runXyce" example where a Xyce simulation
is called from a simple Verilog program via the vvp executable produced by Icarus. It
concludes with guidance on building the example runXyce .vvp and runXyce .vpi files.

4.1 Icarus Overview

Since this application note assumes minimal familiarity with Verilog and Icarus, some
helpful references for Icarus are:

Icarus Verilog Home Page [2]

Download and Build Instructions [13]

Getting Started [14]

VPI Example [11-51]

The next two subsections assume that the reader has downloaded and installed Icarus
according to those Download and Build Instructions. It also assumes that the reader
can execute the simple "Hello World" examples given at those Getting Started and VPI
Example webpages.

For more information on VPI, consult the IEEE Standard [3]. This book [16] also has a
good set of VPI examples, with example code.

4.2 Xyce VPI Implementation and
Examples

As mentioned previously, this is the initial implementation of a Verilog Procedural Interface
(VPI) capability for Xyce. It is subject to change in future Xyce releases. In particular, this

31

initial version accesses the XyceCInteface class directly within the VPI code. Subsequent
versions will likely use a "C++ wrappers" approach so that the VPI code only uses ANSI-C
and the native PLI data-types in its function calls.

This section describes how to use the XyceCInterface class to run a Xyce simulation
from a Verilog program via the VPI capability supported by Icarus. This is a very simple
demonstration of that interface that is basically a "runxyce" example that uses a Verilog
program (runXyce.v), a Xyce netlist(runxyce.cir)and some VPI code (runXyce.c), as
shown in Figures 4.1,4.2 and 4.3. It is basically the same as the runACircuit example
given in Section 3.2. (Note: all three of these files can be also found in the release src
subdirectory utils/XyceCInterface/VPI_examples/runxyce.)

Additional examples of using the VPI interface with Icarus can be found in the release
srcsubdirectoryutils/XyceCInterface/VPLexamples. Those examples also use the
xyce_simulateUntil () , xyce_getDACDeviceNames () , xyce_updateTimelfoltagePairs 0 and
xyce_obtainResponse() methods of the XyceClnterface.

module main;

initial $runXyce;

endmodule 1
Figure 4.1. Verilog Program for runXyce VPI example

* test circuit

V1 1 0 SIN(0 1 1)

R1 1 0 1

.TRAN 0 1

.PRINT TRAN V(1)

.MEASURE TRAN MAXV1 MAX V(1)

.MEASURE TRAN MINV1 MIN V(1)

.END

Figure 4.2. Xyce Netlist for runXyce VPI example

32

#include <vpi_user.h>

#include <stdio.h>

#include <N_CIR_XyceCInterface.h>

static int runXyce_compiletf(char*user_data) {

return 0;

}

static int runXyce_calltf(char*user_data) {

// Used as a pointer to a pointer to an N_CIR_Xyce object.

// This somewhat convoluted syntax is needed to stop p from

// pointing at the same address as the VPI system task.

void** p = new void* [1];

// Make Xyce command line for xyce_initialize() call.

char *argList[] = f(char*)("Xyce"),(char*)("runXyce.cir") };

int argc = sizeof(argList)/sizeof(argList[0]);
char** argv = argList;

// Demo methods in utils/XyceCInterface/N_CIR_XyceCInterface.0

xyce_open(p);

xyce_initialize(p,argc,argv);

xyce_runSimulation(p);

xyce_close(p);

// pointer clean-up and return

delete[] p;

return 0;

}

void runXyce_register() {

s_vpi_systf_data tf_data;

tf_data.type = vpiSysTask;

tf_data.tfname = "$runXyce";

tf_data.calltf = runXyce_calltf;

tf_data.compiletf = runXyce_compiletf;

tf_data.sizetf = 0;

tf_data.user_data = 0;

vpi_register_systf(ftf_data);

}

void (*vlog_startup_routines[])() = {

runXyce_register,

0 /* final entry must be zero */

};

Figure 4.3. VPI File for runXyce VPI example

33

4.3 vPI Building Guide for RHEL6 and
RHEL7

The sequence of commands shown in Figure 4.4 should compile Icarus and the Xyce
shared objects into an executable vvp program. (Note: This process was tested with
Icarus Verilog version 10.1.) It is analogous to the compilation steps given on the Icarus
VPI Example web page [15]. In this command sequence the top-level Xyce build directory
build is denoted as $xyceBuildDir and the top-level Xyce src directory is referred to as
$xyceSrcDir. $verilogBase can be generated by running which iverilog and using
the returned directory path starting above the bin subdirectory. $baseName is then the
common prefix (e.g., runxyce) of the .cand.v.files.

The sequence of commands shown in Figure 4.4 assumes that make install was used,
andthat—prefix=$xyceBuildpirmasusedWhenXymbuiltaccordingtotheinstrucfions
in Section 2.2. If the Xyce build was not installed then the slightly more complicated
commands given in Figure 4.5 can used. That figure assumes a Sandia-internal build. For
an open-source build, the SandiaModels and Xyce_NonFreelibnaries would be omitted
from the second usage of g++. After the runXyce.vvp program is made then it can be
executed with:

vvp -M. -mrunXyce runXyce.vvp

g++ -c -fpic -I $verilogBase/include/iverilog

-I $xyceSrcDir/utils/XyceCInterface

$baseName.c

g++ -I$verilogBase/include/iverilog/libvpi.a

-shared -L$xyceBuildDir/lib

$xyceBuildDir/utils/XyceCInterface/libxycecinterface.so

-o $baseName.vpi $baseName.o

iverilog -o$baseName.vvp $baseName.v

Figure 4.4. Compiling vvp Program with an Installed Xyce
Build

34

g++ -c -fpic -I $verilogBase/include/iverilog

-I $xyceSrcDir/utils/XyceCInterface

$baseName.c

g++ -I$verilogBase/include/iverilog/libvpi.a

-shared -L$xyceBuildDir/src/.1ibs

-L$xyceBuildDir/src/DeviceModelPKG/SandiaModels/.1ibs

-L$xyceBuildDir/src/DeviceModelPKG/ADMS/.1ibs

-L$xyceBuildDir/src/DeviceModelPKG/NeuronModels/.1ibs

-L$xyceBuildDir/src/DeviceModelPKG/Xyce_NonFree/.1ibs

$xyceBuildDir/utils/XyceCInterface/libxycecinterface.so

-o $baseName.vpi $baseName.o

iverilog -o$baseName.vvp $baseName.v

Figure 4.5. Compiling vvp Program with a not Installed

Xyce Build

Finally, additional examples of using Xyce with Icarus and VPI can be found in the re-
lease subdirectory utils/xycecInterface/vpi_examples. Those examples also use the
xyce_simulateUntil(), xyce_getDACDeviceNames , xyce_updateTimevoltagePairs 0 and
xyce_obtainResponse 0 methods of the XyceCInterf ace class.

35

5. Device Models for Mixed
Signal Simulation

Xyce has simple models for a Digital-to-Analog Converter (DAC) and an Analog-to-Digital
Converter (ADC) that help demonstrate the Python and VPI interfaces discussed in the
previous chapters. These models will likely be enhanced in future releases, so feedback
on missing features is encouraged.

This chapter contains manual pages for the YADC and YDAC devices. This information
may be moved to the Xyce Reference Guide in a future release.

5.1 Analog-to-Digital Converter

instance Form YADC<name> <(+) node> <(-) node> [model name] [device parameters]

ModelForm .MODEL <model name> ADC [model parameters]

Examples YADC1 ADC1 1 2 simpleADC R=1T WIDTH=2

.MODEL simpleADC ADC (settlingtime=5Ons uppervoltagelimit=5

+ lowervoltagelimit=0)

Parameters
and Options

(+) node

(-) node

Polarity definition for a positive voltage across the ADC. The
first node is defined as positive. Therefore, the voltage across
the component is the first node voltage minus the second node
voltage.

model name

This parameter is optional for the YADC device. If it is omitted
then the default values for the model parameters will be used.

36

device parameters

Parameters listed in Table 5.1 may be provided as space sepa-
rated <parameter>=<value> specifications as needed. Any num-
ber of parameters may be specified.

Comments The "upper voltage limit"and "lower voltage limit" model parameters might
not be the best approach for this device. They might be replaced, in a
future release, with a Vref+ node against which a Vin is compared, with
a common negative reference (e.g. ground). For now, a reasonable ap-
proach is to connect the negative terminal to ground and use 0.0 as the
value for the LOWERVOLTAGELIMIT parameter.

The YADC device is calculating "breakpoints" for when its output digital
states change. However, there are at least two known issues with that
process in this Xyce release. First the breakpoint times (and the voltage
difference between the positive and negative terminals at those times)
are based on the times of "accepted steps" in the simulation, rather
than (possibly) interpolated estimates of when the state changes actu-
ally occurred. So, those times and voltages may be inaccurate, and be
reported as occuring later than the actual state-change times. The sec-
ond, and larger issue, is that breakpoints calculated by the YADC device
are not actually used by the rest of the Xyce simulation. Instead, those
times and voltages are simply made available to the external simula-
tor via the xyce_getTimeVoltagePairsADC method described in Section
2 1 12

Another possible issue is that the YADC device is storing "deltaV" (the
difference between the voltages at the positive and negative terminals)
in the TVVEC time-voltage vector returned by the XyceCInterface method
xyce_getTimeVoltagePairsADC. So, the external digital simulator likely
has to duplicate the calculation of the output state of the YADC de-
vice. (Note: Those equations are given below.) This may also be
fixed/changed in a future release.

The final issue may be that the output state is stored as an integer,
between 0 and 2**wIDTH-1. An option to have it reported, to the external
simualtors, as a binary bit-vector might also be useful.

Device Parameters

Table 5.1: ADC Device Instance Parameters

Parameter Description Units Default

R Internal resistance Q 1 e+12

WIDTH Output bit vector width s 1

37

Model Parameters

Table 5.2: ADC Device Model Parameters

Parameter Description Units Default

LOWERVOLTAGELIMIT Lower limit of ADC voltage range V 0

SETTLINGTIME Settling time s le-08

UPPERVOLTAGELIMIT Upper limit of ADC voltage range V 5

ADC Equations

C++ style code for how the output state of the YADC device is calculated is shown in Fig-
ure 5.1. (Note: this code comes from the function Instance: :getInstanceBreakPoints()
in the source file src/DeviceModelPKG/OpenModels/N_DEV_ADC.C.)

// vPos is the voltage on the positive terminal.

// vNeg is the voltage on the negative terminal.

// width_ is the Output bit vector width (from WIDTH).

// nQuantLevels_ is 2**(width_).

deltaV = vPos-vNeg;

vFrac = deltaV/(model_upperVoltageLimit_

- model_lowerVoltageLimit_);

if (vFrac < (1.0)/(nQuantLevels_))

{

newState = 0;

}

else if (vFrac >= (nQuantLevels_ - 1.0)/(nQuantLevels_))

{

newState = nQuantLevels_ -1;

}

else

{

newState = int(vFrac*nQuantLevels_);

}

if (newState != lastOutputLevel_)

{

// update TVVEC with deltaV value and breakpoint

}

time

Figure 5.1. Calculation of the YADC Output State

38

5.2 Digital-to-Analog Converter

instance Form YDAC<name> <(+) node> <(-) node> [model name]

Model Form .MODEL <model name> DAC [model parameters]

Examples YDAC dacl 2 0 simpleDAC

.model simpleDAC DAC (tr=5e-9 tf=5e-9)

Parameters
and Options (+) node

(-) node

Polarity definition for a positive voltage across the DAC. The first
node is defined as positive. Therefore, the voltage across the
component is the first node voltage minus the second node volt-
age.

model name

This parameter is optional for the DAC device. If it is omitted
then the default values for the model parameters will be used.

Comments The DAC device acts like a voltage source as far as the rest of the circuit
is concerned. There is no output R-L-C smoothing network, as might be
found in a more realistic DAC.

Model Parameters

Table 5.3: DAC Device Model Parameters

Parameter Description Units Default

TF Fall Time s le-09

TR Rise Time s le-09

39

6. Conclusions and Future
Work

This application note provided an overview of the XyceCInterface class and how it can
used to interface to external programs via a Sandia-supplied Python ctypes interface and
the Verilog Procedural Interface (VPI). These interfaces are not an "officially announced"
capability in Xyce yet. So, one purpose of this application note was to solicit feedback
on these interfaces from both internal Sandia Xyce users and other performers on the
DARPA Posh Open Source Hardware (POSH) program. The remainder of this chapter
will summarize the known limitations of these interfaces.

The Common Operating Environment (COE) at Sandia encourages internally developed
software to support RHEL6, RHEL7, OSX and Windows 10. In addition, support for
Ubuntu may be part of that COE in the near future. At present, the interfaces described
in this application note have only been tested and documented for RHEL6 and RHEL7.

A list of miscellaneous bugs for the Python interface was listed in Section 3.3. The main
issue with that Python interface, which is "coordinated time stepping", will be discussed in
the next subsection.

The primary issue with the VPI capability is the lack of standards compliance. The exam-
ple given in Section 4.2 uses the C++ features of the XyceCInterface directly. Wrapper
functions, that only use ANSI C and the native PLI data-types in their function calls, still
need to be implemented.

6.1 Known Issues with Coordinated Time
Steppi ng

The xyce_getTimevoltagePairsADCmethod of the XyceClnterface is the least mature of
that interface's methods. Many of its limitations stem from known limitations in the YADC
device (see Section 5.1) implemented in Xyce 6.10. This section gives a Python-based
example that illustrates those limitations. The goal is to solicit feedback on the best reso-
lution of these issues.

The netlist for this "Timestepping" example is shown in Figure 6.1. The calling Python
program is shown in Figure 6.2. An abbreviated version of the resultant stdout, with a

40

subset of the descriptive output from the Python program is then shown in Figure 6.3

The returned arrays (timeArray and voltageArray) are 2x2 in this example. In general,
they would be MxN where is the value of numADCnames and N is the value of numPoints.
For the simulation interval ending at 1 e-5, the returned values of (0,0) are "not useful".
They are basically the simulation start time. The returned values of (le-5,2e-1) are also
not useful in this case. They are the breakpoints set by the call to simulateUntil. So,
the underlying xyce_getTimevoltagePairsADCO method of the XyceClnterface, and the
device model in the YADC device, may need to be modified to only report breakpoints that
were set by the ADC devices.

Another problem is accuracy. There is useful breakpoint information returned for ADC2 af-
ter the second call to simulateUntil. However, the time (1.267e-05) and value (2.524e-
01) were determined based on the last accepted Xyce time step (see the .prn file) at
time = 1.262e-05, instead of when the state change might have actually occured. A re-
lated issue is that the returned value is the voltage difference between the positive and
negative terminals of the YADC device. So, the external simulator has to duplicate the
YADC equations (see Section 5.1) to determine the binary-state value for each YADC in
the simulation.

The final, and most important problem, is that the breakpoints generated by each YADC
device are not actually used by the rest of the Xyce simulation. The Xyce simulation in
this example continued on until the next value of requested_time and did not pause at
any of the breakpoints generated by the YADC devices. (Note: that capability was broken
in a previous release and was not fixed/changed in time for the Xyce 6.10 release.) So,
based on various Sandia and DARPA POSH use cases, techniques for coordinated time-
stepping of Xyce and the external simulator(s) need to be defined and implemented for
simulations that contain both YADC and YDAC devices.

41

* Netlist name is TimeStepping.cir

* These WIDTH values will be overwritten by the Python program

YADC adcl 1 0 simpleADC R=1T WIDTH=1

YADC adc2 1 0 simpleADC R=1T WIDTH=1

.model simpleADC ADC(settlingtime=5Ons uppervoltagelimit=2

+ lowervoltagelimit=0)

vl 1 0 PWL 0 0 le-4 2

.TRAN 0 le-4

* illustate syntax for printing out YADC device parameters

.PRINT TRAN V(1) YADC!ADC1:WIDTH YADC!ADC2:WIDTH

.END

Figure 6.1. Xyce Netlist for Time Stepping Example

42

from xyce_interface import xyce_interface

xyceObj = xyce_interface()

print(xyceObj)

argv= ['TimeStepping.cir)]

print("calling initialize with netlist %s" % argv[0])

result = xyceObj.initialize(argv)

print("return value from initialize is %d" % result)

get ADC names

(result, names) = xyceObj.getDeviceNames("YADC")

print("return value from getDeviceNames is %d" % result)

print(names)

#set ADC widths. This is hard-coded for two ADCs, and must

match the WIDTH variables on the ADC instance lines. This may

seem backwards but names is PYADC!ADC2', 'YADC!ADC11 here.

width=[3,2]

result = xyceObj.setADCWidths(names,width)

stepSize = le-5

steps = range(0,3)

for i in steps:

requested_time = 0.0 + (i+1) * stepSize

print("Calling simulateUntil for requested_time = %.3e" \

% requested_time)

actual_time = 0.0

(result, actual_time)=xyceObj.simulateUntil(requested_time)

print("simulateUntil status = %d and actual_time = %.3e" \

% (result, actual_time))

(result, ADCnames, numADCnames, numPoints, timeArray, \

voltageArray) = xyceObj.getTimeVoltagePairsADC()

print("number of pts returned by getTimeVoltagePairsADC() \

is %d" % numPoints)

Note: ADCnames is PYADC!ADC1', 'YADC!ADC21 here.

print("ADC 1:

MtimeArray[0]

print("ADC 1:

MtimeArray[0]
print("ADC 2:

MtimeArray[1]

print("ADC 2:

MtimeArray[1]

print("calling

xyceObj.close()

Time and voltage array 0 values

[0] , voltageArray[0][0]))
Time and voltage array 1 values

[1] , voltageArray [0] [1]))
Time and voltage array 0 values

[0] , voltageArray[1][0]))
Time and voltage array 1 values

[1] , voltageArray[1] [1]))
close")

are %.3e %.3e" \

are %.3e %.3e" \

are %.3e %.3e" \

are %.3e %.3e" \

Figure 6.2. Python Program for Time Stepping Example

43

Calling simulateUntil for requested_time = 1.000e-05

simulateUntil status = 1 and actual_time = 1.000e-05

number of pts returned by getTimeVoltagePairsADC() is 2

names are YADC!ADC1 YADC!ADC2

ADC 1: Time and voltage array 0 values are

ADC 1: Time and voltage array 1 values are

ADC 2: Time and voltage array 0 values are

ADC 2: Time and voltage array 1 values are

Calling simulateUntil for requested_time =

simulateUntil status = 1 and actual_time =

number of pts

0.000e+00

1.000e-05

0.000e+00

1.000e-05

2.000e-05

2.000e-05

returned by getTimeVoltagePairsADC()

0.000e+00

2.000e-01

0.000e+00

2.000e-01

is 2

names are YADC!ADC1 YADC!ADC2

ADC 1: Time and voltage array 0 values are 2.000e-05 4.000e-01

ADC 1: Time and voltage array 1 values are 0.000e+00 0.000e+00

ADC 2: Time and voltage array 0 values are 1.267e-05 2.524e-01

ADC 2: Time and voltage array 1 values are 2.000e-05 4.000e-01

Calling simulateUntil for requested_time = 3.000e-05

simulateUntil status = 1 and actual_time = 3.000e-05

number of pts returned by getTimeVoltagePairsADC() is 2

names are YADC!ADC1 YADC!ADC2

ADC 1:

ADC 1:

ADC 2:

ADC 2:

Time

Time

Time

Time

and

and

and

and

calling close

voltage

voltage

voltage

voltage

array 0

array 1

array 0

array 1

values are 2.625e-05 5.241e-01

values are 3.000e-05 6.000e-01

values are 2.625e-05 5.241e-01

values are 3.000e-05 6.000e-01

Figure 6.3. Abbreviated stdout for Time Stepping Example

44

References

[1] Thomas V. Russo and Russell Hooper. Application Note: Coupled Simulation with
the Xyce General External Interface. Technical Report SAND2018-12275, Sandia
National Laboratories, 2018.

[2] lcarus Home Page, . URL http : //iverilog . icarus . com/

[3] IEEE Standard 1364-2005: IEEE Standard for Verilog Hardware Description Lan-
guage, 2005.

[4] Eric R. Keiter, Karthik V. Aadithya, Ting Mei, Thomas V. Russo, Richard L. Schiek,
Peter E. Sholander, Heidi K. Thornquist, and Jason C. Verley. Xyce Parallel Elec-
tronic Simulator: Reference Guide, Version 6.10. Technical Report SAND2018-
12374, Sandia National Laboratories, Albuquerque, NM, 2018.

[5] Eric R. Keiter, Karthik V. Aadithya, Ting Mei, Thomas V. Russo, Richard L. Schiek,
Peter E. Sholander, Heidi K. Thornquist, and Jason C. Verley. Xyce Parallel Elec-
tronic Simulator: Users' Guide, Version 6.10. Technical Report SAND2018-12373,
Sandia National Laboratories, Albuquerque, NM, 2018.

[6] Eric R. Keiter, Scott A. Hutchinson, Robert J. Hoekstra, Lon J. Waters, and
Thomas V. Russo. Xyce parallel electronic simulator design: Mathematical formula-
tion, version 2.0. Technical Report SAND2004-2283, Sandia National Laboratories,
Albuquerque, NM, June 2004.

Xyce Building Guide, . URL
BuildingGuide.html

https://xyce.sandia.gov/documentation/

Running the Xyce Regression Suite, . URL
documentation/RnnningTheTests.htmt

ctypes - A foreign function library for Python. URL
library/ctypes.html,

https://xyce.sandia.gov/

https://docs.python.org/3/

Andrew M. Smith, Jackson Mayo, Rob Armstrong, Richard Schiek, Peter Sholan-
der, and Ting Mei. Digital/Analog Cosimulation Using CocoTB and Xyce. Technical
Report SAND2018-TBD, Sandia National Laboratories, 2018.

[11] GHDL. URL http : //ghdl . free . fr/.

45

[12] Introduction to Cocotb. URL
jntroduction.html.

https://cocotb.readthedocs.io/ennatest/

[13] Icarus Verilog - Installation Guide, . URL
Installation Guidel

[14] Icarus Verilog - Getting Started, . URL
Startedi

[15] Icarus Verilog - Using VPI, . URL

http://iverilog.wikia.comNiki/

http://iverilog.wikia.comNiki/Getting_

http://iverilog.wikia.comNiki/Using_VPI

[16] Stuart Sutherland. The Verliog PLI Handbook: Second Edition. Springer Sci-
ence+Business Media, New York, NY, 2002.

46

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

48

v1.40

49

Sandia National laboratories

50

